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Abstract

We review statistical methods for high-dimensional data analysis and pay
particular attention to recent developments for assessing uncertainties in
terms of controlling false positive statements (type I error) and p-values. The
main focus is on regression models, but we also discuss graphical modeling
and causal inference based on observational data. We illustrate the concepts
and methods with various packages from the statistical software R using a
high-throughput genomic data set about riboflavin production with Bacillus
subtilis, which we make publicly available for the first time.
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1. INTRODUCTION

High-dimensional statistical inference comes into play whenever the number of unknown param-
eters, p, is larger than sample size n: Typically, we assume that p is an order of magnitude larger
than n, denoted by p � n. Most often, we consider a setting where we have more (co)variables
than n, for example, in a linear model,

Y = Xβ + ε, 1.

with Y = (Y1, . . . , Yn)T a univariate response vector, X the n × p design matrix whose jth column
contains the covariable X( j ) = (X ( j )

1 , . . . , X ( j )
n )T , and the error (noise) term ε = (ε1, . . . , εn)T with

independent and identically distributed (i.i.d.) components having E[εi ] = 0 and Var(εi ) = σ 2
ε . An

intercept term may be implicitly present.1 Classical statistical methods, like ordinary least squares
estimation, cannot be used for estimating β and σ 2

ε when p � n because they would overfit the data,
besides causing severe identifiability issues. A way out of the ill-posed estimation in the model in
Equation 1 is by assuming a sparse structure, typically by saying that only a few of the components
of β are nonzero. We review concepts for inference in the simple model in Equation 1 with p � n;
the approaches can be generalized to more complex scenarios and models (see Section 4).

Many applications in biology nowadays involve high-dimensional data. Typically, high-
throughput technology provides large-scale data of, e.g., gene expressions (transcriptomics) or
peptide and protein abundances (proteomics). A concrete example is given next.

Example 1 (riboflavin production with Bacillus subtilis): As a concrete example, we
discuss a data set about riboflavin (vitamin B2) production with B. subtilis. DSM (Kaiser-
augst, Switzerland) (see also Lee et al. 2001 and Zamboni et al. 2005) has kindly provided
these data, and for the first time, we make the data set publicly available in Supplemental
Section A.1 (follow the Supplemental Material link from the Annual Reviews home
page at http://www.annualreviews.org). There is a single real-valued response vari-
able, which is the logarithm of the riboflavin production rate. Furthermore, p = 4,088
(co)variables measure the logarithm of the expression level of 4,088 genes; these gene ex-
pressions were normalized using the default in the R package affy (Gautier et al. 2004).
One rather homogeneous data set exists from n = 71 samples that were hybridized re-
peatedly during a fed-batch fermentation process in which different engineered strains
and strains grown under different fermentation conditions were analyzed. This data set
is denoted as riboflavin, and we make it available in the Supplemental Material.
Another data set consists of measurements (as above) at different time points (i.e., longi-
tudinal data), with N = 28 groups, each having two to six observations at different times.
Observations in the same group are from measurements from the same strain of (geneti-
cally engineered) B. subtilis, as different groups correspond to different strains. The total
number of samples is n = 111. This data set is denoted as riboflavinGrouped, and we
make it available as well in the Supplemental Material.

The easiest approach is to model the homogeneous riboflavin production data set with a linear
model, as in Equation 1, with 4,088 = p � n = 71, and we discuss this approach in Sections 2 and
3. Many questions in biology and other sciences are, however, about causal relationships among
variables. They cannot be answered using a linear model, as in Equation 1, or using extensions of
it, as presented in Section 4. We present in Section 6 a method for causal statistical inference that
can deal with high-dimensional scenarios.

1In Sections 2 and 3, we do not penalize an intercept.
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2. STATISTICAL ESTIMATION IN A HIGH-DIMENSIONAL
LINEAR MODEL

Describing many concepts arising in high-dimensional statistical inference for linear models is
instructive, as the concepts are simple yet tremendously useful in many applications. Extensions
to other regression-type models are discussed in Section 4. Remarks on the radically different
marginal approach are given in Section 5.

Estimation of a high-dimensional linear model in Equation 1 with p � n requires some
regularization. Common approaches include Bayesian or penalized likelihood methods. We largely
focus on the latter. From now on, we implicitly assume that the (co)variables are all (at least roughly)
on the same scale: Very often, we achieve this assumption by standardizing the design matrix, such
that

∑n
i=1 X( j )

i = 0 and ||X( j )||22 = n for every j = 1, . . . , p . Ridge regression is defined as follows:

β̂Ridge = argmin
β
(||Y − Xβ||22/n + λ||β||22), 2.

where || · ||2 is the standard Euclidean norm, and λ > 0 is a regularization parameter that has to be
chosen by the user. The Lasso (Tibshirani 1996) replaces the �2-norm penalty with the �1-norm
penalty:

β̂Lasso = argmin
β
(||Y − Xβ||22/n + λ||β||1), 3.

where ||β||1 = ∑p
j=1 |β j |, and λ > 0 is again a regularization parameter (which is typically chosen

differently as for Equation 2).2 The estimators in Equations 2 and 3 have a simple Bayesian
interpretation in terms of maximum a posteriori (MAP) procedures. Assuming that β1, . . . , βp are
i.i.d. with density f (·), the MAP can be easily derived:

If f (·) is from N (0, τ 2), then β̂MAP = argmin
β
(||Y − Xβ||22 + σ 2

ε /τ 2||β||22);
if f (·) is from DExp (τ ), then β̂MAP = argmin

β
(||Y − Xβ||22 + 2σ 2

ε τ ||β||1),

where DExp(τ ) is a double-exponential distribution with density f (β) = τ/2 exp(−τ |β|).
Both estimators in Equations 2 and 3 are shrinking the coefficient estimates toward zero be-

cause the penalty discourages large values. The Lasso has the special property of shrinking some
coefficients exactly to zero because of the geometry of the �1-norm penalty, i.e., β̂Lasso; j = 0 de-
pending on the data and λ; in this sense, the Lasso is doing variable selection. This property can
be best understood from equivalent optimization problems: The Ridge and Lasso estimators can
be expressed as

β̂Ridge = argmin
β
(||Y − Xβ||22/n) under the constraint that ||β||2 ≤ R,

β̂Lasso = argmin
β
(||Y − Xβ||22/n) under the constraint that ||β||1 ≤ R,

4.

with a correspondence (depending on the data) between the value R and the value λ in Equation 2
and Equation 3, respectively. The representations in Equation 4 have a geometric interpretation,
as displayed in Figure 1. Owing to the form of the �1-norm ball with radius R, ||β||1 ≤ R, the
optimum of the quadratic function ||Y − Xβ||22/n (represented by the contour lines in Figure 1)
constrained to the set ||β||1 ≤ R might occur in the corners of the set, such that corresponding
components of β̂Lasso are equal to zero. Such a phenomenon does not happen for the Ridge
estimation.

