Probability and Stochastic Processes I I - Lecture 6e

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

Michael Evans University of Toronto https://Probability and Stochastic Processes I I - Lec

2024 1 / 13

VI.6 Continuous State Space Markov Chains

- here $T = \mathbb{N}_0$ and S with σ -algebra C (could be $S = \mathbb{R}^k$, $C = \mathcal{B}^k$)

Definition VI.11 A *Markov kernel* $P : S \times C \rightarrow [0, 1]$ for a time homogeneous, Markov process with state space S and initial probability measure v on (S, C) satisfies (i) $P(s, \cdot)$ is a probability measure on C for every $s \in S$ and (ii) $P(\cdot, C) : (S, C) \rightarrow (\mathbb{R}^1, \mathcal{B}^1)$ for every $C \in C$.

- so $P(\cdot, C)$ is a random variable and P(s, C) is interpreted as the conditional probability that the next state is in C given that the current state is s

- note when $\mathcal{S} \subset \mathbb{Z}$, then $P(\cdot, C)$ is given by $P(i, \{j\}) = p_{ij}$

- so the time homogeneous Markov process with state space S and Markov kernel P is given by $\{X_n : n \in \mathbb{N}_0\}$ where $X_0 \sim \nu$ and $X_n \mid X_0, \ldots, X_{n-1} \sim P(X_{n-1}, \cdot)$

- such Markov processes arise in many statistical problems where there is a (posterior) distribution on a continuous space we want to sample from but can only find a Markov chain Monte Carlo algorithm to do this approximately

Example VI.11

- $\{X_n : n \in \mathbb{N}_0\}$ is given by $X_0 = 0$ (ν is degenerate a 0) and $P(x, \cdot) = N(x/2, 1)$ so $X_1 \sim N(0, 1)$ and

$$P(X_2 \le x_2) = \int_{-\infty}^{\infty} P(X_2 \le x_2 | X_1)(x_1) P_{X_1}(dx_1)$$

=
$$\int_{-\infty}^{\infty} \Phi\left(\frac{x_2 - x_1/2}{1}\right) \varphi(x_1) dx_1$$

but with $Z \sim N(0, 1)$ independent of X_1 , then $X_2 = Z + X_1/2 \sim N(0, 1 + 1/4) = N(0, 5/4), X_3 = Z + X_2/2 \sim N(0, 1 + 5/16) = N(0, 21/16)$, etc.

- note - as long as it is easy to generate from ν and $P(s, \cdot)$ for each s, then it is easy to simulate the process

2024 3 / 13

- we need a generalization of the concept of irreducibility because in the continuous case $P(s, \{x\}) = 0$ for all s, x

- note

$$P^{(2)}(s, C) = P(X_2 \in C | X_0 = s)$$

= $\int_{S} P(X_2 \in C | X_0 = s, X_1 = s') P(s, ds')$
= $\int_{S} P(X_2 \in C | X_1 = s') P(s, ds')$ by MP
= $\int_{S} P(s', C) P(s, ds')$ by TH

and $P^{(n)}$ is obtained similarly

Definition VI.12 A MC with state space S is called ϕ -irreducible, where ϕ is a measure on C, if for all $s \in S$, whenever $\phi(C) > 0$ then $P^{(n)}(s, C) > 0$ for some n.

- typically ϕ = volume measure and in the discrete case if ϕ = counting measure this is the same definition in that case

2024 4 / 13

Proposition VI.35 If there is $\delta > 0$ s.t. $P(s, \cdot)$ has a positive density on $[s - \delta, s + \delta]$ for every $s \in S = \mathbb{R}^1$, then the MC with this kernel is ϕ -irreducible where ϕ is volume measure.

