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Summary

Statistical theory aims to provide a foundation for studying the collection and interpretation
of data, a foundation that does not depend on the particular details of the substantive field in
which the data are being considered. This gives a systematic way to approach new problems, and a
common language for summarising results; ideally, the foundations and common language ensure
that statistical aspects of one study, or of several studies on closely related phenomena, can be
broadly accessible. We discuss some principles of statistical inference, to outline how these are, or
could be, used to inform the interpretation of results, and to provide a greater degree of coherence
for the foundations of statistics.
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1 Introduction

A healthy interplay between theory and application is crucial for statistics, as no doubt for
other fields. This is particularly the case when by theory we mean foundations of statistical
analysis, rather than the theoretical analysis of specific statistical methods. The very word
foundations may, however, be a little misleading in that it suggests a solid base on which a
large structure rests for its entire security. But foundations in the present context equally depend
on and must be tested and revised in the light of experience and assessed by relevance to the
very wide variety of contexts in which statistical considerations arise. It would be misleading
to draw too close a parallel with the notion of a structure that would collapse if its foundations
were destroyed.

The idea that the essence of all such general considerations can be captured within a
simple framework, let alone a simple set of mathematical axioms, seems dangerously naive.
See, for example, Fisher (1956, Ch. 5) for remarks on the need for a range of forms of
statistical inference.

In what follows, we concentrate on formal issues connected with the assessment of uncer-
tainty. There are many challenging aspects of statistical work that are not covered by this. We
shall not in this essay discuss statistical decision theory, important though that is. We exclude
also comments on prediction of future observations as contrasted with estimation of unknown
parameters. These aspects are touched in on the concluding section.

We discuss first the role of probability, which is central to most but not all formulations of
statistical issues; see for example Breiman (2001) for a more algorithmic emphasis. We then

© 2014 The Authors. International Statistical Review © 2014 International Statistical Institute. Published by John Wiley & Sons Ltd, 9600 Garsington
Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49



UN
CO

RR
EC

TE
D

PR
O

O
F

2 N. REID & D. R. COX

discuss some of the classical concepts of statistical theory, some insights on principles that can
be gained from asymptotic analysis and some thoughts on the relevance of these concepts for
current developments in statistics and the analysis of data.

2 Role of Probability

Kolmogorov’s axiomatisation of probability theory liberated the theory of probability from
discussions of the meaning of probability, enabling it in particular to become a vibrant part of
modern pure mathematics. Statisticians do not have the luxury of escaping such concerns with
meaning: indeed, in a sense, most discussions of the last 200 years and more of the basis of
statistical inference have centred around the relation between contrasting views of the meaning
of probability.

Very particularly, statistical theory continues to focus on the interplay between the roles
of probability as representing physical haphazard variability, what Jeffreys (1961) called
chances, and as encapsulating in some way, directly or indirectly, aspects of the uncertainty of
knowledge, often referred to as epistemic, or epistemological, probability.

2.1 Probability as Representing Empirical Variability

There are at least four related but different approaches to the connections between data and
a target underlying the object of study:

! The data are regarded as a random sample from a hypothetical infinite population, frequencies
within which are probabilities, some aspects of which encapsulate the target of inference.
! The data form part of a long real or more commonly somewhat hypothetical process of repe-

tition under constant conditions, limiting frequencies in which are probabilities, again some
aspects of which represent the target of inference.
! Either or both of the preceding items, combined with an explicit description in idealised form

of the physical, biological, : : :, data generating process.
! Either or both of the first two approaches may be used solely to describe the randomisation

used in experimental design or in sampling an existing population, leading to the so-called
design-based analysis.

Fisher (1956, pp. 31–36) was emphatic that he intended the first of these, not the second. For
discussions of, for example, climate change, the second or the third would be appropriate; the
stochastic process of interest need not be required to be stationary.

It is important that the hypothetical population of the first approach, and the hypothetical
repetition in the second approach, be recognised as idealisations, but this does not limit their
usefulness. For the second approach, quantities may be defined by the procedures to be followed
in measuring them, even if this measurement may be impracticable. For example, a geophysicist
may contemplate the value of the acceleration due to gravity at sea level under Mount Ever-
est: this has an operational definition, although the possibility of carrying out the operation is
remote. In other applications, the direct notion of repetition may be so hypothetical as to be
meaningless: for example, an analysis of literary style based on the complete works of Plato.
The most satisfactory approach in such cases may be to hypothesise a data generating mecha-
nism that produces observations as if from some physical probabilistic mechanisms. One may
then hope that the underlying parameters of this notional data generating mechanism provide a
summary of underlying properties of the real system free of certain accidental features.
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Principles of Statistical Inference 3

The common feature of the first three approaches is that they represent features of
the ‘real’ world, in a somewhat idealised form, and, given suitable data, are subject to empiri-
cal test and improvement. Conclusions of statistical analysis are in the first place expressed in
terms of interpretable parameters describing such a probabilistic representation of the system
under study.

We touch briefly in Section 3 on the very important principle of randomisation: one aspect of
which is to provide an approach to inference useful for the somewhat specialised applications
in which it is relevant.