Many versions of the Lasso have been proposed (Zou 2006, Meinshausen 2007, Zou & Li
2008, van de Geer et al. 2011), and other penalized estimators that lead to sparse solutions exist

2The factor 1/n is irrelevant from a methodological viewpoint: When dropped, we simply use another λ, which is n times the
original λ.
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β1 β1

β2β2

β̂ β̂

Figure 1
Constrained optimization as in Equation 4 for p = 2. The contour lines of ||Y − Xβ||22/n are shown as
ellipses and β̂ denotes the least squares estimator. (Left) �1-norm constraint corresponding to the Lasso.
(Right) �2-norm constraint corresponding to the Ridge estimation. The figure is essentially the same as that
in Tibshirani (1996) and taken from Bühlmann & van de Geer (2011).

(Fan & Li 2001, Candès & Tao 2007, Zhang 2010). For further information, readers may wish to
refer to, for example, Bühlmann & van de Geer (2011).

2.1. Identifiability

If p > n, then the model parameters in Equation 1 are not identifiable because we always find
a linear combination of the columns in X (corresponding to some covariables), which is exactly
equal to one other column (one other covariable). Mathematically, the design matrix does not
have full rank, rank(X) ≤ min(n, p) < p for p > n, and we can write Xβ = X(β + ξ) for every ξ

in the null space of X.3 Therefore, without further assumptions, inferring or estimating β from
data is impossible. The issue is closely related to the classical setting with p < n but rank(X) < p
(owing to linear dependence among covariables) or with ill-conditioned designs, both leading
to difficulties with respect to identifiability. For prediction or estimation of Xβ (the underlying
regression surface), however, identifiability of the parameters is not necessarily needed. From a
practical point of view, high empirical correlations among two or a few other covariables lead
to unstable results for estimating β or for pursuing variable selection. Some more details and
additional references are given in Supplemental Section A.2.

2.2. Point Estimation Without Measures of Uncertainty

Much progress has been made over the past decade for estimating without assigning uncertainty,
confidence, or error measures, i.e., point estimation. Further development of methods that quantify
uncertainty is important (as discussed in Section 3). Among the three most important goals in such
(point) estimation are (a) predicting the regression surface, Xβ, or a new response, Ynew = XT

newβ;

3The null space of X is the set NX = {ξ; Xξ = 0}, and if p > n, the null space contains elements other than the zero vector.
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(b) estimation of β; and (c) estimation of the support of β or the active set of relevant variables,
S = { j ; β j �= 0}.

For the first task (prediction), identifiability of β is not necessary because we are interested
in only, e.g., XT

newβ. Thus, from this perspective, prediction is often a much easier problem than
estimation of the parameter β or variable selection. Regarding the second task task (parameter
estimation), an identifiability assumption on the design X is required, for example, a restricted
eigenvalue condition (see Supplemental Section A.2). Finally, for the third task (variable selec-
tion), we would like to have an accurate estimator, Ŝ, for the active set, S. A prime example is the
Lasso, for which we simply use Ŝ = { j ; β̂Lasso, j �= 0}. Ideally, such an estimator would satisfy Ŝ = S
with high probability. Unfortunately, such a property requires the rather strong βmin condition,
which says that the nonzero regression coefficients must be sufficiently large,

min
j∈S

|β j | > C, 5.

where C is typically of the order
√

log(p)/n (multiplied by |S| or
√|S|). Furthermore, e.g., for the

Lasso, a stringent condition (irrepresentability) on the design is necessary for variable selection
(Meinshausen & Bühlmann 2006, Zhao & Yu 2006). A less ambitious goal, which does not need
such a strong assumption on the design, is variable screening: It requires that, at least with high
probability, Ŝ contains all variables from S, i.e.,

Ŝ ⊇ S, 6.

where |Ŝ| is typically much smaller than p. For example, with the Lasso, |Ŝ| ≤ min(n, p) � p
for high-dimensional settings. Thus, variable screening allows for a drastic dimension reduction
in the original covariables, which is often a useful first step for many practical applications. The
screening property holds (with high probability) when the design is sufficiently well behaved (i.e.,
the compatibility condition holds4) and when the βmin condition is assumed (Equation 5). Although
variable screening is less ambitious than variable selection, the screening property in Equation 6
is typically hard to fulfill exactly.

Reasonable prediction and estimation can be achieved if the underlying truth is sparse. Among
the most common notions of sparsity are the size of the active set, |S| (�0-sparsity), but one can also
imagine the �1-norm, ||β||1 (or some other norms). If the sparsity is small in relation to sample size
n and dimensionality p, then there is hope that some statistical methods that perform reasonably
well exist. For example, a typical assumption of such kind is |S| � n/ log(p), which shows that the
dimensionality can be large as long as log(p) � n (allowing for reasonably large values of |S|).
If the true underlying model is not sparse, then high-dimensional statistical inference is ill posed
and uninformative. Good statistical estimators for sparse situations should be sparse themselves.
The Lasso (Equation 3) is a prime example, and many versions of the Lasso (see references just
before Section 2.1) are often reasonable or even better, depending on the problem.5

Assessing the accuracy of prediction is relatively straightforward using the tool of cross-
validation (cf. Hastie et al. 2009). Some earlier work points to the inaccuracy of cross-validation
for measuring the out-of-sample error (Gasser et al. 1991); still, assessing the quality of pre-
diction, e.g., with cross-validation, is much easier than measuring the accuracy of parameter
estimation, variable selection, or screening. Regarding the latter two, the traditional thinking in

4The compatibility condition is weaker than the irrepresentability condition mentioned in connection with variable selection
(van de Geer & Bühlmann 2009).
5Also, the Ridge estimation (Equation 2) can be sparsified by thresholding the estimated coefficients of β̂, dropping the
corresponding covariables, and doing, for example, a least squares reestimation based on the few variables kept.
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frequentist statistics follows the framework of hypothesis testing, in which false positive selections,
corresponding to type I error, are considered to be worse than false negatives, corresponding to
type II error. The challenge in high-dimensional models is the construction of p-values, which
control some type I error measure while having good power for detecting the alternatives (i.e.,
avoiding some type II error). This challenge is discussed in Section 3.

2.2.1. Software in R. We use the R package glmnet (Friedman et al. 2010) to illustrate the Lasso
estimator for the riboflavin data set:

library(glmnet)

x <- riboflavin[,-1]

y <- riboflavin[,1]

## Check dimensions

dim(x)

##- [1] 71 4088

length(y)

##- [1] 71

## Fit whole solution path for illustration

fit <- glmnet(x = x, y = y)

plot(fit)

## Perform tenfold cross-validation

set.seed(42)

fit.cv <- cv.glmnet(x = x, y = y)

## Visualize cross-validation error-path

plot(fit.cv)

## Get selected genes

b <- as.matrix(coef(fit.cv))

rownames(b)[b ! = 0]

## By default, the selected variables are based on the largest value of

## lambda such that the cv-error is within 1 standard error of the minimum

The resulting model contains 30 genes (plus an intercept term) with corresponding estimated
regression coefficients different from zero.

3. ASSIGNING UNCERTAINTY IN HIGH-DIMENSIONAL
LINEAR MODELS

For the linear model in Equation 1, we are interested in two-sided testing of individual hypotheses
(H0, j : β j = 0 versus HA, j : β j �= 0) or corresponding confidence intervals. We also might consider
hypotheses concerning a group of parameters (H0,G : β j = 0 for all j ∈ G versus HA,G : Hc

0,G;
that is, at least one β j �= 0 for some j ∈ G). In addition, we aim for an accurate and not overly
conservative correction for multiplicity of testing.

