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Abstract The Erlang mixture model with common scale parameter is flexible and analytically tractable.

As such, it is a useful model to fit insurance loss data and to calculate quantities of interest for insurance

risk management. In this paper, we propose a generalized expectation-maximization (GEM) algorithm

along with a clusterized method of moments (CMM) to estimate the model parameters. The GEM

algorithm not only estimates the mixing weights and scale parameter of the model but also estimates

the shape parameters of the model using a local search method. The CMM method enables to produce

quality initial estimates for the GEM algorithm. As a result, the proposed approach provides an efficient

algorithm that can fit the model to the body and the tail of truncated and censored loss data well and

converges fast. We examine the performance of the proposed approach through several simulation studies

and apply it to fit the Erlang mixture model to two real loss data sets.

Keywords Erlang mixture model; Insurance loss data; Generalized EM algorithm; Clusterized method

of moments; Local search method

1 Introduction

The class of Erlang mixtures with common scale parameter has been shown to have many desirable distribu-

tional properties for insurance valuation and risk management. The class is dense in the space of positive con-

tinuous distributions in the sense of weak convergence and hence any loss distribution can be approximated by

an Erlang mixture to any accuracy. The survival function and moments of an Erlang mixture can be expressed

explicitly, which enables us to calculate risk measures such as VaR and TVaR easily. As a result, Erlang mix-

tures have recently been found in many insurance applications. See Klugman and Rioux (2006), Lee and Lin

(2010), Willmot and Lin (2011), Cossette et al. (2012), Cossette et al. (2013), Hashorva and Ratovomirija

(2015), Willmot and Woo (2015), Miljkovic and Grün (2016), Yin and Lin (2016), and references therein.

A multivariate version of the Erlang mixture is proposed in Lee and Lin (2012) and further studied by

Verbelen et al. (2016) in a truncated and censored data case.
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Another advantage of the use of Erlang mixtures is the existence of a simple EM algorithm for parame-

ter estimation. See Lee and Lin (2010) and Verbelen et al. (2015). However, there are some drawbacks with

the existing EM algorithm. First, as an iterative algorithm the EM algorithm is sensitive to its initial esti-

mates. The choice of initial estimates is critical for the fast convergence of the algorithm. Initial estimates

based on the Tijms approximation (Tijms, 1994) in Lee and Lin (2010) might not be ideal. Second, if loss

data have long right tail, the algorithm might not be able to fit the tail effectively since the shape parameters

are estimated using an ad-hoc procedure. Some efforts have been made to improve the EM algorithm by

introducing a penalized likelihood (see Yin and Lin (2016)).

In this paper, we propose a new method called GEM-CMM algorithm for parameter estimation to tackle

both aforementioned issues. Insurance losses are often censored and truncated due to policy modifications

such as deductibles (left truncation) and policy limits (right censoring). When fitting a statistical model

to insurance loss data, it is necessary to take truncation and censoring into consideration. In this paper,

we consider fitting the Erlang mixture model to truncated and censored loss data. We propose the use of

a generalized EM (GEM) algorithm along with a data-driven clusterized method of moments (CMM) for

initialization to estimate key parameters of the model including the shape parameters. Under this approach,

the model can fit both the body and the tail of the data well, which is confirmed by simulation studies and

real data applications in this paper.

This paper is organized as follows. In Section 2, we provide a brief overview of the Erlang mixture and

the currently used EM algorithm for the mixture. In Section 3, a GEM algorithm is proposed to improve

the EM algorithm by maximizing the likelihood function of the data and at the meantime by adopting a

local search method (Givens and Hoeting, 2013) to estimate the shape parameters in the M-step of the EM

algorithm. In Section 4, a CMM method is presented to obtain high quality initial estimates for the GEM

algorithm so that the algorithm converges rapidly. The initialization involves clustering data using the K-

means method and the application of the method of moments for each cluster. In Section 5, the parameters

are adjusted to further improve the fitting. In Section 6, we test the efficiency of our algorithm through

several simulation studies. We then apply the algorithm to fit the model to real data in Section 7. The

results in both sections show that the model fits the data well. We conclude in Section 8 with some remarks

on future research.

2 Erlang mixtures and associated EM algorithm

In this section, we recall the definition of the univariate Erlang mixture model with common scale parameter

and an EM algorithm for parameter estimation.

An Erlang distribution has probability density function (pdf)

f(x|m, θ) =
xm−1e−x/θ

θm(m− 1)!
, x > 0, (2.1)
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where m is a positive integer and θ > 0. Its survival function is given by

F (x|m, θ) = e−x/θ
m−1∑

n=0

xn

θnn!
. (2.2)

An M -component Erlang mixture with common scale parameter has pdf

h(x|Φ) =
M∑

u=1

αuf(x|mu, θ) =
M∑

u=1

αu
xmu−1e−x/θ

θmu(mu − 1)!
, (2.3)

where the parameters are Φ = {αu,mu, θ, u = 1, · · · ,M} with weight constraints αu > 0,
M∑
u=1

αu = 1,

and scale parameter θ > 0. We denote its distribution function as H(x|Φ) and the survival function as

H(x|Φ) = 1−H(x|Φ).

Lee and Lin (2010) show that the class of univariate Erlang mixtures is dense in the space of positive

continuous distributions in the sense of weak convergence. There are explicit expressions for many distri-

butional quantities such as the moments, the distribution function and the characteristic function. Risk

measures such as value-at-risk (VaR) and tail VaR (TVaR) can be easily calculated as well.

Borrowing the notation in Verbelen et al. (2015) for censoring and truncation, denote the common trunca-

tion range of the data as (tl, tr). Let X = (X1, · · · , Xn) be the underlying random sample under truncation

and its realization with censoring be x = (x1, · · · , xn). For each data point xv, v = 1, · · · , n, we denote its

censoring interval as (lv, rv), i.e., the realization of Xv insider the interval is censored. Thus, xv is determined

as follows:
uncensored: tl ≤ lv = rv = xv ≤ tr,

left censored: tl = lv < xv = rv < tr,

right censored: tl < lv = xv < rv = tr.