2.2 Probability as Uncertain Knowledge

The form of probability outlined in the previous section is related to, but sharply different
from, the consideration of probability as measuring uncertainty of knowledge about a speci-
fied proposition given incomplete information about it. In a statistical context, this might be
expressed by the statement that an unknown parameter of interest lies in a specified range.
There are at least three broad ways in which this issue can be addressed.

First, we may avoid the need for a different version of probability by appeal to a notion of
calibration, as measured by the behaviour of a procedure under hypothetical repetition. That is,
we study assessing uncertainty, as with other measuring devices, by assessing the performance
of proposed methods under hypothetical repetition. Within this scheme of repetition, probability
is defined as a hypothetical frequency. The precise specification of the assessment process does
need care, often requiring some notion of conditioning. Secondly, probability may measure a
rational, supposedly impersonal, degree of belief, given relevant information. This has a long
history, the most notable account being that of Jeffreys (1961). Finally, probability may measure
a particular person’s degree of belief, subject typically to some constraints of self-consistency,
an idea going back to F.P. Ramsey (1926) and developed to a refined level by de Finetti (1937)
and Savage (1954). This approach seems intimately linked with personal decision-making. A
broad-ranging view embracing all these perspectives was given by Good (1950).

The role of calibration seems essential: even if an empirical frequency-based view of
probability is not used directly as a basis for inference, it is unacceptable if a procedure yield-
ing regions of high probability in the sense of representing uncertain knowledge would, if used
repeatedly, give systematically misleading conclusions.

The standard accounts of probability assume total ordering of probabilities. For some pur-
poses, this may be reasonable, but for interpretation, it seems unsound to regard a probability
p found from careful investigation of a real-world effect as equivalent to a personal judgement
based on scant or no direct evidence. That is, are the standard axioms of probability theory
applicable when totally different types of evidence are mixed?

Personalistic approaches merge seamlessly with what may be highly personal assessments
with evidence from data possibly collected with great care. This may well be essential for
personal decision-making but is surely unacceptable for the careful discussion of the data
and the presentation of conclusions in the scientific literature. This is in no way to deny the
role of personal judgement and experience in interpreting data; it is the merging that may
be unacceptable.

Finally, a view that does not accommodate some form of model checking, even if very infor-
mally, is inadequate. Note very particularly that this includes mutual consistency of data and
prior where a Bayesian formulation is used. Clear discrepancy may indicate a systematic flaw
in the data, a mis-formulation of the statistical model or a misconception in formulating the
prior. Priors that are consistent with all possible data configurations presumably play a merely
formal role in the analysis.
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A great attraction of Bayesian arguments, based as they are on the notion of probability
as uncertain knowledge, is that all calculations are governed by the rules of probability the-
ory. Another attractive feature, in principle at least, is the possibility of assimilating external
evidence. While this is at the heart of personalistic approaches, many and perhaps most cur-
rent applications of Bayesian methods rely explicitly or implicitly on some form of reference
prior representing vague knowledge; these are also called objective, or non-informative priors.
This is increasingly questionable as the dimension of the parameter space increases, as it leads
to well-established difficulties with marginalisation and with calibration (Dawid et al., 1973;
Fraser, 2011). A very simple and striking example of this was put forward by Stein (1959):
if X " N.!; 1/ is a d -dimensional random vector and we are interested in the parameter
jj!jj2, Bayesian marginal inference with a flat prior for! is completely mis-calibrated, the error
increasing with the dimension d (Stein, 1959; Cox & Hinkley, 1974, Ex. 2.39).

In principle, in most Bayesian arguments, the prior distribution aims to encapsulate all rele-
vant information apart from that in the data under analysis, as such prior does not necessarily
mean previous in time. Thus, particularly in studies that last for a long period, the prior may
change from that used in planning the study and may be influenced either by the experience of
collecting the data or even by the data themselves. As an extreme example, suppose the prior
depends in part on a theoretical calculation of likely outcomes and a clear clash with that theory
leads to the discovery of a mathematical mistake in the theory that, when corrected, resolves
the discrepancy. The prior then depends on the data in a totally rational way. The assumption
that the prior remains constant in time, which is typically not part of formal Bayesian theory, is
called temporal coherency and has strong consequences; it will often, but not always, be rea-
sonable. A more general comment about external or prior information is that the choice is not
between Bayesian arguments that include it and non-Bayesian arguments that ignore it. Rather it
is between including such information quantitatively by a probability distribution and merging
it seamlessly with the data versus using it largely or entirely qualitatively.

An expansion of these comments is given by Cox (2006, Ch. 5). A lively discussion of
calibration of Bayesian approaches is given from several points of view by Berger (2006),
Goldstein (2006), Browne & Draper (2006) and extensive discussions. Wasserman (2008)
considers this further, in the context of models and methods relevant for machine learning.

A non-Bayesian approach to interval estimation was set out by Fisher (1930) and, subject
to some monotonicity conditions, leads for continuous distributions to a formal distribution
for the unknown parameter, termed by Fisher a fiducial distribution. Indeed, a single such
statement about a parameter and a single probability statement about an event seem eviden-
tially essentially equivalent. The idea became controversial only later when such distributions
were manipulated as probability distributions: Lindley (1958) showed this to be inappropriate
in general. There is recently a renewal of interest in such approaches, variously described as
generalised fiducial inference (Weerahandi, 1993; Hannig, 2009) and confidence distributions
(Cox, 1958; Efron, 1993; Xie & Singh, 2013).