3.1. Why Standard Bootstrapping and Subsampling Do Not Work

As discussed above in Section 2.2, we typically use sparse estimators for high-dimensional data
analysis, for example, the Lasso (for an exception, see Section 3.2.2). The (limiting) distribution
of such a sparse estimator is non-Gaussian with point mass at zero, and that is the reason why
standard bootstrap or subsampling techniques do not provide valid confidence regions or p-values.
Thus, we have to use other approaches to quantify uncertainty.
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Table 1 Terminology of different error types

H0 holds HA holds
Declared significant False positivesa True positives
Declared nonsignificant True negatives False negativesb

aA false positive is a type I error.
bA false negative is a type II error.

Table 2 Possible outcome of a total of m different hypothesis tests

H0 holds HA holds Total
Declared significant V a S R
Declared nonsignificant U T b m − R
Total m0 m − m0 M

aThe number of false positives is denoted by V.
bThe number of false negatives is denoted by T.

Familywise error
rate (FWER): the
probability of making
at least one false
positive selection, i.e.,
FWER =
P[V > 0]

3.2. p-Values for High-Dimensional Linear Models

We discuss two different methods for constructing p-values. Both are useful tools. A comparison
among the methods is briefly mentioned in Section 3.4.

3.2.1. Multisample splitting. A very generic method for constructing p-values for H0, j or H0,G

is based on splitting the sample into two equal parts. We select the variables using the first and do
the statistical inference based on the second half of the data. Such sample splitting avoids overly
optimistic results based on selecting variables and doing subsequent inference for the selected
variables (both based on the full data set) as if no other variables were present.

To fix ideas, consider the following scheme for multiple testing of H0, j : β j = 0 among all
j = 1, . . . , p . We thereby aim for controlling the familywise error rate (FWER), P[V > 0], where
V is the number of false positives.6 We refer readers to Table 1 and Table 2 for the terminology
of different error types.

Algorithm 1 (single sample splitting for multiple testing of H0, j among
j = 1, . . . , p):

1. Split the sample {1, . . . , n} = I1 ∪ I2 with I1 ∩ I2 = ∅, where |I1| = �n/2
and |I2| = n − �n/2.

2. Based on I1, select the variables Ŝ ⊆ {1, . . . , p}. Assume (or ensure) that
|Ŝ| ≤ |I1| = �n/2 ≤ |I2|.

3. Consider the reduced set of variables with design matrix X(Ŝ). Based on
I2 with data [YI2 , X(Ŝ)

I2
], compute p-values, Pj, for H0,j, where j ∈ Ŝ, using

classical least squares estimation assuming Gaussian errors (i.e., the t-test
that is well defined because |Ŝ| ≤ |I2|). For j /∈ Ŝ, assign Pj = 1.

4. Correct the p-values for multiple testing: Consider

Pcorr, j = min(Pj · |Ŝ|, 1),

which is an adjusted p-value for H0, j for controlling the FWER.

6A false positive arises when the test procedure rejects H0, j , although H0, j in fact holds true.
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Figure 2
Histogram of p-values (Pcorr, j ) for a single covariable, in the riboflavin data set, when doing 50 different
(random) sample splits.

The procedure described in Algorithm 1 yields corrected p-values that control the FWER,
when assuming the screening property in Equation 6: The whole idea is implicit in Wasserman
& Roeder (2009). In practice, the screening property typically does not hold exactly, but that is
not a necessary condition for constructing valid p-values (Bühlmann & Mandozzi 2013). Also, the
correction for multiplicity of testing in step 4 involves only the multiplicative factor |Ŝ|, whereas a
classical Bonferroni adjustment would multiply the p-values with p: In high-dimensional scenarios,
p � n > |Ŝ|, and thus, the correction factor employed here is rather small.

A major difficulty of the single-sample-splitting method is its sensitivity, which comes from
how one splits the sample, leading to widely different corresponding p-values. Figure 2 illustrates
such a p-value lottery phenomenon.

To overcome this undesirable behavior, one can run the single-sample-splitting Algorithm 1
B times, with B being large, leading to p-values

P [1]
corr, j , . . . , P [B]

corr, j ( j = 1, . . . , p).

The remaining task is then to aggregate these {P [b]
corr, j ; b = 1, . . . , B} to a single p-value. Owing to

dependence among the P [b]
corr, j ’s (because all the different split samples are based on the same full

data set), such an aggregation should be done carefully.7 A simple but effective solution is to use
an empirical γ -quantile:

Q j (γ ) = min(emp. γ -quantile {P [b]
corr, j /γ ; b = 1, . . . , B}, 1).

For example, when taking γ = 1/2, we multiply all P [b]
corr, j ’s by two and take the empirical me-

dian among them. Furthermore, one can optimize over the best γ -quantile in the range (γmin, 1)
(e.g., with γmin equal to 0.05), leading to the aggregated p-value

Pj = min
(

(1 − log(γmin)) inf
γ∈(γmin,1)

Q j (γ )
)

( j = 1, . . . , p). 7.

7For example, the mean B−1 ∑B
b=1 P [b]

corr, j is generally not controlling the FWER.
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Thereby, the factor (1 − log(γmin)) is the price to be paid for searching for the best γ ∈ (γmin, 1).
This multisample-splitting procedure has been proposed by Meinshausen et al. (2009) and is
summarized in Algorithm 2. The multisample-splitting method results in p-values that are ap-
proximately reproducible and not subject to a lottery as illustrated in Figure 2, and it controls
the FWER. As with the single-sample-splitting method, the procedure assumes the screening
property (Equation 6) (or an approximate version of it). More precise mathematical assumptions
for constructing valid p-values are given in Supplemental Section A.4.2.

Algorithm 2 (multisample splitting for multiple testing of H0, j among
j = 1, . . . , p):

1. Run the single-sample-splitting Algorithm 1 B times, leading to p-values
{P [b]

corr, j ; b = 1, . . . , B}. A typical choice is B = 100.
2. Aggregate the p-values from step 1 as in Equation 7, leading to Pj, which

are adjusted p-values for H0, j ( j = 1, . . . , p), controlling the FWER.

Testing group hypotheses of the form H0,G : β j = 0 for all j ∈ G can be done based on a
partial F-test instead of a t-test in step 3 of Algorithm 1.

3.2.2. Projection and confidence intervals. The multisample-splitting method assumes (a pos-
sibly relaxed form of) the screening property (Equation 6). This property in turn necessarily
requires a (possibly relaxed) βmin assumption (Equation 5). The methods described here do not
rely on such a βmin assumption.

The general idea is to use a linear estimator with subsequent bias correction using the Lasso.
Consider for each j = 1, . . . , p an n × 1 vector Z( j ) and a corresponding estimator8:

b̂ j = (Z( j ))T Y
(Z( j ))T X( j )

.

Then, by simply using the linear relation between Y and {X(k); k = 1, . . . , p}, we obtain

E[b̂ j ] = β j +
∑
k �= j

Pjkβk, Pjk = (Z( j ))T X(k)

(Z( j ))T X( j )
.