The density function of Xv is given by

g(xv|t
l, tr,Ψ) =

M∑

u=1

βup(xv|t
l, tr,mu, θ), t

l ≤ xv ≤ tr, (2.4)

where βu = αu
F (tr|mu, θ)− F (tl|mu, θ)

H(tr|Φ)−H(tl|Φ)
and p(xv|t

l, tr,mu, θ) =
f(xv|mu, θ)

F (tr|mu, θ)− F (tl|mu, θ)
. Thus, the

model parameters are re-parametrized to be Ψ = {βu,mu, θ, u = 1, · · · ,M}.

An EM algorithm for parameter estimation for the Erlang mixture model is presented in Lee and Lin (2010)

and extended in Verbelen et al. (2015) whose EM algorithm deals with truncated and censored data. In both

papers, the set of parameters to be estimated are mixing weights and the scale parameter: Φ−m = {θ, αu, u =

1, · · · ,M}, or Ψ−m = {θ, βu, u = 1, · · · ,M} in the truncation and censoring case with relationship

αu = c
βu

F (tr|mu, θ)− F (tl|mu, θ)
, u = 1, 2, · · · ,M, (2.5)
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where c is a normalizing constant such that
∑M

u=1 αu = 1.

An EM algorithm treats the data as an incomplete data set by introducing a set of latent variables

Z = (Z1,Z2, · · · ,Zn), where Zv = (Zv1, · · · , ZvM ), v = 1, 2, · · · , n, with

Zvu =

{
1, if Xv comes from the uth component density f(xv|mu, θ),

0, otherwise.
(2.6)

In the following we present the standard EM algorithm for the Erlang mixture. Note that since the trunca-

tion points tl = 0 and tr =∞ imply no truncation, the algorithm also works for non-truncated data.

E-Step: Assuming that in the kth iteration of the E-step, the current parameter values are Ψ
(k)
−m

=

{θ(k), β
(k)
u , u = 1, · · · ,M}, the expectation of the complete log-likelihood given the data and the current

parameters Ψ
(k)
−m

is

Q(Ψ−m|Ψ
(k)
−m

) =
n∑

v=1

M∑
u=1

z
(k)
vu (lnβu −

1
θE[Xv|Zvu = 1, lv, rv, t

l, tr,Ψ
(k)
−m

]

−mu ln θ − ln(F (tr|mu, θ)− F (tl|mu, θ))),

(2.7)

where

z(k)vu =
α
(k)
u f̃(lv, rv|mu, θ

(k))
M∑

w=1
α
(k)
w f̃(lv, rv|mw, θ(k))

, v = 1, · · · , n, u = 1, · · · ,M, (2.8)

with

f̃(lv, rv|mu, θ
(k)) =

{
f(xv|mu, θ

(k)), lv = rv = xv,

F (rv|mu, θ
(k))− F (lv|mu, θ

(k)), lv < rv.

The expectation E[Xv|Zvu = 1, lv, rv, t
l, tr,Ψ

(k)
−m

] is equal to xv if it is uncensored. Here, we omit the terms

that do not contain mixing weights and the scale parameter.

M-step: The mixing weights and the common scale parameter are updated by

β(k+1)
u =

1

n

n∑

v=1

z(k)vu , u = 1, · · · ,M, (2.9)

θ(k+1) =

n∑
v=1

M∑
u=1

z
(k)
vu E[Xv|Zvu = 1, lv, rv, t

l, tr,Ψ
(k)
−m

]− T (k+1)

n
M∑
u=1

muβ
(k+1)
u

, (2.10)

where

T (k+1) = n

M∑

u=1

β(k+1)
u

(tl)mue−tl/θ − (tr)mue−tr/θ

θmu−1(mu − 1)!(F (tr|mu, θ)− F (tl|mu, θ))

∣∣∣∣∣
θ=θ(k)

. (2.11)

The detailed derivation and initialization can be found in Lee and Lin (2010) and Verbelen et al. (2015).

However, some issues arise: first, the initial estimates play an important role to the fast convergence of

the EM algorithm. The initialization method based on the Tijms approximation is, although justifiable,
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not computationally efficient. Second, the ad-hoc method for shape parameters adjustment requires a large

number of runs of the EM algorithm, which adds greatly the computation burden. To improve the fit, we

propose a generalized EM (GEM) algorithm with shape parameters being taken into consideration and a

clusterized method of moments (CMM) to obtain high quality initial values for Erlang mixtures in the next

two sections.

3 A GEM algorithm for parameter estimation

In this section, we extend the standard EM algorithm such that it also estimates the shape parameters. The

following approach is motivated by Givens and Hoeting (2013).

Recalling the definition of latent variables Zv, v = 1, · · · , n in Section 2, the corresponding complete random

sample (X1,Z1), (X2,Z2), · · · , (Xn,Zn) contains all uncensored observations and latent variables. Then we

have:

(a) (X1,Z1), (X2,Z2), · · · , (Xn,Zn) are independent and identically distributed;

(b) Zv ∼ MultM (1,α), v = 1, · · · , n, that is, Zv are multinomially distributed with the number of trials

being one and event probabilities α1, · · · , αM ;

(c) The conditional distribution of Xv given Zv = zv is

L(xv|zv,Φ) =
M∏

u=1

{f(xv|mu, θ)}
zvu =

M∏

u=1

{
xmu−1
v e−xv/θ

θmu(mu − 1)!

}zvu

, v = 1, · · · , n.

We now present the GEM algorithm.