In summary, it seems necessary to recognise explicitly the dual role of probability in
statistical inference, as representing variability and as a measurement of uncertainty. The con-
ventional approach involving confidence intervals aims to use a hypothetical frequency-based
probability in an epistemological sense; while this causes some tension, it seems on the whole
to be broadly successful. At the other extreme, the approach that attempts to incorporate all
forms of probability in a personalistic viewpoint does not seem to succeed in general scien-
tific applications, even if it may sometimes be appropriate as a basis for personal decisions. A
hybrid method of inference that uses Bayesian reasoning with impersonal priors, if the results
are well calibrated in a frequency sense, may be the ideal, but to date, the construction of these
priors is elusive.
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Principles of Statistical Inference 5

We have not discussed the main alternative forms of axioms for probability, which concern,
for instance, possible modifications needed in quantum mechanics, the development of upper
and lower probabilities (Walley, 1990) and the development of belief functions, often called
Dempster–Shafer theory; an overview of the latter is available in Yager & Liu (2008); see also
Hannig & Xie (2012).

3 Randomisation Inference

We now discuss briefly a somewhat different approach based not on a probabilistic model
describing natural variability but rather on randomisation used in study design. We concentrate
here on randomisation in experimental design; broadly parallel considerations arise in sam-
pling a known population. By randomisation, we mean the use of an impersonal selection or
allocation device with simple agreed probabilistic properties.

There are four broad reasons for randomising; their relative importance depends on the
context. First, randomisation with appropriate concealment may be needed to avoid personal
selection biases or measurement errors and to provide public assurance of such avoidance.
Separate randomisations may be needed at different stages of an investigation.

A second and somewhat different issue of avoidance of bias aims to eliminate the systematic
influence of confounders, that is, explanatory variables that are prior to the treatments under
comparison and may affect the outcome.

Third, randomisation combined with a non-stochastic assumption of unit-treatment additivity
may be used to justify the estimation of standard errors in many experimental designs. That is, it
indicates a default analysis of variance for standard experimental designs. For example, it shows
that the analyses of data from, for example, Latin squares, randomised blocks and balanced
incomplete block designs, do not require distinct assumptions about the physical structure of
error for each design.

Finally, randomisation may be used to justify an exact test of a null hypothesis that the
outcomes are unaffected by treatment allocation. By extension, non-parametric confidence
intervals can be obtained for parameters representing simple effects, such as changes in location
or in scale.

In contexts where conscious or unconscious selection biases are possible in treatment alloca-
tion or implementation or in the measurement of outcome, the first of the aforementioned roles
of randomisation may be of crucial importance. The second is one of the distinguishing features
of the distinction between experiments and broadly analogous observational studies aimed at
establishing some form of causality.

The third role provides an elegant and uniform approach to the analysis of many simple and
not-so-simple experimental designs without ad hoc assumptions specific to each design.

The fourth role was emphasised by Fisher at an early stage of his discussions of experimental
design, in particular to answer criticisms that his parametric procedures might be too sensitive
to a normality assumption. For a period around the late 1930s, there was some discussion on
whether the randomisation distribution, although at the time computationally not feasible, was
the ‘ideal solution’, or whether it merely provided some security to, and indicated the form
of, the related normal-theory-based analysis. This debate is in some sense unresolvable, as the
two approaches are unlikely to give very different results except in quite small samples, where
either approach is likely to be problematic. There are echoes in recent work on bootstrap-based
inference, and in particular in a body of work showing that bootstrap inference is in moderate-
sized samples typically very close to model-based inference (e.g. DiCiccio & Efron, 1996;
Horowitz, 2006; DiCiccio & Young, 2008).

International Statistical Review (2014), 0, 0, 1–16
© 2014 The Authors. International Statistical Review © 2014 International Statistical Institute

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49



UN
CO

RR
EC

TE
D

PR
O

O
F

6 N. REID & D. R. COX

Randomisation tests should be distinguished from the numerically identical permutation
tests. The latter are based on an assumed probabilistically formulated structure for the data gen-
erating procedure involving independent and identically distributed random variables, whereas
randomisation tests are based on the design procedure.

While in some situations, failure to randomise may be a serious defect of design, there are
others where it is unwise. Randomisation may entail complex administrative steps in allocating
material according to a detailed and ever-varying set of instructions, which will be destructive
to good control. For the probability distribution over the randomisation to be a reasonable basis
for interpretation, the design used has to be not special in some relevant sense. This restricts the
usefulness of randomisation in small experiments in which each arrangement is likely to have
distinctive features.

The immediate formal inference from randomisation theory is restricted to the particular
units in the experiment, except in the unlikely possibility that these were selected in a suitably
specified way from a larger population of units. That is, there might be clear evidence that in
aggregate, the particular group of patients would have had better prognosis if all had received
treatment A than they would have had all received B, or a whole particular area treated with
fertiliser C would have had a higher yield than it would have had the whole received fertiliser
D. In Fisher’s view, the conclusions would apply also to the hypothetical infinite population of
individuals from which the patients or plots had been drawn at random, but the specific implica-
tions of this are unclear. This is connected to the subtly interconnected issues of generalisability
and specificity. That is, in the first setting, do the conclusions apply to a different population
of patients, and secondly, why should they be relevant to a specific patient being advised by a
clinician? Answers to both include demonstration of the absence of interaction of the treatment
effect with key features and understanding of the fundamental underlying pharmacology or soil
science, respectively. A discussion of some of these issues, with emphasis on clinical trials, is
given by Zheng & Zelen (2008).