The second summand is a bias term that can be corrected using the Lasso, and we then obtain the
bias-corrected estimator

β̂corr; j = b̂ j −
∑
k �= j

Pjkβ̂Lasso;k. 8.

Concrete suggestions for score vectors Z( j ) are based on Ridge regression (Bühlmann 2013) or
on Lasso regression (Zhang & Zhang 2011, van de Geer et al. 2013). More details are given
in Supplemental Section A.3. The corresponding estimators in Equation 8 using Ridge- or
Lasso-based score vectors are denoted by

β̂corr-Ridge, β̂corr-Lasso.

Interestingly, these estimators (β̂corr-Ridge and β̂corr-Lasso) are not sparse, and they have a Gaussian
limiting distribution with a known covariance matrix, except for the unknown error variance, σ 2

ε

(Bühlmann 2013, Zhang & Zhang 2011, van de Geer et al. 2013). The latter can be estimated,

8Typically, Z( j ) is a residual vector when doing a regularized regression of X( j ) versus all other variables, {X(k); k �= j }; see
also Supplemental Section A.3.
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False discovery rate
(FDR): the expected
value of the proportion
of incorrectly rejected
null hypotheses (false
discoveries) among all
rejections
(discoveries), i.e.,
FDR = E[ V

R ]

for example, by using the scaled Lasso (Sun & Zhang 2012). We then end up with a statement
of the form √

n(β̂corr, j − β j )/σ̂ j → N (0, 1), 9.

where σ̂ 2
j = σ̂ 2

εω j with a known ω j (which is easily computable as a function of the design X). As
a consequence, we can derive confidence intervals and tests for single parameters, β j , and we can
also construct p-values for H0,G : β j = 0 for all j ∈ G, where G ⊆ {1, . . . , p} is any group (small
or large).

Assuming sparsity of the regression vector, but without requiring a βmin assumption as in
Equation 5, the method provides valid inference for tests and confidence intervals. When using
β̂corr-Lasso, the procedure is optimal and reaches the semiparametric efficiency bound (van de Geer
et al. 2013). More precise mathematical assumptions for valid p-values and asymptotic optimality
are given in Supplemental Section A.4.3.

When pursuing many tests, we have to adjust for multiple testing. Consider first the scenario
when testing H0, j : β j = 0 for all j = 1, . . . , p . We then obtain p-values P1, . . . , Pp , and we can
use any multiple testing adjustment that is valid for dependent tests (P1, . . . , Pp are dependent).
For example, we can use the Bonferroni–Holm method (Holm 1979) to control the FWER, or we
can use a version of the standard Benjamini–Hochberg procedure (Benjamini & Hochberg 1995),
which controls the false discovery rate (FDR) among dependent tests (Benjamini & Yekutieli
2001) (see also Section 5.1). The R software package multtest provides an array of methods for
multiple testing correction (see Section 5.1.1). However, the p-values P1, . . . , Pp typically exhibit
rather strong dependence, implying that the usual adjustment methods are too conservative.9 We
can address the potential loss of power from avoiding conservative adjustment by exploiting the
known covariance structure of the problem; more generally than in Equation 9, we have

√
n(β̂corr − β) ≈ Np (0, σ̂ 2

ε
),

where 
 is known. Such a representation allows for efficient adjustment of the p-values P1, . . . , Pp

(Bühlmann 2013). We emphasize that such a multiple testing correction can be used more generally
for m tests with p-values P1, . . . , Pm, where each Pr corresponds to a hypothesis test: H0,Gr : β j = 0
for all j ∈ Gr ⊆ {1, . . . , p} [and each Gr can be a small group (e.g., having one element only) or a
large group].

3.2.3. Software in R. We use our own R package hdi (Meier 2013) to analyze the riboflavin

data set. The multisplit method yields one significant gene (gene YXLD at), whereas the Ridge-type
projection estimator delivers no significant gene at all:

library(hdi)

x <- riboflavin[,-1]

y <- riboflavin[,1]

## Multi-split p-values

set.seed(12)

fit.multi <- hdi(x, y, method = ‘‘multi-split’’, B = 100)

fit.multi

## Ridge p-values

fit.ridge <- hdi(x, y, method = ‘‘pval-ridge’’)

fit.ridge

9As an extreme case, suppose that the data for each hypothesis and thus the p-values are the same, P1 = P2 = . . . = Pp .
Then the effective number of tests is one (instead of the nominal number of tests, p), and adjusting the p-values would not be
necessary.
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3.3. Stability Selection

Stability selection (Meinshausen & Bühlmann 2010) is a method based on subsampling (or
bootstrapping) but is rather different from classical approaches. Consider a random subsample,
I ∗ ⊂ {1, . . . , n}, of size |I ∗| = �n/2. For any variable selection algorithm, Ŝ ⊆ {1, . . . , p}, e.g.,
the Lasso, we consider its subsampled version Ŝ(I ∗) based on the subsample I∗. The subsampled
relative selection frequencies are then

π̂ j = P
∗[ j ∈ Ŝ(I ∗)], j = 1, . . . , p,

where P
∗ is with respect to the subsample I∗. In practice, this probability P

∗ is approximated by a
stochastic simulation,

π̂ j ≈ B−1
B∑

b=1

I ( j ∈ Ŝ(I ∗(b))),

where B ≈ 500–1,000 is large and I ∗(1), . . . , I ∗(B) are independent random subsamples of size
|I ∗(b)| = �n/2. The set of stable variables is defined as

Ŝstable = { j ; π̂ j ≥ πthres}

for some threshold parameter πthres.
The threshold parameter, πthres, can be linked to some type I error measure about false positive

selections. For this purpose, we assume that Ŝ(I ) selects at most q variables for every subsample
I ⊂ {1, . . . , n} with |I | = �n/2. For example, we use the Lasso and select the q variables entering
the regularization path10 first, as used in Section 3.3.1 below, or the Lasso selects the top q variables
having the highest estimated regression coefficients in absolute value. Furthermore, if such an Ŝ
is better than random guessing and if an exchangeability condition holds (which becomes an
assumption on the design, implying that false positive selection of any variable is equally likely),
then we have the following relation, with V denoting the number of false positives:

E[V ] ≤ q 2

(2πthres − 1)p
10.

(see Meinshausen & Bühlmann 2010). Therefore, by prespecifying that E[V ] should be at most
efp (e.g., efp = 1), and assuming efp ≥ q2/p, we would choose

πthres = 1
2

+ q 2

2p · efp ,

which ensures by Equation 10 that the corresponding E[V ] ≤ efp. Shah & Samworth (2013)
extend the result in Equation 10 without requiring the restrictive but unnecessary exchangeability
assumption.

Stability selection can also be used for whole groups, G ⊆ {1, . . . , p}, instead of single variables,
j ∈ {1, . . . , p}. For example, in the spirit of a group null hypothesis, H0,G : β j = 0 for all j ∈ G,
and the complementary alternative, Hc

0,G, we would consider the stability of at least one element
in a group G being selected. This consideration is formalized as

π̂G = P
∗[G ∩ Ŝ �= ∅].

The error bound in Equation 10 needs to be adapted by replacing p with
( p

k

)
and q2 with

( q
k

)2,
where k is the group size, |G| = k (e.g., k = 2 for selecting stable variable groups of two).

