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VI.6 Continuous State Space Markov Chains

- here T = N0 and S with σ-algebra C (could be S = Rk , C = Bk )
De�nition VI.11 A Markov kernel P : S � C ! [0, 1] for a time
homogeneous, Markov process with state space S and initial probability
measure ν on (S , C) satis�es (i) P(s, �) is a probability measure on C for
every s 2 S and (ii) P(�,C ) : (S , C)! (R1,B1) for every C 2 C.
- so P(�,C ) is a random variable and P(s,C ) is interpreted as the
conditional probability that the next state is in C given that the current
state is s

- note when S � Z, then P(�,C ) is given by P(i , fjg) = pij
- so the time homogeneous Markov process with state space S and
Markov kernel P is given by fXn : n 2 N0g where X0 � ν and
Xn jX0, . . . ,Xn�1 � P(Xn�1, �)
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- such Markov processes arise in many statistical problems where there is a
(posterior) distribution on a continuous space we want to sample from but
can only �nd a Markov chain Monte Carlo algorithm to do this
approximately

Example VI.11

- fXn : n 2 N0g is given by X0 = 0 (ν is degenerate a 0) and
P(x , �) = N(x/2, 1) so X1 � N(0, 1) and

P(X2 � x2) =
Z ∞

�∞
P(X2 � x2 jX1)(x1)PX1(dx1)

=
Z ∞

�∞
Φ
�
x2 � x1/2

1

�
ϕ(x1) dx1

but with Z � N(0, 1) independent of X1, then
X2 = Z + X1/2 � N(0, 1+ 1/4) = N(0, 5/4),X3 = Z + X2/2 �
N(0, 1+ 5/16) = N(0, 21/16), etc. �
- note - as long as it is easy to generate from ν and P(s, �) for each s,
then it is easy to simulate the process
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- we need a generalization of the concept of irreducibility because in the
continuous case P(s, fxg) = 0 for all s, x
- note

P (2)(s,C ) = P(X2 2 C jX0 = s)

=
Z
S
P(X2 2 C jX0 = s,X1 = s 0)P(s, ds 0)

=
Z
S
P(X2 2 C jX1 = s 0)P(s, ds 0) by MP

=
Z
S
P(s 0,C )P(s, ds 0) by TH

and P (n) is obtained similarly

De�nition VI.12 A MC with state space S is called φ-irreducible, where
φ is a measure on C, if for all s 2 S , whenever φ(C ) > 0 then
P (n)(s,C ) > 0 for some n.

- typically φ = volume measure and in the discrete case if φ = counting
measure this is the same de�nition in that case
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Proposition VI.35 If there is δ > 0 s.t. P(s, �) has a positive density on
[s � δ, s + δ] for every s 2 S = R1, then the MC with this kernel is
φ-irreducible where φ is volume measure.

Proof: Suppose C 2 B1 and φ(C ) > 0. Then 9m 2 N s.t.
φ(C \ [�m,m]) > 0. Choose n s.t. s � nδ < �m < m < s + nδ. Then
since P(s, �) has positive density on [s � δ, s + δ] this implies P (n)(s, �)
has positive density on [s � nδ, s + nδ] > 0 (see * below). But
C \ [�m,m] � [s � nδ, s + nδ] so

P (n)(s,C ) � P (n)(s,C \ [�m,m]) > 0.

�
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* if P(s, �) has positive density on [s � δ, s + δ], then so does P (2)(s, �) on
[s � 2δ, s + 2δ] since

P (2)(s, [s � 2δ, s + 2δ])

=
Z ∞

�∞
P(x , [s � 2δ, s + 2δ])P(s, dx)

=
Z ∞

�∞

�Z s+2δ

s�2δ
f (z j x)dz

�
P(s, dx)

�
Z s+δ

s�δ

�Z s+2δ

s�2δ
f (z j x)dz

�
f (x j s) dx > 0

since f (z j x) > 0 for all z 2 [x � δ, x + δ] and this impliesR s+2δ
s�2δ f (z j x)dz > 0 whenever [x � δ, x + δ] � [s � 2δ, s + 2δ] and this
holds whenever x 2 [s � δ, s + δ] and note f (x j s) > 0 there
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De�nition VI.13 A MC with state space S has period b if S can be
decomposed into mutually disjoint subsets S = S0[ � � � [ Sb�1 s.t.
P(s,Si ) = 1 whenever s 2 Si�1 and i = [(i � 1) + 1]mod b. If b = 1,
then the MC is said to be aperiodic.

Proposition VI.36 If there is δ > 0 s.t. P(s, �) has a positive density on
[s � δ, s + δ] for every s 2 S = R1, then a φ-irreducible MC, where φ is
volume measure, is aperiodic.