4 Simple Test of Significance

While discussions of the meaning of probability have proven difficult to resolve, there is more
widespread agreement on the importance of some statistical concepts that serve as a basis for
development of statistical theory, even if there is some disagreement about how the principles
should be implemented.

The great majority of the formal discussion is based on the specification that there is a
family of probability models, one of which has, to an adequate approximation, generated the
data under analysis. We start, however, from a more primitive viewpoint, namely that we have
a null hypothesis, H0, that specifies numerically the distribution of either the full data or
certain aspects of the data. We wish to examine consistency with that null hypothesis. Fur-
ther, we suppose a chosen test statistic, t .y/, such that the larger its value, the stronger the
discrepancy of concern and such that the distribution of the random variable T under H0
is known.

In other words, we specify, largely qualitatively, the type of departure from H0 of potential
interest; any monotonic function of T would be equivalent. To assess consistency with H0,
we have an observed value of t , a probability distribution for T were H0 to be true and the
specification that the larger the t , the poorer the consistency. There seems little choice in this
formulation but to use the p-value, that is,

p.t/ D P.T # t IH0/: (1)
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Principles of Statistical Inference 7

If this is a modest number, the data are as consistent with H0 as could reasonably be expected.
If p is small, it is suggestive of inconsistency withH0 in the direction indicated by large values
of T . The observed value p.t/ can be given the hypothetical interpretation that if the observa-
tions were regarded as just decisive against H0, then p.t/ would be the long-run proportion of
times in which H0 would be falsely rejected when true.

There are two broad situations in which this formulation may be relevant. In one, H0
is a subject-matter hypothesis, suggested perhaps by theory, that may to a reasonable
approximation be true. The other is where adequacy of a formal model, itself forming H0, is to
be assessed.

This is conceptually quite different from, although formally related to, other formulations,
such as that of Neyman–Pearson theory, Bayesian testing theory and formal two-decision
problems. A parallel can be established by extending the null hypothesis distribution into an
exponential family form with a factor exp.t"/ (Cox, 2006, §3.5), but this may seem very
contrived, particularly in testing model adequacy.

There is a substantial literature on the interpretation and misinterpretation of p-values. One
criticism, also applied to confidence intervals, is that these are widely misinterpreted to repre-
sent epistemic probabilities, although the increase in general statistical literacy seems to have
assuaged this concern somewhat. Another is that p-values may become meaningless in the
context of testing very large numbers of similar hypotheses, common now in many fields of
application. This problem is being addressed through a number of methods generally related to
the notion of false discovery rates (Storey, 2002; Cox & Wong, 2004; Efron, 2010).

5 Classical Principles for Inference

We from now on assume that a probability model, in the form of a distribution function
F.yI #/ or a density function f .yI #/, has been formulated; that # ranges over a space ‚,
leading to a family of such models; and that data that are provisionally assumed to follow
some member of the family of probability models have been or are to be observed. These are
formidable assumptions from an applied viewpoint. McCullagh (2002) emphasises the impor-
tance of careful delineation of design, covariate and treatment variables as an essential part of
the correct specification of a statistical model. We do not consider here models in which the
parameter is an unspecified function, and hence infinite dimensional.

The sufficiency principle supposes that there is a factorisation of the model of the form

f .yI #/ / f1.sI #/f2.y j s/; (2)

with minimal s. The first and most commonly emphasised part of the principle is that inference
about # should be based on the statistic s D s.y/, which is sufficient for # in this model. The
second part is that the conditional distribution of the data, given s, being a fixed and known
distribution, is available for assessing model adequacy, for example, in the way outlined in the
previous section.

The conditionality principle states that if the minimal sufficient statistic can be split into
components .s1; s2/ such that there is a factorisation of their joint distribution of the form

f .sI #/ / f1.s1 j s2I #/f2.s2/; (3)

then inference about # should be based on the conditional distribution of s1, given the ancillary
statistic s2.
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The likelihood principle states that inference should be based on the likelihood function,
more precisely, the equivalence class of functions of # determined by the model, in which the
observed data are fixed:

L.#/ / f .yI #/: (4)

We take this in the strong form that only the directly observed likelihood is relevant, thus
excluding dependence on the sampling distribution of statistics derived from the likelihood
function.

5.1 Sufficiency

The primary role of sufficiency is essentially that of simplification by dimension reduction;
it enables inference to proceed based on a reduction of the set of observed or observable
values to a potentially much smaller number of quantities, without loss of information. The
interpretation of a sufficient reduction as giving a direct partitioning of the sample space is out-
lined in many textbooks (e.g. Cox & Hinkley, 1974, Ch. 2; Lehmann & Romano, 2005, Ch. 1).
Sufficiency is closely tied to the theory of exponential families, as in general, these are the mod-
els that permit substantial dimension reduction via sufficiency. A mathematical discussion of
the sufficiency of the likelihood map, that is, the equivalence class of functions L.# I $/, is given
by Barndorff-Nielsen et al. (1976) and extended by Fraser et al. (1997) and Fraser & Naderi
(2007).