10The regularization paths are the paths ( p functions) of estimated coefficients from Lasso β̂ j (λ)( j = 1, . . . , p) when varying
λ from a maximal value to 0+.
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The beauty of stability selection is its generic applicability to any problem about discrete
structure estimation; that is, the selection algorithm, Ŝ, does not need to be for variable selection
in a linear model, but it could, for example, encode the selection of an edge in a graphical model.
Furthermore, in a linear model, we do not need to explicitly estimate the error variance. However,
we do not directly obtain p-values for statistical hypothesis testing. More precise mathematical
assumptions for the error control as in Equation 10 are given in Supplemental Section A.4.4.

3.3.1. Software in R. Again, we use the R package hdi (Meier 2013) to run stability selection for
the riboflavin data set. For the selector Ŝ, we use the Lasso with the q variables that enter the
regularization path first. With q = 20, V = 1, and B = 500, we get three stable selected genes,
specifically, LYSC at, YOAB at, and YXLD at:

library(hdi)

x <- riboflavin[,-1]

y <- riboflavin[,1]

set.seed(37)

fit.stab <- hdi(x, y, method = ‘‘stability’’, B = 500, EV = 1, q = 20)

fit.stab

3.4. Summary of Linear Model Results for Riboflavin Data Set

For the riboflavin data set, in which n = 71 and p = 4,088, the results from the different
methods vary to a certain extent. The multisample-splitting Algorithm 2 and the projection esti-
mator (Equation 8), here used with Ridge-type score vectors, lead to p-values controlling the very
stringent FWER. At the FWER-adjusted 5% significance level, we find one significant variable
(gene YXLD at) based on the multisample-splitting Algorithm 2, whereas the projection estimator
does not find a single significant variable or gene. This finding is not surprising: The Ridge-type
projection estimator is rather conservative, and because it does not require a βmin assumption, its
power for rejection is typically smaller; i.e., it produces typically larger p-values.

Stability selection finds more relevant variables. However, the corresponding error measure is
only the expected number of false positive selections, E[V ]; such an error measure is much less
stringent than the FWER. Furthermore, the one significant gene found with the multisample-
splitting Algorithm 2 has the largest selection frequency in the stability selection approach.

4. EXTENSIONS TO OTHER MODELS

Much of the work on point estimation carries over from high-dimensional linear models to
more complex models. For assigning statistical uncertainties, the multisample-splitting method
and stability selection are straightforward for nonlinear models. The projection procedure from
Section 3.2.2, in contrast, needs more careful treatment.

4.1. Generalized Linear Models

Generalized linear models (McCullagh & Nelder 1989) are very popular for extending the linear
model in a unified way. We consider a model with univariate response Y and p-dimensional
covariables X:

Y1, . . . , Yn are independent,

and g(E[Yi |Xi = x]) = μ +
p∑

j=1
β j x( j ),

11.
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where g(·) is a real-valued, known link function, μ is the intercept term, and x( j ) denotes the
jth component of the p-dimensional x. A well-known example is logistic regression for binary
response variables, Yi ∈ {0, 1}; we denote the conditional probability by π (x) = P[Yi = 1|Xi =
x](=E[Yi |Xi = x]). The model employs the logistic link function, g(π ) = log(π/(1 − π )), which
maps (0,1) to the real line. Another example is Poisson regression for count data responses: Yi |Xi =
x ∼ Poisson(λ(x)), and the employed link function is g(λ) = log(λ), which maps R

+ to the real
line. Obviously, a linear model is a special case of a generalized linear model with the identity link
function, g(θ ) = θ .

An implicit assumption of the model in Equation 11 is that the (conditional) distribution of Yi

(given Xi) depends on Xi only through the function g(E[Yi |Xi ]) = μ + ∑p
j=1 β j X ( j )

i . That is, the
(conditional) probability or density of Y|X = x is of the form

p(y |x) = pμ,β (y |x). 12.

For generalized linear models, the analog of the Lasso estimator in Equation 3 is defined by
penalizing the negative log-likelihood with the �1-norm. The negative log-likelihood itself equals

−�(μ, β; data) = −
n∑

i=1

log(pμ,β(Yi |Xi )),

where pμ,β(y |x) is as in Equation 12. For many examples and models, e.g., if the (conditional)
distribution of Y|X = x is from a subclass of the exponential family model (see McCullagh &
Nelder 1989, section 2.2), the negative log-likelihood �(μ, β; data) is convex in μ, β for all values
of the data. Such convexity is not a necessary requirement for the �1-norm penalization introduced
below (see, e.g., Section 4.2), but it enables efficient optimization and more elegant mathematical
analysis of the property of the estimator. The �1-norm-penalized Lasso estimator is then defined as

μ̂(λ), β̂(λ) = arg min
μ,β

(−�(μ, β; data)/n + λ||β||1) 13.

= arg min
μ,β

(
−n−1

n∑
i=1

log(pμ,β(Yi |Xi )) + λ||β||1
)

. 14.

Usually, we do not penalize the intercept term.
Assumptions analogous to those for Lasso (Equation 3) for high-dimensional linear models are

required for estimation of XT
newβ, for estimation of β, and for the active set, S = { j ; β j �= 0}.

Except for estimation of XT
newβ, we need identifiability assumptions on the design X and a con-

dition for the smallest nonzero regression coefficients (as in Equation 5) (see, e.g., van de Geer
2008 and Bühlmann & van de Geer 2011). Assigning measures of uncertainty and significance is
easily done using the multisample-splitting method from Section 3.2.1 or the stability selection
method from Section 3.3. Regarding the former, we can use Ŝ from the penalized estimator in
Equation 13, replace the t-test in step 3 of Algorithm 1 with the log-likelihood ratio test
(McCullagh & Nelder 1989), and then proceed as in Algorithm 2. For stability selection, we could
use Ŝ from, e.g., the �1-norm-penalized maximum likelihood estimator in Equation 13; a related
idea with applications to genome-wide association studies (GWAS) is presented in He & Lin
(2011). The method based on projection estimators in Section 3.2.2 needs a more elaborate exten-
sion and is described in van de Geer et al. (2013) for high-dimensional generalized linear models.

The estimator in Equation 13 can be computed using the R package glmnet (Friedman et al.
2010), as in Section 2.2.1.

4.2. Generalized Linear Mixed Models

Mixed effects models are popular for modeling grouped or longitudinal data (Pinheiro & Bates
2000). The building blocks are fixed effects with a corresponding p-dimensional parameter vector,
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β, and random effects with a corresponding random parameter, b ∼ Nq (0, V ). From a frequentist
point of view, the unknown parameters in the model are β, V, and possibly an error variance, σ 2

ε .
The high-dimensional scenario typically refers to the case in which p is large but the dimension

of the covariance matrix, V, is small (q might still be large, but V would have a low-dimensional
parameterization). In such a setting, one can again use the �1-norm-penalized maximum likelihood
estimator: As in Equation 13, we consider11

β̂(λ), V̂ (λ), σ̂ 2
ε (λ) = arg min

β,V ,σ2
ε

(−�(β, V , σ 2
ε ; data) + λ||β||1). 15.