E-step: Suppose that in the kth iteration of the E-step, the current parameter values are

Ψ(k) = {β
(k)
u ,m

(k)
u , θ(k), u = 1, · · · ,M}. The conditional expectation for the complete log-likelihood given

the current parameter values and data is given by

Q(Ψ|Ψ(k)) =

n∑

v=1

M∑

u=1

z(k)vu

[
lnβu + (mu − 1)E[ln(Xv)|Zvu = 1, lv, rv, t

l, tr,Ψ(k)]

−
1

θ
E[Xv|Zvu = 1, lv, rv, t

l, tr,Ψ(k)]− ln(mu − 1)!

−mu ln θ − ln(F (tr|mu, θ)− F (tl|mu, θ))
]
,

(3.1)

where the posterior probability z
(k)
vu has the same form as (2.8) but with mu being replaced by m

(k)
u . The

expectations in (3.1) are given in the following:

(i) for a censored data point (lv, rv),

E[Xv|Zvu = 1, lv, rv, t
l, tr,Ψ(k)] =

θ(k)m
(k)
u (F (rv|m

(k)
u + 1, θ(k))− F (lv|m

(k)
u + 1, θ(k)))

F (rv|m
(k)
u , θ(k))− F (lv|m

(k)
u , θ(k))

,
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and

E(ln(Xv)|Zvu = 1, lv, rv, t
l, tr,Ψ(k))

=

(ln lvF (lv|m
(k)
u , θ(t))− ln rvF (rv|,m

(k)
u , θ(k))) +

m(k)
u

−1∑

n=0

1

n
[F (rv|n, θ

(k))− F (lv|n, θ
(k))]

F (rv|m
(k)
u , θ(k))− F (lv|m

(k)
u , θ(k))

;

(ii) for an uncensored data point xv,

E[Xv|Zvu = 1, lv, rv, t
l, tr,Ψ(k)] = xv,

and

E[ln(Xv)|Zvu = 1, lv, rv, t
l, tr,Ψ(k)] = lnxv.

M-step: We update the parameters by maximizing

Ψ(k+1) = argmax
Ψ

Q(Ψ|Ψ(k)). (3.2)

The updates for mixing weights β
(k+1)
u , u = 1, · · · ,M and common scale parameter θ(k+1) have the same

forms as those in Section 2 with mu being replaced by m
(k+1)
u .

Noting that the scale parameter depends on the shape parameters, we propose a local search method to find

optimal shape parameters to maximize Q(Ψ|Ψ(k)) and then update the scale parameter. First, we replace

the mixing weights and the common scale parameter in expression (3.1) with the new values and consider

the expression as a function of shape parameters only. In this case, we may rewrite the formula (3.1) as

Q∗(m) =

n∑

v=1

M∑

u=1

z(k)vu

[
lnβ(k+1)

u + (mu − 1)E[ln(Xv)|Zvu = 1, lv, rv, t
l, tr,Ψ(k)]

−
1

θ̃
E[Xv|Zvu = 1, lv, rv, t

l, tr,Ψ(k)]− ln(mu − 1)!

−mu ln θ̃ − ln(F (tr|mu, θ̃)− F (tl|mu, θ̃))
]
,

(3.3)

where m = (m1,m2, · · · ,mM ) and

θ̃ = (

n∑

v=1

M∑

u=1

z(k)vu E[Xv|Zvu = 1, lv, rv, t
l, tr,Ψ(k)]− T (k+1))/(n

M∑

u=1

muβ
(k+1)
u ),

where T (k+1) is given in (2.11).

To maximizeQ∗(m), we apply an iterative method called the 3-optimal method, similar to that in Givens and Hoeting

(2013). Denote

δ+u = Q∗(m+ eu)−Q∗(m)
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and

δ−u = Q∗(m− eu)−Q∗(m),

where eu is an M−length vector with the uth entry equals to 1 and others 0. Then the shape parameters

are adjusted by m[t] = m[t−1] +∆m with m[0] = m(k). Here,

∆m = (0, · · · , 0,∆mu, 0, · · · , 0)︸ ︷︷ ︸
uth entry is ∆mu

, t = Ms+ u, (3.4)

where s is an integer satisfies t = Ms+ u for 1 ≤ u ≤M , and ∆mu is calculated by

∆mu =





1, max{δ+u , δ
−

u } > ε, δ+u > δ−u ,

−1, max{δ+u , δ
−

u } > ε, δ−u > δ+u , mu > 1,

0, others,

u = 1, · · · ,M, (3.5)

where ε ≥ 0 is a predefined threshold. This process for searching the shape parameters repeats until the

parameters do not change any more. Afterwards, the common scale parameter is updated according to (2.10).

Finally, given the final estimates Ψ̂ = {θ̂, β̂u, m̂u, u = 1, 2, · · · ,M}, the estimates of the original mixing

weights are

α̂u = c
β̂u

F (tr|m̂u, θ̂)− F (tl|m̂u, θ̂)
, u = 1, 2, · · · ,M, (3.6)

where c is a normalizing constant such that
∑M

u=1 α̂u = 1.

The above GEM algorithm optimizes the parameters for the Erlang mixtures with the fixed number of

components M . In order to reach a satisfactory fitting result, one often needs to start with a large number

of components, which may lead to overfitting. Hence, we further apply a forward selection approach to

select the least possible number of components using the cross-validation or the CV method. We split the

data set into a training set denoted by ST and a validation set denoted by SV . Assume the fitted density

function depending on the training set ST is ĥ(·|Φ̂), where Φ̂ are the estimated parameters. For a data point

represented by (lv, rv) with truncation (tl, tr), we introduce the score function

CV (lv, rv) =

{
ln ĥ(xv|Φ̂)− ln(Ĥ(tr|Φ̂)− Ĥ(tl|Φ̂)), lv = rv = xv,

ln(Ĥ(rv|Φ̂)− Ĥ(lv|Φ̂))− ln(Ĥ(tr|Φ̂)− Ĥ(tl|Φ̂)), lv < rv,

where Ĥ(·|Φ̂) is the distribution function of the fitted model, and define the score function on the validation

set SV as

CV (SV ) =
∑

(lv,rv)∈SV

CV (lv, rv). (3.7)

The rationale for such a score function to judge the adequacy of fit of a statistical model can be found in

Silverman (1986). We adopt the 10-fold cross-validation for this purpose. The detailed procedure is given

as follows.