5.2 Conditionality

Conditionality is in a sense the least technical of the principles and at the same time
the most elusive to formulate. The motivation is that if we want to calibrate methods of statis-
tical analysis by their performance in hypothetical repetition, it is important that the repetitions
match in some sense the very particular set of data under analysis. This demands condition-
ing on features that might distinguish in some important respect the ensemble of repetitions
from the data; these are sometimes called ‘relevant subsets’. The most important example of
this idea is to normal-theory linear models in which also the explanatory variables have a
probability distribution. Ancillarity shows that under rather general circumstances, inference
about the regression parameters should be conditional on the observed values of the explana-
tory variables. Another important application is to the class of transformation models, in which
a unique ancillary statistic can be obtained by considerations of invariance, and the condi-
tional inference in such models was called structural inference by Fraser (1961, 1968). In a few
models, non-uniqueness in the choice of ancillary statistics has to be resolved by somewhat
ad hoc criteria.

5.3 Likelihood Principle

This is formulated in (4) in its strongest form: the data should be used only in terms of the
observed likelihood function. The only inferences that are consistent with that likelihood prin-
ciple are a non-probabilistic use of the likelihood function as defining regions of the parameter
space that are more or less likely, or Bayesian inference, which derives its probabilities via the
prior distribution. Accounts of the former are given by Edwards (1960) and especially Royall
(1997) and several subsequent publications.

If there are no nuisance parameters, the non-probabilistic approach indicates, for example,
graphical summarisation of the data by plotting the likelihood function by a curve or contour
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plot. This is ineffectual, however, if there are nuisance parameters, particularly if there are
many such.

The use of the strong likelihood principle in the development of Bayesian inference is
discussed, with many examples, by Berger & Wolpert (1984). One point of interest they
noted is that Bayesian approaches with priors based on model characteristics, that is, most
‘non-informative’ priors, are not consistent with the strong likelihood principle.

Conditionality does not arise as a specific issue, because inference is conditioned on the full
data y, and sufficiency is automatically incorporated, as the likelihood function depends on the
data only through the sufficient statistic.

5.4 General Comments

In nearly all applied work, the parameter # will be comprised of parameters of direct interest
to the problem at hand, and additional parameters typically representing aspects of secondary
interest; for example, the parameters of interest may govern the mean response, possibly as a
linear or non-linear function of some auxiliary variables, while secondary parameters might be
related to the variability, and/or other aspects of the distribution such as the shape, or tail weight,
or other features relevant to the problem. Such parameters may be essential to complete the
specification, but not be themselves the focus of subject-matter concern. Different phases of the
analysis of a single set of data may well involve different choices of the parameter of interest.

In its simplest form, we may write # D . ;"/, with  as the parameters of interest
and " usually referred to as nuisance parameters. Unfortunately, the definitions of sufficiency
and ancillarity for  immediately become more difficult, because it is rarely the case that
factorisations analogous to (2) and (3) can be obtained. In the ideal case, where

f .yI ;"/ / f1.sI /f2.t j sI"/;

or possibly f .yI ;"/ / f1.sI /f2.t j sI $/, where $ D $. ;"/ and the parameter spaces
for . ; $/ and . ;"/ are the same, inference for  can be cleanly based on the model f1; s is
sufficient for  and ancillary for ". This ideal case rarely obtains, more usually, either

f .yI ;"/ / f1.sI /f2.t j sI ;"/ or f .yI ;"/ / f1.sI ;"/f2.t j sI /;

and the situation is much less clear. Some aspects of this are discussed in more detail by
Reid (1995).

Bayesian methods, being based on the observed data, avoid this consideration, but at the
expense of specification of prior probabilities for a possibly large number of parameters, which
entails another set of difficulties. Subjective information, the relevance of which we have argued
against in Section 2, will in any case rarely be available for complex models with large numbers
of parameters, at least not in the scientific context. The extensive development of reference
priors and other forms of priors meant to be uninformative with respect to the parameters clearly
indicates that such priors must be targeted to the parameters of interest (Berger & Bernardo,
1992; Berger et al., 2009; Fraser et al., 2010).

The confidence distributions briefly mentioned in Section 2.2 are typically obtained by
inversion of a pivotal quantity, which is a function of the data y and parameter of interest  ,
with a known distribution. Using this known distribution enables us to obtain a set of p-values
for different values of  , variously called a significance function or p-value function. Slightly
more generally, a set of confidence regions at various confidence levels can be used to define a
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confidence distribution for  (Cox, 1958); in nearly all treatments, these regions are assumed
to be nested. The usual t-statistic of normal theory is a simple example of a pivot leading to a
p-value function or providing a set of nested confidence intervals for the unknown mean of a
normal distribution. The Fieller pivotal quantity for inference about the ratio of the means of
two independent normal distributions, . Ny1% Ny2/=¹%0

p
.1=n1C 2=n2/ºwhere %2

0 is the com-
mon known variance, is another example, which is however non-monotone in  so does not
lead directly to a confidence distribution. Anomalies like this, and the lack of a general recipe
for constructing pivotal quantities, have meant that they have received somewhat less attention
in studies of theoretical statistics. There is a recent revival of interest in confidence distribu-
tion functions; see Xie & Singh (2013), Hannig (2009) and Schweder (2002) for overviews and
further references. For most problems, the notion of an approximate pivotal quantity is needed,
and these can be obtained from asymptotic theory, to which we turn next.

