Probability and Stochastic Processes II - Lecture 6d

Michael Evans
University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

VI. 4 Queueing Theory

- consider a queue of customers arriving at a server
- suppose customers arrive at the queue according to interrival times
$Y_{1}, Y_{2}, \ldots \stackrel{i . i . d .}{\sim}$ exponential (λ) and the service times of these customers are $S_{1}, S_{2}, \ldots \stackrel{i . i . d .}{\sim}$ exponential (μ),
- let $T_{n}=\sum_{i=1}^{n} Y_{i}=$ arrival time of n-th customer and

$$
Q_{t}=\# \text { of customers in the queue at time } t
$$

- with these assumptions $\left\{Q_{t}: t \geq 0\right\}$ is called a $M / M / 1$ queue
- clearly, because of the memoryless property of the exponential distribution, for any $0 \leq t_{1} \leq \cdots \leq t_{n} \leq t$, then

$$
P\left(Q_{t}=j \mid Q_{t_{i}}=j_{i} \text { for } i=1, \ldots, n\right)=P\left(Q_{t}=j \mid Q_{t_{n}}=j_{n}\right)
$$

and this depends on time only through $t-t_{n}$, so $\left\{Q_{t}: t \geq 0\right\}$ is a time homogeneous Markov process

- note that the number of arrivals is a Poisson process of intensity $\lambda_{\bar{\beta}}$

Proposition VI. 28 A M/M/1 queue with interarrival times

 exponential (λ) and service times exponential (μ) has generator matrix$$
G=\left(\begin{array}{cccc}
-\lambda & \lambda & 0 & \cdots \\
\mu & -\lambda-\mu & \lambda & \\
0 & \mu & -\lambda-\mu & \ddots \\
\vdots & & \ddots & \ddots
\end{array}\right)
$$

Proof: See text and use Lemma VI.14.
Proposition VI. 29 If $\lambda<\mu$, the stationary distribution π of a $\mathrm{M} / \mathrm{M} / 1$ queue with interarrival times exponential (λ) and service times exponential (μ) is geometric $(1-\lambda / \mu)$.
Proof: The distribution π satisfies $\pi G=0$. So $\pi_{0}(-\lambda)+\pi_{1}(\mu)=0$ implying $\pi_{1}=(\lambda / \mu) \pi_{0}$. Also $\pi_{0}(\lambda)+\pi_{1}(-\lambda-\mu)+\pi_{2}(\mu)=0$ or $\pi_{0}(\lambda)+\pi_{0}(\lambda / \mu)(-\lambda-\mu)+\pi_{2}(\mu)=\pi_{0}\left(-\lambda^{2} / \mu\right)+\pi_{2}(\mu)=0$ so $\pi_{2}=(\lambda / \mu)^{2} \pi_{0}$ and in general $\pi_{k}=(\lambda / \mu)^{k} \pi_{0}$. since $1=\sum_{k=0}^{\infty} \pi_{k}$ this implies that $\pi_{0}=\left(\sum_{k=1}^{\infty}(\lambda / \mu)^{k}\right)^{-1}=1-\lambda / \mu$ which completes the proof.

Proposition VI. 30 If $\lambda<\mu$, then for a $\mathrm{M} / \mathrm{M} / 1$ queue with interarrival times exponential (λ) and service times exponential (μ)

$$
\lim _{t \rightarrow \infty} P\left(Q_{t}=k\right)=(\lambda / \mu)^{k}(1-\lambda / \mu)
$$

Proof: Since the transition $i \rightarrow i+1$ always has positive probability the process is irreducible. So by Prop. VI. 26 the result follows.