(1) Randomly partition the data set into 10 equal sized groups;
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(2) Of the 10 groups, a single group is retained as the validation data for testing the model, and the remaining

9 groups are used as training data. Estimate the score function using the fitted model;

(3) Repeat the cross-validation process 10 times (the folds), with each of the 10 groups being used exactly

once as the validation data and calculate the score function;

(4) The 10 results from the folds can then be averaged to produce a single estimation for the score function.

This procedure is repeated with different numbers of components such that the number of components

is determined to maximize the average of the score function.

4 A CMM algorithm for parameter initialization

The EM algorithm as an iterative algorithm highly depends on initial estimates. In this section we propose

a new method which combines the method of moments and K-means clustering to obtain high quality initial

estimates for the GEM algorithm. We call this method the clusterized method of moments, or CMM for

short. We measure the quality of an algorithm according to the run time of the algorithm.

For the random sample (X1,Z1), · · · , (Xn,Zn), we have the following properties: for v = 1, · · · , n, u =

1, · · · ,M ,

E[Zvu] = P (Zvu = 1) = αu, (4.1)

E[Xv|Zvu = 1] = θmu , µu,

E[XvZvu] = αuµu, (4.2)

E[Xv] = θ

M∑

u=1

αumu =

M∑

u=1

αuµu, (4.3)

E[X2
v ] = θ2

M∑

u=1

αu(mu +m2
u) = θE[Xv] +

M∑

u=1

αuµ
2
u. (4.4)

For convenience, we re-parametrize Φ as Φ′ = {θ, αu, µu, u = 1, · · · ,M}. In this case, the shape parameters

are then estimated by mu = ⌈µu/θ⌉, where ⌈x⌉ is the ceiling function of x.

Properties (4.1)-(4.4) are used as a basis to estimate the initial parameters as follows.

(1) We apply the following K-means clustering method to group the data into M groups so that Group

u, u = 1, · · · ,M, represents data from the uth component distribution of the mixture. The goal of this

K-means clustering method is to find the values of z1, · · · , zn and centers ν1, · · · , νM , by minimizing the

expression

J =
n∑

v=1

M∑

u=1

zvu(xv − νu)
2. (4.5)

Assuming the centers and the values of z1, · · · , zn in the previous step are ν
(k−1)
1 , · · · , ν

(k−1)
M and z

(k−1)
1 , · · · , z

(k−1)
n ,

the new values are determined using the following procedure (Bishop, 2006):

8



(a) new centers νu, · · · , νM are obtained by

νu =

∑n
v=1 z

(k−1)
vu xv∑n

v=1 z
(k−1)
vu

. (4.6)

(b) with the new centers ν1, · · · , νM in (a), the values of z1, · · · , zn are given by

zvu =

{
1, u = argminv(xv − νu)

2,

0, otherwise,
v = 1, · · · , n, u = 1, · · · ,M. (4.7)

The data points are then re-assigned to the clusters by minimizing J in (4.5). The procedure is repeated

until there are no further changes in the assignments.

(2) According to (4.1), the mixing weights are estimated by

α̂u =

n∑
v=1

zvu

n
=

nu

n
, u = 1, 2, · · · ,M, (4.8)

where nu =
n∑

v=1
zvu is the number of the data points clustered into the uth group.

(3) According to (4.2), the mean parameters are estimated by

µ̂u =

n∑
v=1

xvzvu

n
/α̂u =

n∑
v=1

xvzvu

nu
, u = 1, 2, · · · ,M. (4.9)

(4) According to (4.4), the common scale parameter is estimated by

θ̂ =

(
x2 −

M∑

u=1

α̂uµ̂
2
u

)
/x, (4.10)

where x = 1
n

n∑
v=1

xv, x2 = 1
n

n∑
v=1

x2
v.

From the above initial estimates, we have the following equation

n∑

v=1

(xv − x)2 =

M∑

u=1

α̂u(µ̂u − x)2 + θ̂x. (4.11)

This is the decomposition formula of the sum of squared errors. The term on the left hand side represents

the sum of squared errors which will not be influenced by the parameters. The first term on the right hand

side represents the sum of squared errors among groups while the second term represents the sum of squared

errors within each of the groups. When fitting an Erlang mixture to a positive continuous distribution, a

smaller θ is desirable (see Lee and Lin (2010)), as long as overfitting is avoided. It implies that we should

try to make the sum of squares within each of the groups as small as possible. The K-means clustering is
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exactly such a method aiming to classify data to minimize the within-cluster sum of squared errors, and

hence is a reasonable method to solve the clustering issue.

Sometimes a large θ̂ might lead to the situation that many shape parameters may be equal to 1, which often

appears when data have a long tail. In this situation we may modify the estimate by

θ̂∗ = min{θ̂,min{µ̂u;u = 1, · · · ,M}}. (4.12)

At last, the initial shape parameters are estimated by

m̂u = ⌈µ̂u/θ̂
∗⌉, u = 1, 2, · · · ,M. (4.13)

By taking truncation into account, we transform the initial values for the mixing weights by

β̂u = α̂u
F (tr|m̂u, θ̂)− F (tl|m̂u, θ̂)

H(tr|Φ̂)− (tl|Φ̂)
, u = 1, 2, · · · ,M. (4.14)

5 Further parameter adjustments

In order to further improve the model fitting, we may adjust the parameters by matching the first two

moments of the fitted model with the corresponding empirical moments.

5.1 Data with no truncation and censoring

As shown in Lee and Lin (2010), if X has an Erlang mixture of form (2.3), then it can be rewritten as a

random sum with a compound exponential distribution, i.e.,

X =
N∑

i=1

Ei, (5.1)

where N is the primary counting random variable with probability function P (N = mu) = αu, u = 1, · · · ,M,

and Ei, i = 1, 2, · · · , are iid exponential random variables with mean θ.