6 Principles and Asymptotic Theory

Consideration of distributions of inferential quantities as a notional sample size or amount
of information increases both simplifies and complicates the discussion. While asymptotic the-
ory is often viewed as a means of generating approximate inference, for a general theoretical
discussion, it is perhaps more important for the insight it gives into some foundational aspects.

Notions of approximate sufficiency and approximate ancillarity have been developed (e.g.
Cox 1980; McCullagh, 1984; as well as Barndorff-Nielsen & Cox, 1994, Ch. 7), but in general,
the details are relatively complex.

In contrast, approximate pivotal quantities are used nearly routinely in applied work, thanks
in part to the development of robust software for optimisation and root finding. So, for example,
letting O" denote the maximum likelihood estimator of the nuisance parameter " when the
parameter of interest  is fixed and defining the profile log-likelihood function by `p. / D
logL

!
 ; O" 

"
, the standardised maximum likelihood estimator

!
O %  

"
j 1=2

p

!
O 
"
;

where jp. / D %@2`p. /=@ @ 
0, is an approximately pivotal quantity, as its asymptotic

distribution is known to be, under suitable regularity conditions, normal with mean 0 and
covariance matrix the identity. Similarly,

r2. / D 2
°
`p

!
O 
"
% `p. /

±
(5)

is an approximate pivotal quantity following a &2
d distribution, where d is the dimension of  .

Either or both of these can be inverted to give confidence regions for  at any desired level of
confidence.

Improved approximations can be developed from a more detailed study of the asymptotic
expansions involved, and when the parameter of interest is a scalar, an improved version
of (5) is

r!. / D r. /C 1
r. /

log
²
Q. /

r. /

³
; (6)
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where r. / is the square root of (5), with the appropriate sign attached, and Q. /, discussed
briefly later, is a related pivotal quantity with the property that it has the same limiting dis-
tribution as r. /, that is, standard normal. In continuous models, the distribution of r!. /,
under the model f .yI #/ is also standard normal, but with a relative error of O.n"3=2/ in terms
of the sample size for independent observations from the model, whereas the relative error in
(5) is O.n"1=2/. In other words, (6) is a large deviation result: the practical implication of this
is that the approximation often works very well in the tails of the distribution, where small
p-values are of interest. The inferential basis for using the pivotal quantity r!. / is that it
approximates the signed square root of the log-likelihood ratio statistic for an approximate
conditional or marginal log-likelihood function; these latter are obtained by implementing the
ideas of approximate sufficiency and ancillarity mentioned earlier.

A similar asymptotic analysis of the marginal posterior distribution in a Bayesian analysis
leads to

r!B. / D r. /C
1

r. /
log

²
Q!
B. /

r. /

³
; (7)

where Q!
B. / depends on the prior ' , as well as the first and second derivatives of the

log-likelihood function. The distribution of r!B. /, in the posterior distribution '.# j y/ /
f .yI #/'.#/, is standard normal with a relative error of O.n"3=2/ (DiCiccio et al., 1990).

The approximately pivotal quantity Q!
B. / is

Q!
B. / D `0p. /j"1=2

p . O /

8<
:

ˇ̌
ˇj""

!
 ; O" 

"ˇ̌
ˇˇ̌

ˇj""
!
O ; O"

"ˇ̌
ˇ

9=
;

1=2
'
!
O ; O"

"

'
!
 ; O" 

" ; (8)

where j"".#/ D %@2 logL. ;"/=@"@"T is the sub-matrix of the full Fisher information matrix
corresponding to the nuisance parameter ", and, as in previous discussion, O" is the constrained
maximum likelihood estimator of " when  is fixed. The factor in braces in (8) comes from
integrating out the nuisance parameters by Laplace approximation.

The approximately pivotal quantity Q. / in (6) is more difficult to describe, as it depends
in general on the construction of an approximately ancillary statistic. A number of examples
are given by Brazzale et al. (2008, Chs. 3–7), where asymptotically equivalent versions due to
Barndorff-Nielsen (1990) and Fraser (1990) are presented and discussed. In exponential family
models, with densities of the form

f .yI ;"/ D exp¹s1.y/ C sT2 .y/" % c. ;"/ºh.y/; (9)

the expression for Q. / is the standardised maximum likelihood estimator of  , with a
nuisance parameter adjustment:

Q. / D
!
 % O 

"
j 1=2

p

!
O 
"8<
:

ˇ̌
ˇj""

!
O ; O"

"ˇ̌
ˇˇ̌

ˇj""
!
 ; O" 

"ˇ̌
ˇ

9=
;

1=2

: (10)

In regression-scale models, yi D xT
i ˇC %ei , with  a component of ˇ;Q. / is the standard-

ised score statistic for  , modified by a similar adjustment for nuisance parameters. Explicit
formulae for Q in a number of regression settings are given by Brazzale et al. (2008, Ch. 8).
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A detailed study of these approximations leads to a number of insights into foundational
aspects.

