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V1.6 Continuous State Space Markov Chains
- here T = Np and S with o-algebra C (could be S = R¥,C = B¥)

Definition VI.11 A Markov kernel P : S x C — [0, 1] for a time
homogeneous, Markov process with state space S and initial probability

measure v on (S, C) satisfies (i) P(s, ) is a probability measure on C for
every s € S and (i) P(-, C) : (S,C) — (R, BY) for every C € C.

- so P(-, C) is a random variable and P(s, C) is interpreted as the
conditional probability that the next state is in C given that the current
state is s

- note when S C Z, then P(-, C) is given by P(i,{j}) = pjj

- so the time homogeneous Markov process with state space S and
Markov kernel P is given by {X, : n € INg} where Xy ~ v and
Xn ‘ XOv o an—l ~ P(Xn—lv '>
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- such Markov processes arise in many statistical problems where there is a
(posterior) distribution on a continuous space we want to sample from but
can only find a Markov chain Monte Carlo algorithm to do this
approximately

Example VI.11

-{Xn:n€Np} is given by Xo = 0 (v is degenerate a 0) and
P(x,-) = N(x/2,1) so X; ~ N(0,1) and

P(X <) — /°° P(Xo < %0 | X1)(x1) Px, (dx)

—0o0

_ /_oo CD<X2_1X1/2> gp()q)dxl

but with Z ~ N(0, 1) independent of Xi, then
Xo=7Z+X1/2~ N<0,1—|—1/4) IN(0,5/4),X3 =Z+X/2~
N(0,1+5/16) = N(0,21/16), etc. W

- note - as long as it is easy to generate from v and P(s, -) for each s,
then it is easy to simulate the process
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- we need a generalization of the concept of irreducibility because in the
continuous case P(s, {x}) = 0 for all s, x

- note

PRl(s,C) = P(X,eC|Xo=s)
(X € C|Xo=s5,X1 =5")P(s,ds)
(

/P
S
/ P(X, € C| X1 = s')P(s, ds') by MP
S
P

/S (s',C)P(s,ds") by TH

and P(" is obtained similarly

Definition VI1.12 A MC with state space S is called ¢-irreducible, where
¢ is a measure on C, if for all s € S, whenever ¢(C) > 0 then
P (s, C) > 0 for some n.

- typically ¢ = volume measure and in the discrete case if ¢ = counting
measure this is the same definition in that case
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Proposition V1.35 If there is 6 > 0 s.t. P(s,-) has a positive density on
[s — 8,5+ 6] for every s € S = R?, then the MC with this kernel is
¢-irreducible where ¢ is volume measure.

Proof: Suppose C € B! and ¢(C) > 0. Then Im € N s.t.
$(CN[—m, m]) > 0. Choose ns.t. s—nd < —m < m < s+ né. Then
since P(s, -) has positive density on [s — &, s + 8] this implies P(") (s, -)
has positive density on [s — nd, s + né] > 0 (see * below). But
CN[—m,m] C [s—nd,s+ nd| so

P (s, C) > P (s, C N [=m, m]) > 0.
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*if P(s,-) has positive density on [s — &, s + ], then so does P(?) (s, ) on
[s — 26, s + 26] since

P@) (s, [s — 25, s+ 26])
_ /oo P(x,[s — 20,5 + 20]) P(s, dx)

—00

_ /jo (/Zj f(z|x)dz> P(s, dx)

s+0 5+26
/ </ f(z|x)dz> F(x|s)dx >0
s—0 s—20

since f(z|x) > 0 for all z € [x —, x + J] and this implies

::;2; f(z|x)dz > 0 whenever [x — &, x4+ J] C [s — 20, s+ 2J] and this

holds whenever x € [s — J, s+ 6] and note f(x|s) > 0 there

v
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Definition VI.13 A MC with state space S has period b if S can be
decomposed into mutually disjoint subsets S = SqU -+ - U Sp_1 s.t.
P(s,Si) =1 whenever s € S;_y and i = [(i — 1) + 1]mod b. If b=1,
then the MC is said to be aperiodic.

Proposition V1.36 If there is 6 > 0 s.t. P(s,-) has a positive density on
[s — 8,5+ 6] for every s € S = R!, then a ¢-irreducible MC, where ¢ is
volume measure, is aperiodic.