It is easy to see

E[X] = θE[N ], E[X2] = θ2(E[N ] + E[N2]), (5.2)

where E[N ] =
M∑
u=1

αumu, and E[N2] =
M∑
u=1

αum
2
u.

We now introduce an additional tuning parameter s to adjust the parameters. For notational convenience,

we suppose that the estimated parameters via the GEM algorithm are Φ = {θ, αu,mu, u = 1, · · · ,M}. The

common scale parameter is to be adjusted by θ∗ = sθ and the shape parameters by m∗

u = ⌈mu/s⌉ so that

the first moment remains the same. The Erlang mixture is then fitted to the data with new parameters

Φ∗ = {θ∗, αu,m
∗

u, u = 1, · · · ,M} such that the first two moments of the model with corresponding sample

moments are matched with a properly chosen tuning parameter s.
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The corresponding random variable X∗ again has an Erlang mixture of form (2.3) with parameters Φ∗,

and may be rewritten as X∗ =
N∗∑

i=1

E∗

i , where N
∗ has probability function P (N∗ = m∗

u) = αu, u = 1, · · · ,M,

and E∗

i , i = 1, 2, · · · , are iid exponential random variables with mean θ∗. Thus, we have

E[X∗] = θ∗E[N∗] ≈ θE[N ], E[X∗2] ≈ θ2(sE[N ] + E[N2]). (5.3)

Here, an approximation instead of an equation is used because the new parameters m∗

u = ⌈mu/s⌉ ≈

mu/s, u = 1, · · · ,M . Now, the squared coefficient of variation of X∗, denoted by c2X∗ , is given by

c2X∗ =
V ar(X∗)

E[X∗]2
≈

s

E[N ]
+

E[N2]

E[N ]2
− 1. (5.4)

Similarly, for the observed data, the squared sample coefficient of variation denoted by c2x is

c2x =
x2

x2 − 1, (5.5)

where x2 = 1
n

n∑
v=1

x2
v, x = 1

n

n∑
v=1

xv.

We match the squared coefficients of variation, i.e. c2X∗ = c2x, which results in

x2

x2 =
s

E[N ]
+

E[N2]

E[N ]2
. (5.6)

The tuning parameter s thus is estimated by

ŝ = E[N ]

(
x2

x2 −
E[N2]

E[N ]2

)
. (5.7)

We may modify the tuning parameter by

s∗ = min{ŝ,min{mu}, u = 1, 2, · · · ,M}, (5.8)

for the same reason as that to (4.12).

With the estimated value s∗, we finally adjust the scale parameter and the shape parameters can be

adjusted by

θ∗ = s∗θ, m∗

u = ⌈mu/s
∗⌉, u = 1, 2, · · · ,M. (5.9)

5.2 Truncated and censored data

Unlike data with no truncation and no censoring, the problem becomes slightly more complex.

Again consider new parameters Φ∗ = {θ∗, αu,m
∗

u, u = 1, · · · ,M}, where θ∗ = sθ and m∗

u = ⌈mu/s⌉.
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For an uncensored random variable X∗ comes from an Erlang mixture with the new parameters, we have

E[X∗|tl < X∗ < tr] =
θ

H(tr|Φ∗)−H(tl|Φ∗)

M∑

u=1

αum
∗

u[F (tr|m∗

u + 1, θ∗)− F (tl|m∗

u + 1, θ∗)], (5.10)

and

E[X∗2|tl < X∗ < tr] =
(θ∗)2

H(tr|Φ∗)−H(tl|Φ∗)

M∑

u=1

αum
∗

u(m
∗

u+1)[F (tr|m∗

u+2, θ∗)−F (tl|m∗

u+2, θ∗)]. (5.11)

We then compute the tuning parameter s by minimizing the following objective function:

O(s) =
{∑

v;xv uncensored(xv − E[X∗|tl < X∗ < tr])
}2

+
{∑

v;xv uncensored(x
2
v − E[X∗2|tl < X∗ < tr])

}2

. (5.12)

The optimization problem can be solved easily by a numerical procedure. The remaining procedure is the

same as data with no truncation.

After adjusting the parameters, we set the new parameters as initial values and then apply the GEM

algorithm again. In other words, we repeat the aforementioned adjusting procedure and the GEM algo-

rithm until the increment of the likelihood function (the decrement of the corresponding BIC is twice the

increment) is less than a pre-specified threshold.

6 Simulation studies

This section provides simulation studies to illustrate the efficiency of the proposed method in the previous

sections. The simulated and real data sets used in this and next sections and the R code of the proposed

algorithm are available at http://www.utstat.utoronto.ca/~sheldon/DataandCodes.html for interested

readers to download, test and implement for other positive data.

The first simulation study involves fitting the Erlang mixture to simulated data from a mixture of two

gamma distributions with different scale and shape parameters. The main purpose of this study is to see

how the Erlang mixture fits a multi-modal distribution outside its class. The second study involves fitting the

model to simulated data from a Pareto distribution. Since the Pareto distribution has a long right tail, the

main purpose of this study is to examine whether the algorithm can capture the long tail. In our simulation

studies, we also compare the run time of our method with those in Lee and Lin (2010) and Verbelen et al.

(2015). The run time of an algorithm is used to measure the “quality” of initial values. The results show

that our initial values can lead to a faster convergence, which indicates that we obtain quality initial values.

6.1 Mixture of two gamma distributions

2000 data points are generated from a mixture of two gamma distributions with shape parameters 10 and

15. The corresponding scale parameters are 0.5 and 1, having weights of 0.4 and 0.6, respectively. Hence,

this distribution is not in the class of the Erlang mixture with common scale parameter. We consider left

12
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truncation with different truncation points tl in this example. The data points are removed if they are less

than tl and the remaining data are used to fit the model. To illustrate the effect of different truncation

points, we let tl = 0, tl = 3 and tl = 5, respectively. The estimated parameter values are given in Table 1.