As n ! 1, the Bayesian and frequentist inferences for  are the same, assuming the prior
is fixed. This has long been known, sometimes described as the prior being ‘washed out’ by
the data. The point of departure between Bayesian and frequentist inference appears at the next
order of approximation. This was discussed from a slightly different point of view by Welch &
Peers (1963) and articulated in the context here by Pierce & Peters (1994).

A prior that leads to inferences equivalent to frequentist inferences at this higher order
of approximation must satisfy Q!

B. / D Q. /. These priors are called strong matching
priors by Fraser & Reid (2002). These strong matching priors are specific to the parameter
of interest, suggesting that any prior that is calibrated in this sense for  is unlikely to be cal-
ibrated for other components of # . This also follows from Peers (1965), who considered the
extension to nuisance parameter of the results of Welch & Peers (1963). The need to target the
prior on the parameter of interest is emphasised in the literature on reference priors (Berger &
Bernardo, 1992).

The addition of the approximately pivotal quantityQ. / via (6) means inference is based on
more than the profile log-likelihood function. In particular, this adjusts for the estimation of the
nuisance parameters, and this adjustment is, in practical problems, much more important for the
accuracy of the inference than the distributional improvement (Pierce & Peters, 1992). A key
step in the construction of the approximate pivotal Q. / in (6) is measuring the change of the
log-likelihood function logL.# Iy/with small changes in the data, keeping relevant ancillary or
approximately ancillary statistics fixed. As might be expected, this requires that the parameter
space and the sample space both be continuous; a slightly different argument is needed for
discrete data.

There is no need to work with sufficient statistics in deriving formulae like (6): because
it is based on functions of the log-likelihood function, it is automatically a function of the
sufficient statistic, although sometimes the calculations are easier after a preliminary reduction
by sufficiency. It is however imperative to condition on an exactly or approximately ancillary
statistic, except in the case of linear exponential family models (9).

It is shown by DiCiccio & Young (2008), building on work by DiCiccio et al. (2001), that to
O.n"3=2/, parametric bootstrap sampling of r. / under the model f .yI ; O" / is equivalent
to that based on (6) (see also Fraser & Rousseau, 2008). However, the number of replications
required to estimate small tail probabilities may be prohibitive.

A development of model checking, using for example f .t j s/ when factorisation (2) holds,
based on these notions of higher-order approximation is to our knowledge not yet available.

7 Discussion

There are several important aspects of statistical science that we have not emphasised
here. While many investigations involve a decision-making element, most commonly, the role
of statistics is to summarise evidence in a clear and cogent form, rather than to make irrevo-
cable decisions. For example, data may be consistent with two quite different interpretations,
indicating the appropriateness of two different decisions. Statistical analysis may end with
an indication of the possibilities and associated uncertainties: decision analysis ends with the
choice of a single decision, even if this is essentially arbitrary. The best action in such cases
may be a search for a third decision, so far overlooked, as the formulations of general theory are
rarely really closed. Further, formal treatments of decision theory are typically based on max-
imising expected utility, whereas Simon’s (1956) notion of satisficing may be more appropriate,
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especially when more than one individual is involved. This is because of the general fragility of
formulations that are intrinsically and strongly personalistically based.

We have excluded comments on prediction of future observations as contrasted with estima-
tion of unknown parameters. In Bayesian discussions, there is no formal distinction in that the
objective is to find the conditional distribution of the feature of interest given the data and the
prior. In frequentist theory too, a formal parallel can be established with testing the consistency
of potential future data with the current data. In most formulations, it is assumed that the val-
ues to be predicted are generated from the same random system as the data, often a formidable
assumption. Stability under perturbation of the generating process may be more important than
formal optimality.

We have also not discussed non-parametric methods. If an issue cannot be addressed non-
parametrically, a parametric analysis is likely to be hazardous. An illustration is the study of
competing risks in the analysis of survival data. The assumption of independent competing risks
cannot be tested by non-parametric methods, and any analysis of this by parametric models is
likely to be heavily influenced by the particular model family chosen. On the other hand, if a
non-parametric analysis is in principle available, a parametric formulation is likely to give a
more focused interpretation, and that is our reason for concentrating on parametric issues.

We emphasised in Section 1 that foundations must be continually tested against
applications. From this perspective, the strong likelihood principle is found wanting: a great
deal of applied work relies on the distribution of quantities based on the likelihood function,
such as the maximum likelihood estimator or the likelihood ratio statistic. Similarly, a great
deal of applied work with Bayesian methods uses what are hoped to be ‘non-influential’ pri-
ors; the question is whether these really are non-influential, particularly when high-dimensional
parameters are involved.

Many applications of now current statistical ideas involve vast amounts of data, or highly
complex models, or both, and the question of whether the principles touched on here continue to
be relevant to these settings arises. A principled approach is surely necessary to avoid apparent
discoveries based on spurious patterns or correlations. While there are a number of applied
contexts, many involving machine learning, where prediction and classification using possibly
complex black-box approaches are adequate, for any analysis that hopes to shed light on the
structure of the problem, modelling and calibrated inferences about interpretable parameters
seem essential.