- what happens when $\lambda \geq \mu$? it can be shown that $\lim _{k \rightarrow \infty} \lim _{t \rightarrow \infty} P\left(Q_{t} \geq k\right) \rightarrow 1$
- when $\lambda<\mu$ and t is large there are k individuals in the queue with probability $(\lambda / \mu)^{k}(1-\lambda / \mu)$ and so a newly arrived individual will have to wait $W=S_{1}+\cdots+S_{k} \sim \operatorname{gamma}(k, \mu)$ for service so (intuitively) when t is large, and $G(\cdot ; k, \mu)$ is the gamma $(i, \mu) \mathrm{cdf}$,

$$
P(W>w)=\sum_{k=0}^{\infty}(\lambda / \mu)^{k}(1-\lambda / \mu)(1-G(w ; k, \mu)<\infty
$$

- a $G / G / 1$ queue assumes interarrival times Y_{n} are i.i.d., the service times S_{n} are i.i.d. independent of the interarrvial times but these distributions are not assumed to be exponential

VI. 5 Renewal Theory

- consider r.v.'s $Y_{1}, Y_{2}, Y_{3}, \ldots$ which are mutually stat. ind. and Y_{2}, Y_{3}, \ldots are i.i.d.
- consider a machine that has been functioning properly but after Y_{1} units of time from when it is being monitored, it needs maintenance and then needs maintenance after Y_{2} units of time, then Y_{3} units of time, etc. and denote the maintenance times times by $T_{n}=Y_{1}+\cdots+Y_{n}$ with $T_{0}=0$

Definition VI. 10 The process $\left\{N_{t}: t \in T\right\}$, where $N_{t}=\#\left\{n: T_{n} \leq t\right\}=\#$ of renewals up to time t, is called a renewal process.

- if $Y_{1}, Y_{2}, Y_{3}, \ldots$ are i.i.d., then there is zero delay and and when the common distribution is exponential (λ), then this is a Poisson process
- fact, $\left\{N_{t}: n \in \mathbb{N}_{0}\right\}$ is a Markov process iff it is a Poisson process (recall memoryless property of exponential distribution)

Example VI. 10 Renewal process from a Markov chain

- let $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ be an irreducible, recurrent Markov chain and assume $X_{0}=j$
- put $T_{1}(i)=\min \left\{k: X_{k}=i\right\}$ and for $n \geq 2$ put
$T_{n}(i)=\min \left\{k>T_{n-1}(i): X_{k}=i\right\}=$ time of n-th visit to state i
- put $Y_{n}=T_{n}-T_{n-1}$ so

$$
P\left(Y_{1}=y \mid X_{0}=j\right)=P\left(X_{y}=i, X_{m} \neq i, 1 \leq m \leq y-1 \mid X_{0}=j\right)
$$

and using MP, for $n \geq 2$

$$
\begin{aligned}
& P\left(Y_{n}=y \mid X_{n-1}=i\right) \\
= & P\left(X_{y}=i, X_{m} \neq i, 1 \leq m \leq y-1 \mid X_{0}=i\right) \text { by TH } \\
= & P\left(Y_{1}=y \mid X_{0}=i\right)
\end{aligned}
$$

- note for $z>y$

$$
\begin{aligned}
& P\left(Y_{1}=y, Y_{2}=z \mid X_{0}=j\right) \\
= & P\left(Y_{2}=z \mid Y_{1}=y, X_{0}=j\right) P\left(Y_{1}=y \mid X_{0}=j\right) \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& P\left(Y_{2}=z \mid Y_{1}=y, X_{0}=j\right) \\
= & P\left(X_{y+z}=i, X_{m} \neq i, y+1 \leq m \leq z+y-1 \mid\right. \\
& \left.X_{y}=i, X_{m} \neq i, 1 \leq m \leq y-1, X_{0}=j\right) \\
= & P\left(X_{y+z}=i, X_{m} \neq i, y+1 \leq m \leq z+y-1 \mid X_{y}=i\right) \text { by MP } \\
= & P\left(X_{z}=i, X_{m} \neq i, 1 \leq m \leq z-1 \mid X_{0}=i\right) \text { by TH } \\
= & P\left(Y_{1}=z \mid X_{0}=i\right)
\end{aligned}
$$

so in general $Y_{1}, Y_{2}, Y_{3}, \ldots$ are mutually stat. ind. and Y_{2}, Y_{3}, \ldots are i.i.d. $P\left(Y_{i}=z \mid X_{0}=i\right)=P\left(Y_{1}=z \mid X_{0}=i\right)$

- consider $N_{t} / t=$ renewal rate

Proposition VI. 31 (Elementary Renewal Theorem) For a renewal process $\left\{N_{t}: t \in T\right\}$ with $E\left(Y_{n}\right)=\mu<\infty$ for $n \geq 2$, then as $t \rightarrow \infty$
(i) $\frac{N_{t}}{t} \xrightarrow{w p 1} \frac{1}{\mu}$,
(ii) $E\left(\frac{N_{t}}{t}\right) \rightarrow \frac{1}{\mu}$.