Table 1: Estimated parameter values of fitted Erlang mixtures

truncation point u αu mu θ
tl = 0 1 0.4361 7 0.7621

2 0.5639 20
tl = 3 1 0.4422 8 0.6882

2 0.5578 22
tl = 5 1 0.4525 8 0.6707

2 0.5475 23

From Table 1, we can see, as expected, that the model has different parameter values for different truncation

points. But even with a high truncation point, the estimated parameter values remain fairly close to the

ones without truncation. Figure 1 shows the efficiency of the models for different truncation points in which

we compare the true density, the density of the fitted Erlang mixtures with truncated points tl = 0, 3, 5,

respectively, and the histogram of all 2000 points. From Figure 1, one may observe that all the fitted Erlang

mixtures fit the data reasonably well: the curves almost overlap the true density curve. Figure 2 shows the

PP-plot and QQ-plot for tl = 3, the plots indicate that the fitted model can fit data well in body and in

tail. However in practice, as the left truncation point increases we caution that the model may not fit the

original data well due to the loss of information. The greater the truncation point is, the more information

is lost.

Histogram of the Mixture of Two Gamma Distributions

loss amount

R
el

at
iv

e 
F

re
qu

en
cy

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

true curve
fitted l=0
fitted l=3
fitted l=5

Figure 1: Densities of fitted Erlang mixtures
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Figure 2: PP-plot and QQ-plot of fitted mixture at tl = 3

Another aspect of the proposed algorithm is to reduce the computing time. In Table 2, we compare the run

time of our approach (denoted by Method I) with the run time of the original modified EM algorithm in

Verbelen et al. (2015) (denoted by Method II) for fitting the mixture of two gammas with tl = 3. It shows,

in addition to the improvement of BIC, that the current approach reduces the run time significantly.

Table 2: Comparison of two methods

methods Method I Method II
components 2 2
log-likelihood -5697.725 -5826.801

BIC 11433.309 11691.61
run time 0.2502379 secs 5.047358 secs

6.2 Fitting data from Pareto distributions

The Pareto distribution has a long (right) tail. In this study we use an Erlang mixture to fit data generated

from the Type II Pareto distribution with shape parameter α and scale parameter λ:

p(x|α, λ) =
αλα

(x+ λ)α+1
, x ≥ 0. (6.1)

First, 2000 data points are generated from a Type II Pareto with shape parameter 1.5 and scale parameter

10. Denote the data as (x1, · · · , x2000). We then fit the data using an Erlang mixture. A 7-component

Erlang mixture is obtained to fit the data and its parameter estimates are given in Table 3.

14



Table 3: Parameter estimates of fitted 7-component Erlang mixture

u αu mu θ
1 0.7517 1 5.2309
2 0.1707 5
3 0.0513 13
4 0.0158 25
5 0.0046 44
6 0.0035 83
7 0.0025 170

We compare our results with those from the kernel estimation, a common universal statistical method, and

then with those from the EM algorithm in Lee and Lin (2010). Figure 3 shows the PP-plots and QQ-plots,

from which we observe that the Erlang mixture is able to fit the body and the tail of the Pareto, even though

the Erlang mixture and the Pareto have completely different tails. This is because the impact of large values

will be captured when we adopt the K-means method to cluster the data. Also the PP-plot of the kernel

estimation indicates the fitness is unsatisfactory at the left tail, a drawback of the kernel estimation method.
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Figure 3: PP-plots and QQ-plots for fitted model vs. kernel estimation/standard EM

We also perform several common statistical tests on the fitness. The tests we use in this section are the

Kolmogorov-Smirnov test, the Anderson Darling test and the Cramer-von Mises test. Table 4 summarizes

the results of three common goodness-of-fit tests. All the tests indicate a good fit to the simulated data.
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Table 4: Goodness-of-fit tests for fitted Erlang mixture to Pareto data

Test Statistic p-value Accepted at 5% significant level
K-S 0.0196 0.4287 Yes
A-D 0.4917 0.7553 Yes
Cv-M 0.1044 0.5639 Yes

To test the efficiency of the proposed algorithm, finally we run both EM algorithms. The results show that

the run time of our method is significantly shorter (Table 5).

Table 5: Comparison of BICs and run times

methods Method I Method II Kernel
components 7 7 2000
log-likelihood -7186.021 -7222.83 -7389.431

BIC 14486.167 14559.67 14778.86
run time 3.31312 secs 182.61384 secs —

Next, we generate 2000 right random censoring points denoted as (y1, · · · , y2000), from another Type II

Pareto distribution with shape parameter 0.1 and scale parameter 15. For v = 1, · · · , 2000, data point xv

is censored if xv > yv and in this case lv = yv. The resulting data set now contains 1875 uncensored data

points and 125 right censored data points. We use an Erlang mixture to fit the censored data. The estimated

parameters are given in Table 6.

Table 6: Parameter estimates of fitted 7-component Erlang mixture

u αu mu θ
1 0.7848 1 5.6715
2 0.1503 5
3 0.0409 12
4 0.0142 22
5 0.0050 41
6 0.0027 72
7 0.0020 141

From Table 6, we observe that the parameters of the fitted model are closed to the results for the uncensored

data. Furthermore, Figure 4 shows the PP-plot and QQ-plot of the fitted model. As expected, although the

model cannot fit the tail of the data as well as the complete data, the results in Table 7 still indicate good

fitness to the original generated data.
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Figure 4: PP-plot and QQ-plot for fitted model

Table 7 summarizes the results of three common goodness-of-fit tests. All the tests do not reject the results

at the 5% significant level.

Table 7: Tests for fitness of Erlang mixture to censored data

Test Statistic p-value Accepted at 5% significant level
K-S 0.0200 0.4052 Yes
A-D 1.1571 0.2845 Yes
Cv-M 0.1998 0.2679 Yes

7 Real data applications

In this section, we consider applications to two real insurance loss data sets.