The difficulty of this estimator lies in the negative log-likelihood −�(β, V , σ 2
ε ; data) being a

nonconvex function in the unknown parameters, and in the case of non-Gaussian (e.g., generalized
linear) mixed models, the likelihood is already difficult to compute. The computation of the
likelihood can be addressed by numerical approximations, for example, employing the Laplace
approximation, as used in Schelldorfer et al. (2013); the nonconvexity of the negative log-likelihood
causes generic computational difficulties as well as more subtle conditions and arguments when
one tries to establish good properties of the estimator, as discussed in Schelldorfer et al. (2011)
for Gaussian linear mixed models.

As for generalized linear models, we can use the multisample-splitting method from
Section 3.2.1 or the stability selection method described in Section 3.3 for quantifying uncertain-
ties. For the former, we can use the screening method from the penalized estimator in Equation
15; a valid procedure for low-dimensional generalized linear mixed models must replace the t-test
in step 3 of Algorithm 1, and we can then proceed with Algorithm 2. For stability selection for
the fixed effects variables, we can use Ŝ from Equation 15.

Example 2 (grouped data about riboflavin production with B. subtilis): One data
set of riboflavin production with B. subtilis (see also Section 1) consists of measurements
( p = 4,088 gene expressions and the riboflavin production rate) at different time points
(longitudinal data) with N = 28 groups each having two to six observations at different
times, and the total number of samples is n = 111. We refer to Example 1 in Section
1 for further description of the data set, which is denoted as riboflavinGrouped and
made available in the Supplemental Material.

We can fit a linear mixed model to this data with the 28 different groups. After some
preliminary analysis, a reasonable model consists of two independent random effects and
p = 4,088 fixed effects. The estimator in Equation 15 with a Gaussian distribution can be
computed with the R package lmmlasso (Schelldorfer 2011). The results are presented
in Schelldorfer et al. (2011).

The estimator in Equation 15 for generalized mixed effects models can be computed with the
R package glmmixedlasso (Schelldorfer et al. 2013), which is available from R-Forge (Theußl &
Zeisleis 2009).

4.3. Gaussian Graphical Models

For a further extension of linear models, we mention the Gaussian graphical model

X1, . . . , Xn i.i.d. ∼ Np (0,�).

11If not in the model, σ 2
ε should be dropped in the following expressions.
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Assuming that �−1 exists, we represent the p-dimensional Gaussian distribution in terms of a
graph with a set of nodes or vertices, {1, . . . , p}, and a set of undirected edges defined as follows:

There is an undirected edge between node j and k if and only if −1
j k �= 0.

The distribution then obeys a local and global Markov property with respect to the defined
graph (Lauritzen 1996), and hence, the edges can be interpreted in terms of conditional dependence
statements:

There is an undirected edge between node j and k if and only if

X ( j ) and X (k) are conditionally dependent given all other variables {X (�); � �= j, k}.
Estimation of such a graph in the high-dimensional scenario can be done with a nodewise Lasso ap-
proach (Meinshausen & Bühlmann 2006), which is computationally efficient and requires slightly
weaker conditions than the �1-norm-penalized maximum likelihood estimation scheme, also called
graphical Lasso, or GLasso (Friedman et al. 2007, Banerjee et al. 2008). Uncertainties could be as-
signed using the multisample-splitting method from Section 3.2.1. In view of the many edges and
the multivariate nature of the model, Meinshausen & Bühlmann (2010) advocate stability selection.

Liu et al. (2012) and Xue & Zou (2012) give extensions for non-Gaussian continuous dis-
tributions, based on copula models. We consider such an extension in Section 4.3.1 using the
nonparanormal transformation. Undirected graphical model estimation for cases with mixed-type
binary, categorical, and continuous variables is considered in Fellinghauer et al. (2013).

4.3.1. Software in R. Two major packages dealing with estimation of undirected graphs are huge
(Zhao et al. 2012) and glasso (Friedman et al. 2011). Because huge seems to be more elaborate,
we report using only this package. For the riboflavin production data, we estimate an undirected
graph with the Meinshausen–Bühlmann method (Meinshausen & Bühlmann 2006) and select the
regularization parameter using a variant of stability selection in Section 3.3 termed StARS (Liu
et al. 2010). For illustration and simplicity (without deeper biological implications), we estimate the
undirected graph for the 100 genes with the largest empirical variance and riboflavin production
and denote this reduced data set by riboflavinV100 (the fitting and selection process on the
complete data set takes approximately 2 CPU hours). Figure 3 shows the resulting graph. We
refer the interested reader to the vignette contained in the huge package for more details on the
use of this package:

library(huge)

set.seed(123)

## For ease of reproduction, we only use the 100 genes

## with largest empirical variance

## The analysis on the full data takes about 2 hours

## Apply nonparanormal transformation

X.npn <- huge.npn(riboflavinV100)

## Estimate undirected graph

out.npn <- huge(X.npn, method = ‘‘mb’’, nlambda = 30)

## Select the graph using StARS

npn.stars <- huge.select(out.npn,criterion = ‘‘stars’’,stars.thresh = 0.05)

## Extract optimal graph

resGraph <- npn.stars$refit

## Plot graph

huge.plot(resGraph)
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Figure 3
Estimated undirected graph for the riboflavinV100 data set. For ease of reproduction, only the 100 genes
with the largest empirical variance and the response variable measuring the amount of riboflavin produced
were included in the estimation process. The graph shown was estimated by the Meinshausen–Bühlmann
method, after the nonparanormal transformation, and regularized using the StARS criterion.

5. THE MARGINAL APPROACH

When one has response (or grouping or class) variables, Yi, and p-dimensional (co)variables,
Xi = (X (1)

i , . . . , X (p)
i )T , with (Yi , Xi ) (i = 1, . . . , n) i.i.d., the target of interest might be marginal

associations between Y and X ( j ) ( j = 1, . . . , p). For example, marginal association measures are
correlations between Y and X ( j ) or regression parameters (αj) in the model Y = μ+α j X ( j )+noise.
Such marginal association parameters are very different from the parameters in, e.g., a linear model
as in Equation 1 or more general regression models; the latter parameters measure the strength
of association, which no other variables explain. Some recent attempts exist for variable screening
in a linear model (Equation 1) as in Equation 6, based on marginal correlations. Under some
rather strong conditions on the design matrix, the proposed methods provide a superset of S as
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in Equation 6 (Fan & Lv 2008, Genovese et al. 2012); an extension of such a purely marginal
approach is discussed in Bühlmann et al. (2010).

The dimension p of the (co)variables Xi is not really problematic when estimating marginal
association parameters, even if p � n.12 The only drawback occurs when adjusting tests (and
confidence intervals) with respect to multiplicity, especially when considering all p � n marginal
associations.

GWAS are examples in which, oftentimes, only marginal associations are considered. For
example, if Yi is binary, encoding the healthy or diseased status of an individual, and X ( j )

i is a
categorical variable with three levels describing a single-nucleotide polymorphism at position j in
the genome, then we obtain p-values from two-sample tests (the two samples are encoded by the
binary response) for a location shift at each genomic position, j = 1, . . . , p . A typical value of p is
≈106, whereas the sample size is in the hundreds or low thousands.