Proof: Suppose $C \in \mathcal{B}^1$ and $\phi(C) > 0$. Then $\exists m \in \mathbb{N}$ s.t. $\phi(C \cap [-m, m]) > 0$. Choose *n* s.t. $s - n\delta < -m < m < s + n\delta$. Then since $P(s, \cdot)$ has positive density on $[s - \delta, s + \delta]$ this implies $P^{(n)}(s, \cdot)$ has positive density on $[s - n\delta, s + n\delta] > 0$ (see * below). But $C \cap [-m, m] \subset [s - n\delta, s + n\delta]$ so

$$P^{(n)}(s,C) \geq P^{(n)}(s,C\cap [-m,m]) > 0.$$

* if $P(s, \cdot)$ has positive density on $[s - \delta, s + \delta]$, then so does $P^{(2)}(s, \cdot)$ on $[s - 2\delta, s + 2\delta]$ since

$$P^{(2)}(s, [s - 2\delta, s + 2\delta])$$

$$= \int_{-\infty}^{\infty} P(x, [s - 2\delta, s + 2\delta]) P(s, dx)$$

$$= \int_{-\infty}^{\infty} \left(\int_{s-2\delta}^{s+2\delta} f(z \mid x) dz \right) P(s, dx)$$

$$\geq \int_{s-\delta}^{s+\delta} \left(\int_{s-2\delta}^{s+2\delta} f(z \mid x) dz \right) f(x \mid s) dx > 0$$

since $f(z \mid x) > 0$ for all $z \in [x - \delta, x + \delta]$ and this implies $\int_{s-2\delta}^{s+2\delta} f(z \mid x) dz > 0$ whenever $[x - \delta, x + \delta] \subset [s - 2\delta, s + 2\delta]$ and this holds whenever $x \in [s - \delta, s + \delta]$ and note $f(x \mid s) > 0$ there **Definition VI.13** A MC with state space S has *period* b if S can be decomposed into mutually disjoint subsets $S = S_0 \cup \cdots \cup S_{b-1}$ s.t. $P(s, S_i) = 1$ whenever $s \in S_{i-1}$ and $i = [(i-1)+1] \mod b$. If b = 1, then the MC is said to be *aperiodic*.

Proposition VI.36 If there is $\delta > 0$ s.t. $P(s, \cdot)$ has a positive density on $[s - \delta, s + \delta]$ for every $s \in S = \mathbb{R}^1$, then a ϕ -irreducible MC, where ϕ is volume measure, is aperiodic.

Proof: Suppose *b* is the period and let $s \in S_i$ where $vol(S_i) > 0$. Also, let $m \in \mathbb{N}$ be s.t. $vol(S_i \cap [-m, m]) > 0$. Choose n_0 s.t. $s - n_0\delta < -m < m < s + n_0\delta$. Then $P(s, \cdot)$ has positive density on $[s - \delta, s + \delta]$ which implies $P^{(n)}(s, \cdot)$ has positive density on $[s - n\delta, s + n\delta] > 0$ for every $n \ge n_0$ and in particular for $n = n_0$ and $n = n_0 + 1$. But if $b \ge 2$ it is not possible that $b|n_0$ and $b|n_0 + 1$ and so b = 1.

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

Definition VI.14 A MC with state space S has stationary distribution π if $\Pi(C) = \int_{S} P(s, C) \Pi(ds)$ for all $C \in C$.

- as in the discrete case this implies that when $\nu = \pi$ then $X_n \sim \pi$ for all n

- also if P(s, C) has density, $f(x \mid s)$ then π is stationary when

$$\pi(x) = \int_{\mathcal{S}} f(x \,|\, s) \pi(s) \, ds$$

- if the Markov kernel $P(s, \cdot)$ has density f(x | s) then it is *reversible wrt* π whenever $f(x | s)\pi(s) = f(s | x)\pi(x)$ and then

$$\int_{\mathcal{S}} f(x \mid s) \pi(s) \, ds = \int_{\mathcal{S}} f(s \mid x) \pi(x) \, ds = \pi(x)$$

and so π is stationary

Proposition VI.37 If a MC is ϕ -irreducible, aperiodic and has stationary distribution Π , then

$$\lim_{n\to\infty} P(X_n \in C \mid X_0 = s) = \Pi(C)$$

for all $s \in S$ excepting possibly a set having Π measure 0.