7.1 Danish fire data

We consider a Danish data set that contains 2167 fire losses from 1980 to 1990. Only losses exceeding 1

million Danish Krone were recorded. The data have been adjusted for inflation to reflect the 1985 values

and are expressed in millions of Danish Krone. This data set has been widely studied (e.g. McNeil (1997),

Drees and Müller (2008) and Embrechts et al. (2013)).

Using 1 million Danish Krone as the monetary unit, the data are left truncated with truncation point

tl = 1. The fitting procedure with the 10-fold cross-validation leads to a 5-component Erlang mixture with

the estimated parameters given in Table 8.
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Table 8: Estimated parameters of fitted 5-component Erlang mixture

u αu mu θ
1 0.9467 1 1.03693
2 0.0369 6
3 0.0138 17
4 0.0020 44
5 0.0006 174

In the left panel of Figure 5, we compare the truncated data with the fitted truncated density on the

logarithmic scale. In the right panel of Figure 5 the fitted truncated survival curve and the Kaplan-Meier

curve are given. It is clear that both curves are very close to each other.
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Figure 5: Left panel: histogram and fitted density on logarithmic scale; Right panel: empirical and fitted
survival curves.

We remark that McNeil (1997) used the generalized Pareto distribution (GPD) to fit the same data set and

tested the tail fitness by considering policy payouts with lower attachment (r = 50) and upper attachment

(R = 200) that will be described in (7.1). The parameter estimates of the GPD model for this data set are

ξ = 0.61, µ = 1, σ = 0.93 (see McNeil (1997)). They showed that the GPD is superior to some traditional

parametric models such as the truncated log-normal and the ordinary Pareto distribution in terms of tail

fitting by examining the expected payouts with high attachment points and low attachment ratios. Their

approach also indicates indirectly that the GPD fits the data well in the tail. However, the GPD does not fit

the body of the data well as evidenced by poor approximation for low attachment ratios, as shown in Table

11. In following, we will show that the Erlang mixture model can fit both the body and the tail of the data

well when comparing with the GPD by (a) calculating VaR and TVaR for the empirical distribution, the

fitted Erlang mixture and the GPD at a wide range of confidence levels; and (b) calculating the expected

payouts, given different lower and upper attachment points.
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7.1.1 VaR and TVaR

We calculate VaR and TVaR using the three models and the corresponding nonparametric results are used

as a benchmark. We show in Table 9 and Table 10 that both the Erlang mixture and the GPD can fit the

data well for high confidence levels. As expected, the Erlang mixture produces more accurate estimates at

relatively low confidence levels while the GPD more accurate at high confidence levels. The real advantage

of the use of an Erlang mixture is that it can capture not only the body but also the tail of the data as

shown in Subsection 7.1.2, while the GPD model fails to do so.

Table 9: Comparison of VaRs from different models

Confidence Level Empirical Erlang GPD
80.0% 3.4782 3.4329 3.5448
85.0% 4.3254 4.3241 4.2595
90.0% 5.5415 5.4249 5.6863
95.0% 9.9726 9.7347 8.9548
97.5% 16.268 16.644 13.943
99.0% 26.043 22.852 24.777
99.5% 36.824 40.607 38.093
99.95% 151.77 164.98 156.79

Table 10: Comparison of TVaRs from different models

Confidence Level Empirical Erlang GPD
80.0% 9.9613 9.7456 8.7008
85.0% 12.001 11.734 10.645
90.0% 15.565 15.214 14.065
95.0% 24.082 23.445 22.351
97.5% 35.472 34.176 35.076
99.0% 58.586 56.502 62.796
99.5% 87.591 84.866 96.910
99.95% 207.83 194.62 201.23

7.1.2 Expected payouts

Let X be an insurance loss and a policy on X has a loss layer with lower and upper attachment points r

and R, respectively. The payout Z on X is then given by

Z =





0, 0 < X < r,

X − r, r ≤ X < R,

R− r, X ≥ R.

(7.1)

For this policy modification, we may calculate the expected payout E[Z|X > tl]. Denote the distribution

function of the left truncated losses as FXl(x) = P (X ≤ x|X > tl) and the corresponding density function
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fXl(x). Then, for payout layer (r,R) we have

E[Z|X > tl] =

∫ R

r

(x− r)fXl(x)dx+ (R− r)(1− FXl(R)). (7.2)

The results from these three different models are presented in Table 11. Using the non-parametric estimates

of E[Z|X > tl] as a benchmark, it is shown that the Erlang mixture provides better approximations, which

indicates the Erlang mixture fits both the body and the tail of the data. Again as expected, the GPD model

provides good approximations when the lower attachment point r is much larger than the truncation point

tl, but it is not the case for small values of r.

Table 11: Expected policy payout from different models

R r/R Empirical Erlang mixture GPD

0.00 1.976 2.104 1.288

0.25 0.654 0.658 0.502

20 0.50 0.299 0.342 0.215

0.75 0.112 0.129 0.081

0.95 0.017 0.018 0.018

0.00 2.088 2.175 1.383

0.25 0.552 0.544 0.421

30 0.50 0.224 0.200 0.176

0.75 0.076 0.067 0.065

0.95 0.011 0.012 0.010

0.00 2.182 2.205 1.476

0.25 0.398 0.329 0.325

50 0.50 0.139 0.129 0.133

0.75 0.051 0.047 0.049

0.95 0.008 0.006 0.009

0.00 2.265 2.274 1.565

0.25 0.221 0.218 0.221

100 0.50 0.083 0.089 0.088

0.75 0.035 0.034 0.032

0.95 0.007 0.007 0.007

0.00 2.356 2.384 1.622

0.25 0.174 0.190 0.146

200 0.50 0.091 0.079 0.058

0.75 0.024 0.019 0.021

0.95 0.005 0.002 0.003

7.2 Loss and ALAE insurance data

In this subsection, we consider an insurance data set from the US Insurance Services Office (ISO) that

comprises of 1500 non-life insurance claims of which both the indemnity payment or loss as well as the

allocated loss adjustment expense (ALAE) are recorded. For each claim, the policy limit, i.e., the maximal

claim amount, of the contract is also recorded. This data set has been studied in Frees and Valdez (1998),
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Klugman and Parsa (1999) and Verbelen et al. (2016).