Proof: Suppose b is the period and let s 2 Si where vol(Si ) > 0. Also, let
m 2 N be s.t. vol(Si \ [�m,m]) > 0. Choose n0 s.t.
s � n0δ < �m < m < s + n0δ. Then P(s, �) has positive density on
[s � δ, s + δ] which implies P (n)(s, �) has positive density on
[s � nδ, s + nδ] > 0 for every n � n0 and in particular for n = n0 and
n = n0 + 1. But if b � 2 it is not possible that bjn0 and bjn0 + 1 and so
b = 1. �
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De�nition VI.14 A MC with state space S has stationary distribution π
if Π(C ) =

R
S P(s,C )Π(ds) for all C 2 C.

- as in the discrete case this implies that when ν = π then Xn � π for all n

- also if P(s,C ) has density, f (x j s) then π is stationary when

π(x) =
Z
S
f (x j s)π(s) ds

- if the Markov kernel P(s, �) has density f (x j s) then it is reversible wrt
π whenever f (x j s)π(s) = f (s j x)π(x) and thenZ

S
f (x j s)π(s) ds =

Z
S
f (s j x)π(x) ds = π(x)

and so π is stationary
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Proposition VI.37 If a MC is φ-irreducible, aperiodic and has stationary
distribution Π, then

lim
n!∞

P(Xn 2 C jX0 = s) = Π(C )

for all s 2 S excepting possibly a set having Π measure 0.

Proof: fact

Example VI.11 (continued)

- recall f (x j s) is the N(s/2, 1) density so f (s j x) is the N(x/2, 1) density

- so for reversibility we want

exp(�(x � s/2)2/2)π(s) = exp(�(x/2� s)2/2)π(x) or
π(s)
π(x)

= exp
�
� (x/2� s)2

2
+
(x � s/2)2

2

�
= exp

�
3
8
(x2 � s2)

�
which is satis�ed by π = N(0, 4/3)

- also the chain satis�es Propositions VI.35 and VI.36 (normal densities are
poitive everywhere) so Prop. VI.37 applies �
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Example VI.12 Markov Chain Monte Carlo

- suppose we want to sample from a distribution π and we can�t �nd a
good (e.g., rejection or inversion) algorithm to do this directly

- we try to create a MC, that can simulated from, s.t. π is its unique
stationary distribution so that Xn is approximately distributed π for large n

- let q(s, �) be a proposal density for each s 2 S and suppose q is
symmetric, i.e., q(s, x) = q(x , s)

- de�ne P(s, �) by

P(s,Cnfsg) =
Z
C nfsg

q(s, x)min
�
1,

π(x)
π(s)

�
dx

P(s, fsg) = 1�
Z
S
q(s, x)min

�
1,

π(x)
π(s)

�
dx

and note Z
S
q(s, x)min

�
1,

π(x)
π(s)

�
dx �

Z
S
q(s, x) dx = 1

so P(s, .) is a probability measure

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes I I - Lecture 6e 2024 10 / 13



- the chain may stay at state s with possibly positive probability

- this is known as the Metropolis algorithm

1. given Xn�1 = s generate Yn � q(s, �) stat. ind. of Un � U(0, 1)

2. put

Xn =
�
Yn if Un � π(Yn)/π(Xn�1)
Xn�1 otherwise

- to see that this works

P(Xn 2 Cnfsg jXn�1 = s)
= P(Yn 2 Cnfsg,Un � π(Yn)/π(s) jXn�1 = s)

=
Z
C nfsg

Z min(1,π(x )/π(s))

0
q(s, x) dudx

=
Z
C nfsg

q(s, x)min(1,π(x)/π(s)) dudx
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Proposition VI.38 (Continuous MCMC Convergence) If π(s) > 0 for
every s 2 S and there is δ > 0 s.t. q(s, x) > 0 whenever jx � s j < δ, then

Xn
d! π.

Proof: We have, for s 6= x

π(s)q(s, x)min (1,π(x)/π(s))

=

�
π(s)q(s, x) if π(x)/π(s) > 1
π(x)q(s, x) if π(x)/π(s) � 1

= π(x)q(x , s)min (1,π(s)/π(x))

and so the chain is reversible and π is a stationary distribution for the
chain. Also, π(s)q(s, x)min (1,π(x)/π(s)) > 0 whenever jx � s j < δ
and so P(s, �) has positive density whenjx � s j < δ and so the chain is
φ-irreducible (φ = volume) and aperiodic. The result then follows from
Prop. VI.37. �
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Exercise VI.18 Text 4.7.11

Exercise VI.19 Text 4.8.3
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