A recent report (National Research Council, 2013) highlighted the following ‘inferential
giants’ for the study of massive data: assessment of sampling bias, inference about tails,
resampling inference, change-point detection, reproducibility of analyses, causal inference for
observational data and efficient inference for temporal streams. Sampling bias is an essen-
tial aspect of design and analysis of surveys and experiments, topics that we have touched
on only briefly, and efficient inference for temporal streams is perhaps mainly an issue of
computation. However, theoretical statistics, and the classic concepts discussed earlier, would
seem to be important for the remainder. For example, the ideas behind significance testing
underlie the development of false discovery rates, and other methods for judging the impor-
tance of seemingly large effects when a great many comparisons have been carried out.
Sufficiency, or something much like it, is needed for successful implementation of approx-
imate Bayesian computation, which uses simulation to construct the likelihood function in
complex models.

One issue arising when assessment of precision is required from large-data analysis concerns
internal correlations and undetected sources of variability, leading to serious underestimation of
potential errors if relatively standard methods are used with their attendant strong independence
assumptions. Another issue is the information available in large observational data sets, often
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collected in such a way that assessment of selection bias is difficult or impossible. Lazer et al.
(2014) describe a setting where seemingly big data relied for its analysis on what was effectively
a small data set, which led to overfitting.

There are also broader strategical issues. How best should a wholly new large set of data be
approached? A summary analysis of the whole may be combined with a very detailed analysis
of suitably sampled fragments. There are in a real sense theoretical issues involved, although
ones possibly not easily captured within a mathematical formalism. The role of principles for
inference is to enable abstraction from a range of particular problems to a common underlying
theme, and hence to aid the approach to new challenges.
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Whether you opt for hard-copy or electronic annotation of your proofs, we recom-
mend that you provide additional clarification of answers to queries by entering
your answers on the query sheet, in addition to the text mark-up.

Query No. Query Remark
Q1 AUTHOR: Please provide city location and name of the

publisher in Reference Horowitz, J. (2006).
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32
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40
41
42
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I can't tell if it's a  
journal or a book;  
but it seems it is 
published by 
Elsevier online. 
The web address is 
http://
www.sciencedirect.
com/science/
article/pii/
S15734412010500
5X 
(The year is 2001) 

 



 
USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION  
 
Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 7.0 or 
above). (Note that this document uses screenshots from Adobe Reader X) 
The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/uk/reader/ 
 

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:  

 

 
 
 
 
 
 
 
 
 

 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Replace (Ins) Tool – for replacing text. 
 

Strikes a line through text and opens up a text 
box where replacement text can be entered. 

How to use it 

x Highlight a word or sentence. 

x Click on the Replace (Ins) icon in the Annotations 
section. 

x Type the replacement text into the blue box that 
appears. 

This will open up a panel down the right side of the document. The majority of 
tools you will use for annotating your proof will be in the Annotations section, 
pictured opposite. We’ve picked out some of these tools below: 

2. Strikethrough (Del) Tool – for deleting text. 
 

Strikes a red line through text that is to be 
deleted. 

How to use it 

x Highlight a word or sentence. 

x Click on the Strikethrough (Del) icon in the 
Annotations section. 

 
 

3. Add note to text Tool – for highlighting a section 
to be changed to bold or italic. 

 
Highlights text in yellow and opens up a text 
box where comments can be entered. 

How to use it 

x Highlight the relevant section of text. 

x Click on the Add note to text icon in the 
Annotations section. 

x Type instruction on what should be changed 
regarding the text into the yellow box that 
appears. 

4. Add sticky note Tool – for making notes at 
specific points in the text. 

 
Marks a point in the proof where a comment 
needs to be highlighted. 

How to use it 

x Click on the Add sticky note icon in the 
Annotations section. 

x Click at the point in the proof where the comment 
should be inserted. 

x Type the comment into the yellow box that 
appears. 
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For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: 

5. Attach File Tool – for inserting large amounts of 
text or replacement figures. 

 
Inserts an icon linking to the attached file in the 
appropriate pace in the text. 

How to use it 

x Click on the Attach File icon in the Annotations 
section. 

x Click on the proof to where you’d like the attached 
file to be linked. 

x Select the file to be attached from your computer 
or network. 

x Select the colour and type of icon that will appear 
in the proof. Click OK. 

6. Add stamp Tool – for approving a proof if no 
corrections are required. 

 
Inserts a selected stamp onto an appropriate 
place in the proof. 

How to use it 

x Click on the Add stamp icon in the Annotations 
section. 

x Select the stamp you want to use. (The Approved 
stamp is usually available directly in the menu that 
appears). 

x Click on the proof where you’d like the stamp to 
appear. (Where a proof is to be approved as it is, 
this would normally be on the first page). 

7. Drawing Markups Tools – for drawing shapes, lines and freeform 
annotations on proofs and commenting on these marks. 
Allows shapes, lines and freeform annotations to be drawn on proofs and for 
comment to be made on these marks.. 

How to use it 

x Click on one of the shapes in the Drawing 
Markups section. 

x Click on the proof at the relevant point and 
draw the selected shape with the cursor. 

x To add a comment to the drawn shape, 
move the cursor over the shape until an 
arrowhead appears. 

x Double click on the shape and type any 
text in the red box that appears. 