5.1. Multiple Testing Adjustment

In the GWAS example above, we have p-values P1, . . . , Pp , in which p is very large and adjust-
ing for multiplicity is crucial (Roeder & Wasserman 2009). Common type I error measures for
multiple testing are the FWER (the probability of at least one false positive selection) and the
FDR (the proportion of false positive selections among the significant tests). The Bonferroni–
Holm procedure (Holm 1979) leads to FWER control under any dependence structure among
the tests, and owing to such generality, the method is often overly conservative; the Westfall–
Young method (Westfall & Young 1989) offers an alternative, at least for some cases, and often
has better power (Meinshausen et al. 2011). The Benjamini–Hochberg procedure (Benjamini &
Hochberg 1995) leads to FDR control for independent hypotheses, and a modification allowing
for arbitrary dependence among the tests (Benjamini & Yekutieli 2001) is again conservative. If
p is very large, then detecting a single significant marginal association is often hard because of
the large multiple testing adjustment factor. A hierarchical approach, in which statistical tests are
pursued in a top-down fashion from large groups of correlated test statistics to smaller groups and
individual hypotheses, is presented in Meinshausen (2008); it is an interesting way to deal with
the problem of very high multiplicity in testing.

5.1.1. Software in R. Several methods for multiple testing adjustment are implemented in the
R package multtest (Pollard et al. 2012). In the following, we show for the riboflavin data
set how to select genes, controlling the FWER at 0.05 and using simple linear regression as a
marginal test:

## Installing this package from Bioconductor:

## source(‘‘http://bioconductor.org/biocLite.R’’)

## biocLite(‘‘multtest’’)

library(multtest)

## compute marginal regressions and extract p-values

p <- ncol(riboflavin)-1

pval <- vector(‘‘numeric’’, p)

for (i in 1:p) {
fit <- lm(riboflavin[,1] ∼ riboflavin[,i+1])

tab <- summary(fit)$coefficients

12For example, the empirical correlation between Y and X ( j ) does not depend on whether there are none, few, or many other
variables, X (k)(k �= j ).
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pval[i] <- tab[2,4]

}
## Holm to control FWER (53 genes selected)

resHolm <- mt.rawp2adjp(rawp = pval, proc = ‘‘Holm’’)

head(resHolm$adjp)

## extract the column index of those variables

## with adjusted p-values less than 0.05

idx <- resHolm$index[which(resHolm$adjp[,‘‘Holm’’] < 0.05)] + 1

## names of corresponding genes

colnames(riboflavin)[idx]

## Benjamini-Hochberg to control FDR (375 genes selected)

resBH <- mt.rawp2adjp(rawp = pval, proc = ‘‘BH’’)

head(resBH$adjp)

## extract the column index of those variables

## with adjusted p-values less than 0.1

idx <- resBH$index[which(resBH$adjp[,‘‘BH’’] < 0.1)] + 1

## names of corresponding genes

colnames(riboflavin)[idx]

When controlling the FWER at 0.05, 53 genes are selected. Finally, we show how to select
genes, controlling the FDR at 0.1 and, again, using simple linear regression as a marginal test:

## Benjamini-Hochberg to control FDR

resBH <- mt.rawp2adjp(rawp = pval, proc = ‘‘BH’’)

head(resBH$adjp)

## extract the column index of those variables

## with adjusted p-values less than 0.1

idx <- resBH$index[which(resBH$adjp[,‘‘BH’’] < 0.1)] + 1

## names of corresponding genes

colnames(riboflavin)[idx]

When controlling the FDR at 0.1, 375 genes are selected.
Thus, with the marginal approach, many more genes are selected than in the conditional

approach using the Lasso and sample splitting, projection estimators, or stability selection
(Section 3). This difference is expected because the marginal approach measures total associa-
tion, which may be explained away by taking the remaining variables into account. In contrast, the
conditional approach measures only direct association, which cannot be explained away by condi-
tioning on the remaining variables. In this sense, the conditional approach uses a stricter criterion
for selection and thus has the tendency of yielding a (much) smaller number of selected variables.

6. CAUSAL INFERENCE BASED ON DIRECTED ACYCLIC GRAPHS

In the previous sections, we largely focused on estimating a regression or marginal association
parameter. In many applications, based on such estimated parameters, we would then assign
strength or importance to a variable. For example, if a parameter estimate, |β̂ j |, is large in the
linear model (Equation 1), then we assign a high importance to covariable X ( j ) for explaining
response Y.

Often though, a much more interesting (and ambitious) goal is to infer the causal strength
of a variable X ( j ) on a response of interest Y. Causal strength can be described as an outside
intervention on variable X ( j ) and measuring the size of its effect on response Y. This description
can be formalized, for example, using Pearl’s do-operator calculus (Pearl 2000).
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978
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1

2

Figure 4
Example of a causal directed acyclic graph on p = 10 nodes. Imagine a corresponding linear structural
equation model with Gaussian errors that produces the data. To estimate the causal effect of node 3 on node
9, we would regress variable 9 on variable 3 and variable 1 (because node 1 is the only parent node of node 3;
variable 1 is an adjustment variable).

To illustrate the difference from regression, we consider the situation in which the response Y
and the covariables X = (X (1), . . . , X (p))T have a ( p + 1)-dimensional Gaussian distribution. We
can then always relate Y to X with a linear model as in Equation 1:

Y =
p∑

j=1

β j X ( j ) + ε,

where ε ∼ N (0, σ 2
ε ) is independent from X. The parameter β j measures the effect on Y when

changing X ( j ) by one unit and keeping all other covariables fixed. In many practical applications,
though, when we make an intervention at, e.g., variable X ( j ), we cannot keep the other covariables,
{X (k); k �= j }, fixed. For example, if we make a perturbation at gene j with corresponding variable
X ( j ), which measures, e.g., its expression, then the expression of the other genes, {X (k); k �= j },
will change as well (and hence cannot be kept fixed). Causal inference and intervention analysis
often aim to quantify the total effect on Y when making an intervention at variable X ( j ), including
all indirect effects of X ( j ) on Y, which are caused by the chain of events that an intervention at X ( j )

changes in many other X (k)’s (k �= j ), which in turn influences response Y. A directed acyclic graph
(DAG), which has no directed cycles, is a common way to formalize the causal structure. Such a
total effect of an intervention at X ( j ) on the response Y, denoted by γ j , can then be quantified using
do calculus (Pearl 2000). In the Gaussian case, γ j equals the regression parameter for covariable
X ( j ) in a linear model when regressing Y on X ( j ) and the variables {X (k); k ∈ pa( j )}, where pa( j )
denotes the parental set of nodes of vertex j, i.e., pa( j ) = {k; there is a directed edge from k to j }
[pa( j) are sometimes called the adjustment variables]. Figure 4 presents an example.

6.1. Bounds for Causal Effects Based on Observational Data

As discussed above, estimation of a causal or intervention effect, γ j, can be based on linear re-
gression and an estimate of the parental set, pa( j). The latter is a structure estimation problem
of inferring a true underlying DAG. In general, however, the DAG is not identifiable from the
observational distribution (i.e., the distribution from nonintervention data), and we can infer
only a Markov equivalence class of DAGs (Pearl 2000, Spirtes et al. 2000). The latter can be
estimated, for example, by the PC algorithm (Spirtes et al. 2000) or the �0-penalized maximum
likelihood estimation (Chickering 2002). In the high-dimensional setting, in which p � n but the
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true underlying DAG is sparse, consistency of the estimation has been established for both the
PC algorithm (Kalisch & Bühlmann 2007) and the �0-penalized maximum likelihood estimator
(van de Geer & Bühlmann 2013).