Proof: Suppose b is the period and let s € S; where vol(S;) > 0. Also, let
m € N be s.t. vol(S; N [—m, m|) > 0. Choose ng s.t.

s—nyd < —m < m < s+ nyd. Then P(s,-) has positive density on

[s — 8,5+ 6] which implies P(")(s, -) has positive density on

[s — nd, s+ nd] > 0 for every n > ng and in particular for n = ng and
n=ny+ 1. Butif b > 2itis not possible that b|ny and b|ny + 1 and so
b=1 1
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Definition VI.14 A MC with state space S has stationary distribution 7
if [1(C) = [ P(s, C)I(ds) forall C €C.

- as in the discrete case this implies that when v = 7t then X, ~ 7T for all n

- also if P(s, C) has density, f(x|s) then 7t is stationary when

77(x) = /S F(x|s)7t(s) ds

- if the Markov kernel P(s, ) has density f(x|s) then it is reversible wrt
7T whenever f(x|s)m(s) = f(s|x)m(x) and then

[ Fcls)e(s)ds = [ #(sx)m(x) ds = ()

and so 7T is stationary
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Proposition VI.37 If a MC is ¢-irreducible, aperiodic and has stationary
distribution IT, then

lim P(X, € C| Xy =5s) =TI(C)
for all s € S excepting possibly a set having I'T measure 0.
Proof: fact
Example VI.11 (continued)
- recall f(x|s) is the N(s/2,1) density so f(s|x) is the N(x/2,1) density
- so for reversibility we want
exp(—(x —s/2)2/2)m(s) = exp(—(x/2—5)2/2)m(x) or
2—5)2 —5/2)?
7t(s) exp (_ (x/2—5) n (x —s/2) )

7t(x) 2 2

~ exp <2(x2 _ 52)>

which is satisfied by 7w = N(0,4/3)

- also the chain satisfies Propositions VI.35 and VI.36 (normal densities are

alal AlNeroe a P ala’ alala =
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Example VI1.12 Markov Chain Monte Carlo

- suppose we want to sample from a distribution 77 and we can't find a
good (e.g., rejection or inversion) algorithm to do this directly

- we try to create a MC, that can simulated from, s.t. 7T is its unique
stationary distribution so that X, is approximately distributed 7t for large n

- let q(s, -) be a proposal density for each s € S and suppose q is
symmetric, i.e., (s, x) = q(x, s)

- define P(s, -) by
. 7t(x)
/C\{s} q(s, x) min <1, 5

P(s, C\{s})
P(s,{s}) = 1—/Sq(5,x)min (1,

frmn (25) s e

so P(s,.) is a probability measure

and note
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- the chain may stay at state s with possibly positive probability

- this is known as the Metropolis algorithm
1. given X,_1 = s generate Y, ~ ¢(s, -) stat. ind. of U, ~ U(0,1)

2. put
Y, if Uy < 7t(Yn)/m(Xn-1)
X, = .
X,_1 otherwise

- to see that this works

P(X, € C\{s}|Xn-1=>5)
= P(Y, € C\{s}, U, < nt(Y,)/7(s) | Xo-1 = 5)

min(1,77(x)/7(s))
s / / q(s' X) dUdX
C\{s} JO

= /C\{s} q(s,x) min(1, 7t(x)/7(s)) dudx
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Proposition V1.38 (Continuous MCMC Convergence) If 1t(s) > 0 for
every s € S and there is § > 0s.t. g(s, x) > 0 whenever |x — s| < J, then

d
X, — TT.

Proof: We have, for s # x

7t(s)q(s, x) min (1, 72(x)/7(s))
nt(s)q(s,x) if t(x)/m(s) > 1
n(x)q(s,x) if t(x)/m(s) <1
= 7n(x)q(x,s) min (1, 77(s)/7t(x)
and so the chain is reversible and 7T is a stationary distribution for the
chain. Also, 7t(s)q(s, x) min (1, 7t(x)/m(s)) > 0 whenever [x —s| < ¢
and so P(s, -) has positive density when|x — s| < J and so the chain is

¢-irreducible (¢ = volume) and aperiodic. The result then follows from
Prop. VI.37. &
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Exercise VI.18 Text 4.7.11
Exercise VI.19 Text 4.8.3
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