Proof: (i) By the SLLN $\frac{1}{n} T_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{w p 1} \mu$ which implies $\lim _{t \rightarrow \infty} N_{t}=\lim _{t \rightarrow \infty} \#\left\{n: T_{n} \leq t\right\}=\infty \mathrm{wp1}$ (otherwise $T_{n}=\infty$ infinitely often which contradicts $\mu<\infty$). Therefore,

$$
\lim _{t \rightarrow \infty} \frac{T_{N_{t}}}{N_{t}}=\lim _{n \rightarrow \infty} \frac{T_{n}}{n}=\mu \mathrm{wp} 1
$$

and since

$$
\frac{T_{N_{t}}}{N_{t}} \leq \frac{t}{N_{t}} \leq \frac{T_{N_{t}+1}}{N_{t}}
$$

this implies $t / N_{t} \xrightarrow{w p 1} \mu$.
(ii) fact.

Example VI. 10 Renewal process from a Markov chain (continued)

- recall $T_{n}(i)=\min \left\{k>T_{n}(i): X_{k}=i\right\}=$ time of n-th visit to state i
- when the chain is positive recurrent then $\mu=m_{i}$ mean recurrence time $<\infty$ and recall the unique stationary distribution is given by $\pi_{i}=1 / m_{i}$

Proposition VI. 32 (Blackwell Renewal Theorem) For a renewal process with $\mu<\infty$ and s.t. Y_{2} is non-arithmetic (there isn't $\delta>0$ s.t. $\left.P\left(Y_{2} \in\{i \delta: i \in \mathbb{Z}\}\right)=1\right)$ then $\lim _{t \rightarrow \infty} E\left(N_{t+h}-N_{t}\right)=h / \mu$ for any $h>0$.

Proof: fact
Corollary VI. 33 If $h>0$ is s.t. $P\left(Y_{2}<h\right)=0$, then
$\lim _{t \rightarrow \infty} P\left(\exists n\right.$ s.t. $\left.t<T_{n} \leq t+h\right)=h / \mu$.
Proof: We have

$$
\begin{aligned}
& P\left(\exists n \text { s.t. } t<T_{n} \leq t+h\right)=P\left(N_{t+h}-N_{t} \geq 1\right) \\
= & P\left(N_{t+h}-N_{t}=1\right)=E\left(N_{t+h}-N_{t}\right)
\end{aligned}
$$

whence the result follows from the proposition.

- suppose at renewal i there is a reward (or cost) R_{i} where R_{1}, R_{2}, \ldots are i.i.d. and define the renewal reward process by

$$
R_{t}=\sum_{i=1}^{N_{t}} R_{i}=\text { total reward up to time } t
$$

Proposition VI. 34 (Renewal Reward Theorem) For a renewal process with $\mu<\infty$, then $\frac{R_{t}}{t} \xrightarrow{\text { wp } 1} \frac{E\left(R_{1}\right)}{\mu}$.
Proof: We have

$$
\frac{R_{t}}{t}=\frac{1}{t} \sum_{i=1}^{N_{t}} R_{i}=\frac{N_{t}}{t}\left(\frac{1}{N_{t}} \sum_{i=1}^{N_{t}} R_{i}\right)
$$

and by the SLLN

$$
\lim _{t \rightarrow \infty} \frac{1}{N_{t}} \sum_{i=1}^{N_{t}} R_{i}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} R_{i}=E\left(R_{1}\right)
$$

Exercise VI.14 Text 4.5.4
Exercise VI. 15 Text 4.5.6
Exercise VI.16 Text 4.6.9
Exercise VI. 17 Text 4.6.10