Proof: fact

Example VI.11 (continued)

- recall $f(x \mid s)$ is the N(s/2, 1) density so $f(s \mid x)$ is the N(x/2, 1) density

- so for reversibility we want

$$\exp(-(x-s/2)^2/2)\pi(s) = \exp(-(x/2-s)^2/2)\pi(x) \text{ or}$$
$$\frac{\pi(s)}{\pi(x)} = \exp\left(-\frac{(x/2-s)^2}{2} + \frac{(x-s/2)^2}{2}\right)$$
$$= \exp\left(\frac{3}{8}(x^2-s^2)\right)$$

which is satisfied by $\pi = N(0, 4/3)$

Example VI.12 Markov Chain Monte Carlo

- suppose we want to sample from a distribution π and we can't find a good (e.g., rejection or inversion) algorithm to do this directly

- we try to create a MC, that can simulated from, s.t. π is its unique stationary distribution so that X_n is approximately distributed π for large n

- let $q(s,\cdot)$ be a proposal density for each $s\in \mathcal{S}$ and suppose q is symmetric, i.e., q(s,x)=q(x,s)

- define $P(s, \cdot)$ by

$$P(s, C \setminus \{s\}) = \int_{C \setminus \{s\}} q(s, x) \min\left(1, \frac{\pi(x)}{\pi(s)}\right) dx$$
$$P(s, \{s\}) = 1 - \int_{\mathcal{S}} q(s, x) \min\left(1, \frac{\pi(x)}{\pi(s)}\right) dx$$

and note

$$\int_{\mathcal{S}} q(s, x) \min\left(1, \frac{\pi(x)}{\pi(s)}\right) \, dx \leq \int_{\mathcal{S}} q(s, x) \, dx = 1$$

so P(s, .) is a probability measure

- the chain may stay at state s with possibly positive probability
- this is known as the Metropolis algorithm
- 1. given $X_{n-1} = s$ generate $Y_n \sim q(s, \cdot)$ stat. ind. of $U_n \sim U(0, 1)$
- 2. put

$$X_n = \begin{cases} Y_n & \text{if } U_n \leq \pi(Y_n) / \pi(X_{n-1}) \\ X_{n-1} & \text{otherwise} \end{cases}$$

- to see that this works

$$P(X_{n} \in C \setminus \{s\} | X_{n-1} = s)$$

$$= P(Y_{n} \in C \setminus \{s\}, U_{n} \le \pi(Y_{n}) / \pi(s) | X_{n-1} = s)$$

$$= \int_{C \setminus \{s\}} \int_{0}^{\min(1,\pi(x)/\pi(s))} q(s,x) \, du dx$$

$$= \int_{C \setminus \{s\}} q(s,x) \min(1,\pi(x)/\pi(s)) \, du dx$$

Proposition VI.38 (Continuous MCMC Convergence) If $\pi(s) > 0$ for every $s \in S$ and there is $\delta > 0$ s.t. q(s, x) > 0 whenever $|x - s| < \delta$, then $X_n \xrightarrow{d} \pi$.

Proof: We have, for $s \neq x$

$$\begin{aligned} &\pi(s)q(s,x)\min\left(1,\pi(x)/\pi(s)\right) \\ &= \begin{cases} &\pi(s)q(s,x) & \text{if } \pi(x)/\pi(s) > 1 \\ &\pi(x)q(s,x) & \text{if } \pi(x)/\pi(s) \leq 1 \end{cases} \\ &= &\pi(x)q(x,s)\min\left(1,\pi(s)/\pi(x)\right) \end{aligned}$$

and so the chain is reversible and π is a stationary distribution for the chain. Also, $\pi(s)q(s,x)\min(1,\pi(x)/\pi(s)) > 0$ whenever $|x-s| < \delta$ and so $P(s, \cdot)$ has positive density when $|x-s| < \delta$ and so the chain is ϕ -irreducible (ϕ = volume) and aperiodic. The result then follows from Prop. VI.37.

Exercise VI.18 Text 4.7.11 Exercise VI.19 Text 4.8.3

(日) (同) (三) (三)