Because we can identify only a Markov equivalence class from observational data, we cannot
infer a causal or intervention effect, γ j , from observational data. However, we can still identify
lower bounds for |γ j | with the IDA (inference when DAG is absent) procedure (Maathuis et al.
2009, 2010). These lower bounds can be used for ranking the importance of variables X ( j ) in
terms of the absolute value of their intervention effect on a response variable Y, and such a ranking
can be used in practice to prioritize variables with respect to causal strength, as demonstrated in
Maathuis et al. (2010). Assigning uncertainties for such lower-bound estimates of causal effects can
be pursued with stability selection from Section 3.3, in which the selection algorithm, Ŝ, is given
by the (top q) highest lower-bound estimates (see Section 6.2). Stekhoven et al. (2012) advocate a
related procedure.

The IDA method is based on several strong assumptions, most notably that the true under-
lying influence diagram is a DAG, which does not allow for a feedback mechanism, and that all
relevant variables in the causal system are observed. Some relaxations of these conditions have
been worked out: The fast causal inference (FCI) algorithm allows for hidden variables (Spirtes
et al. 2000, Colombo et al. 2012), whereas graphs with directed cycles are considered in Spirtes
(1995), Richardson (1996), and Mooij et al. (2011).

6.2. Software in R

Software for fitting the causal effect using IDA is provided in the R package pcalg (Kalisch et al.
2012). As an illustrative example, we use IDA to estimate the causal effect of gene YCIC at on
riboflavin production. For ease of reproduction, only the 100 genes with the highest empirical
variances and the response variable of riboflavin production were included in the estimation process
(i.e., using the riboflavinV100 data set):

## Estimate causal effect of YCIC_at on riboflavin production

library(pcalg)

## For ease of reproduction, we only use the 100 genes

## with largest empirical variance

## Full data with model selection takes more than 2 hours

n <- nrow(riboflavinV100) ## n = 71 samples

p <- ncol(riboflavinV100) ## p = 1+100 variables in total

## position of explanatory variable in data frame

xPos <- 2 ## Activity of YCIC_at is in column 2

## position of goal variable in data frame

yPos <- 1 ## Riboflavin production is in first column

## Estimate covariance matrix of all involved variables

covMat <- cov(riboflavinV100)

corMat <- cov2cor(covMat)

## Estimate causal stucture

suffStat <- list(C = corMat, n = n) ## prepare input data

pc.fit <- pc(suffStat, indepTest = gaussCItest, p = p,

alpha = 0.01) ## fit causal structure

pcEst <- pc.fit@graph ## extract estimated graph object

## Estimate causal effects of YCIC_at on riboflavin production

res <- ida(x.pos = xPos, y.pos = yPos, mcov = covMat, graphEst = pcEst)
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The resulting estimated lower bound for the causal effect in this example is 0.26. Actually, the
obtained value turns out to be not only a lower bound but in fact an estimate of the causal effect,
γYCIC at (owing to uniqueness within an estimated Markov equivalence class). This finding suggests
that gene YCIC at has a causal effect on riboflavin production; in particular, if one increases the
expression of YCIC at by one unit, then the riboflavin production is expected to increase by
0.26 units. For completeness, the effect of gene YCIC at on the riboflavin production rate was also
computed based on the full riboflavin data set with p = 4,088 genes. Then, the causal effect,
γYCIC at, is estimated as nonidentifiable (because the estimated Markov equivalence class leads to
different causal effects). However, obtaining an estimated lower bound for the absolute value of
the causal effect |γYCIC at| is possible. This estimated lower bound equals 0.08, which still allows
for the interpretation that an increase of the expression of YCIC at by one unit leads to a change
of the riboflavin production rate of at least 0.08 units. We refer the interested reader to Kalisch
et al. (2012) for more details on the use of this package.

We can easily use pcalg in connection with stability selection from Section 3.3. For the
riboflavinV100 data set, using q = 5 and πthres = 0.54 results in E[V ] ≤ 3, and based on B =
100 random splits, we find XHLA at as a stable gene that has (potentially) a causal effect on the
riboflavin production rate.

SUMMARY POINTS

1. Extracting information (including assigning uncertainty) from high-dimensional data is
possible using appropriate modern statistical methods.

2. Software implementations of most methods are readily available in R (R Development
Core Team 2012).

3. Two additional main assumptions are usually required to guarantee reasonable perfor-
mance, besides the standard conditions for low-dimensional settings: (a) sparsity for the
underlying structure and (b) identifiability of the model. An exception is the marginal
approach, which does not necessarily require such conditions.

4. Regarding Summary Point 3, sparsity is a fundamental and basic assumption regarding the
unknown parameter vector, and a typical way to ensure identifiability is given by imposing
conditions on the design matrix. For (bounds of ) causal inference statements, a much
more ambitious task than regression or classification, further assumptions are required.

5. Typically and unfortunately, the main conditions in Summary Point 3 are difficult (or
impossible) to check, and powerful diagnostic tools for corresponding model assumptions
are largely missing.

6. In view of Summary Point 5, drawing confirmatory conclusions from high-dimensional
data should only be done with great care.

7. Some areas in biology allow for experimental validation of hypotheses derived from or
prioritized using statistical methods. Such validation is of major importance not only for
the field of application but also for further understanding or appropriateness of statistical
assumptions and techniques.
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278 Bühlmann · Kalisch · Meier

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

14
.1

:2
55

-2
78

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

T
or

on
to

 L
ib

ra
ry

 o
n 

04
/1

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



ST01-FrontMatter ARI 25 November 2013 21:12

Annual Review of
Statistics and Its
Application

Volume 1, 2014Contents
What Is Statistics?

Stephen E. Fienberg � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

A Systematic Statistical Approach to Evaluating Evidence from
Observational Studies
David Madigan, Paul E. Stang, Jesse A. Berlin, Martijn Schuemie,

J. Marc Overhage, Marc A. Suchard, Bill Dumouchel, Abraham G. Hartzema,
and Patrick B. Ryan � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �11

The Role of Statistics in the Discovery of a Higgs Boson
David A. van Dyk � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �41

Brain Imaging Analysis
F. DuBois Bowman � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �61

Statistics and Climate
Peter Guttorp � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �87

Climate Simulators and Climate Projections
Jonathan Rougier and Michael Goldstein � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 103

Probabilistic Forecasting
Tilmann Gneiting and Matthias Katzfuss � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 125

Bayesian Computational Tools
Christian P. Robert � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 153

Bayesian Computation Via Markov Chain Monte Carlo
Radu V. Craiu and Jeffrey S. Rosenthal � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 179

Build, Compute, Critique, Repeat: Data Analysis with Latent
Variable Models
David M. Blei � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 203

Structured Regularizers for High-Dimensional Problems: Statistical and
Computational Issues
Martin J. Wainwright � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 233

High-Dimensional Statistics with a View Toward Applications in Biology
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