We first consider fitting to the loss part of the data. Certain features of the data indicate that it is long

tailed. For example the maximum value of the data is 59 times the mean; 20.7% of the data points are

categorized as outliers if the 1.5 IQR rule is used. See the box-plot in Figure 6.

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

Figure 6: Box-plot of loss data

Also note that the loss data are right censored. Although only 34 of the 1500 losses are right censored,

censoring should not be ignored when fitting the model to the data. Using our algorithm, a 7-component

Erlang mixture is selected with the parameter values given in Table 12.

Table 12: Estimated parameters of fitted 7-component Erlang mixture

u αu mu θ
1 0.7036 1 9463.258
2 0.1755 5
3 0.0725 12
4 0.0308 27
5 0.0136 49
6 0.0033 96
7 0.0007 230

To check the fitness of the fitted model to data, we compare the the fitted survival curve with the Kaplan-

Meier survival curve, as shown in the left panel of Figure 7. It is clear that the two curves are very close to

each other, which indicates a good fit.

21



1e+00 1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier estimator

loss

S
ur

vi
va

l

1 100 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival of ALAE

ALAE

S
ur

vi
va

l

Figure 7: Empirical and fitted survival curves

We now use another Erlang mixture to fit the ALAE part of the data. The ALAE data are complete. A

4-component Erlang mixture is selected to fit the data and Table 13 shows the estimated parameters.

Table 13: Estimated parameters of fitted 4-component Erlang mixture

u αu mu θ
1 0.9064 1 7177.032
2 0.0793 6
3 0.0117 20
4 0.00003 53

The right panel in Figure 7 shows the fitted survival curve and the empirical survival curve, which visually

confirms that the model fits the ALAE data well. The three common goodness-of-fit tests presented in Table

14 show the fited model is not rejected at the 5% significant level.

Table 14: Goodness-of-fit tests for ALAE data

Test Statistic p-value Accepted at 5% significant level
K-S 0.014 0.932 Yes
A-D 0.3303 0.9138 Yes
Cv-M 0.0222 0.9945 Yes

Again we can easily calculate the VaR and TVaR using the fitted Erlang mixture. The VaR and TVaR for

both loss data and ALAE data at different confidence levels are given in Table 15.
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Table 15: VaRs and TVaRs for Loss data and ALAE data

Confidence Loss data ALAE data
Level VaR TVaR VaR TVaR
80.0% 48294 158691 15259 42438
85.0% 67431 192464 19377 50869
90.0% 94375 248753 27101 64919
95.0% 186029 372979 43978 95399
97.5% 280790 513761 62638 138926
99.0% 532897 723280 130817 218914
99.5% 612838 874711 169001 289372
99.95% 2056012 2245767 425133 457493

8 Concluding remarks

In this paper, we develop a GEM-CMM algorithm to fit the Erlang mixture model to truncated and censored

loss data. The purpose of this paper is to address two critical issues when using an EM algorithm to fit

the Erlang mixture model to loss data: obtaining the optimal or suboptimal values for the model shape

parameters and seeking quality initial estimates. A GEM algorithm with is developed for the former and a

CMM method is proposed to obtain quality initial estimates. Further improvement is achieved by adjusting

the estimated parameters to match first two moments of the model with corresponding sample moments.

We test the efficiency through several simulation studies and two real data applications. The results show

that indeed our approach is capable to obtain quality initial values, which leads to fewer iterations to find

the estimates. The run time is greatly reduced when comparing with the methods proposed in other papers

such as Lee and Lin (2010) and Verbelen et al. (2015).

We intend to extend the approach proposed in this paper to multivariate mixture models. Quality ini-

tial estimates would be even more critical in a high dimensional setting due to the sparseness of multivariate

data. Further, the shape parameters of the component distributions in a multivariate mixture model are

often scarcely located and the local search method in this paper might have advantage to locate their optimal

or suboptimal values. With the efficiency of the proposed algorithm, we also expect the run time would be

more significantly reduced.
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A Summary of the GEM-CMM Algorithm

Algorithm GEM-CMM algorithm

1. Let M = 2 and CV=−∞

2. do

{Initial step}

(a) Apply the K-means algorithm to cluster the data into M groups and assign values to the latent

variables z1, · · · , zn according to (2.6).

(b) Compute mixing weights, α̂u =

n∑

v=1

zvu/n = nu/n, u = 1, 2, · · · ,M

(c) Compute the mean parameters, µ̂u =

n∑

v=1

xvzvu/nu, u = 1, 2, · · · ,M

(d) Compute the common scale parameter, θ̂∗ = min{(x2 −

M∑

u=1

α̂uµ̂
2
u)/x, µ̂1, · · · , µ̂M}

(e) Compute the shape parameters, m̂u = ⌈µ̂u/θ̂
∗⌉, u = 1, 2, · · · ,M

(f) Transform the initial mixing weights according to (4.14)

{EM algorithm}

while log-likelihood improves do

{E-Step}

Compute the conditional expectation as in (3.1) and the posterior probability as in (2.7)

{M-step}

(a) Update the mixing weights as in (2.9)

(b) Compute the conditional expectation Q∗(m) as in(3.3)

do

(b1) Derive the increment of shape parameters ∆m as in (3.5)

(b2) Update the shape parameters by m←m+∆m

until no shape parameters change any more

(c) Update the scale parameter as in (2.10)

end while

Transform weights β to α using (3.6)

Compute log-likelihood and CV for Φ

M ←M + 1

until the CV doesn’t improve any more

3. Output the number of components M and Φ = {αu,mu, θ}, u = 1, · · · ,M
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