Probability and Stochastic Processes I I - Lecture 6d

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

2024

1 / 1

Michael Evans University of Toronto https://Probability and Stochastic Processes I I - Lec

VI.4 Queueing Theory

- consider a queue of customers arriving at a server

- suppose customers arrive at the queue according to interrival times $Y_1, Y_2, \ldots \overset{i.i.d.}{\sim}$ exponential (λ) and the service times of these customers are $S_1, S_2, \ldots \overset{i.i.d.}{\sim}$ exponential (μ) ,

- let $T_n = \sum_{i=1}^n Y_i$ = arrival time of *n*-th customer and

 $Q_t = \#$ of customers in the queue at time t

- with these assumptions $\{Q_t:t\geq 0\}$ is called a M/M/1 queue

- clearly, because of the memoryless property of the exponential distribution, for any $0 \le t_1 \le \cdots \le t_n \le t$, then

$$P(Q_t = j | Q_{t_i} = j_i \text{ for } i = 1, ..., n) = P(Q_t = j | Q_{t_n} = j_n)$$

and this depends on time only through $t - t_n$, so $\{Q_t : t \ge 0\}$ is a time homogeneous Markov process

- note that the number of arrivals is a Poisson process of intensity λ .

Proposition VI.28 A M/M/1 queue with interarrival times exponential(λ) and service times exponential(μ) has generator matrix

$$G = \begin{pmatrix} -\lambda & \lambda & 0 & \dots \\ \mu & -\lambda - \mu & \lambda & \\ 0 & \mu & -\lambda - \mu & \ddots \\ \vdots & & \ddots & \ddots \end{pmatrix}$$

Proof: See text and use Lemma VI.14.

Proposition VI.29 If $\lambda < \mu$, the stationary distribution π of a M/M/1 queue with interarrival times exponential(λ) and service times exponential(μ) is geometric($1 - \lambda/\mu$).

Proof: The distribution π satisfies $\pi G = 0$. So $\pi_0(-\lambda) + \pi_1(\mu) = 0$ implying $\pi_1 = (\lambda/\mu)\pi_0$. Also $\pi_0(\lambda) + \pi_1(-\lambda-\mu) + \pi_2(\mu) = 0$ or $\pi_0(\lambda) + \pi_0(\lambda/\mu)(-\lambda-\mu) + \pi_2(\mu) = \pi_0(-\lambda^2/\mu) + \pi_2(\mu) = 0$ so $\pi_2 = (\lambda/\mu)^2\pi_0$ and in general $\pi_k = (\lambda/\mu)^k\pi_0$. since $1 = \sum_{k=0}^{\infty} \pi_k$ this implies that $\pi_0 = (\sum_{k=1}^{\infty} (\lambda/\mu)^k)^{-1} = 1 - \lambda/\mu$ which completes the proof. **Proposition VI.30** If $\lambda < \mu$, then for a M/M/1 queue with interarrival times exponential(λ) and service times exponential(μ)

$$\lim_{t\to\infty} P(Q_t=k) = (\lambda/\mu)^k (1-\lambda/\mu).$$

Proof: Since the transition $i \rightarrow i + 1$ always has positive probability the process is irreducible. So by Prop. VI.26 the result follows.

- what happens when $\lambda \ge \mu$? it can be shown that $\lim_{k\to\infty}\lim_{t\to\infty} P(Q_t\ge k)\to 1$

- when $\lambda < \mu$ and t is large there are k individuals in the queue with probability $(\lambda/\mu)^k (1 - \lambda/\mu)$ and so a newly arrived individual will have to wait $W = S_1 + \cdots + S_k \sim \text{gamma}(k, \mu)$ for service so (intuitively) when t is large, and $G(\cdot; k, \mu)$ is the gamma (i, μ) cdf,

$$P(W > w) = \sum_{k=0}^{\infty} (\lambda/\mu)^k (1 - \lambda/\mu) (1 - G(w; k, \mu) < \infty)$$

- a G/G/1 queue assumes interarrival times Y_n are *i.i.d.*, the service times S_n are *i.i.d.* independent of the interarrvial times but these distributions are not assumed to be exponential

2024 4 / 1

VI.5 Renewal Theory

- consider r.v.'s Y_1 , Y_2 , Y_3 , ... which are mutually stat. ind. and Y_2 , Y_3 , ... are *i.i.d*.

- consider a machine that has been functioning properly but after Y_1 units of time from when it is being monitored, it needs maintenance and then needs maintenance after Y_2 units of time, then Y_3 units of time, etc. and denote the maintenance times times by $T_n = Y_1 + \cdots + Y_n$ with $T_0 = 0$

Definition VI.10 The process $\{N_t : t \in T\}$, where $N_t = \#\{n : T_n \leq t\} = \#$ of renewals up to time *t*, is called a *renewal* process.

- if Y_1, Y_2, Y_3, \ldots are *i.i.d.*, then there is *zero delay* and and when the common distribution is exponential(λ), then this is a Poisson process

- fact, $\{N_t : n \in \mathbb{N}_0\}$ is a Markov process iff it is a Poisson process (recall memoryless property of exponential distribution)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Example VI.10 Renewal process from a Markov chain

- let $\{X_n: n \in \mathbb{N}_0\}$ be an irreducible, recurrent Markov chain and assume $X_0 = j$

- put
$$T_1(i) = \min\{k : X_k = i\}$$
 and for $n \ge 2$ put
 $T_n(i) = \min\{k > T_{n-1}(i) : X_k = i\} =$ time of *n*-th visit to state *i*

- put
$$Y_n = T_n - T_{n-1}$$
 so

$$P(Y_1 = y | X_0 = j) = P(X_y = i, X_m \neq i, 1 \le m \le y - 1 | X_0 = j)$$

and using MP, for $n \ge 2$

$$P(Y_n = y | X_{n-1} = i)$$

= $P(X_y = i, X_m \neq i, 1 \le m \le y - 1 | X_0 = i)$ by TH
= $P(Y_1 = y | X_0 = i)$

- note for z > y

$$P(Y_1 = y, Y_2 = z \mid X_0 = j)$$

= $P(Y_2 = z \mid Y_1 = y, X_0 = j)P(Y_1 = y \mid X_0 = j)$ and

$$P(Y_{2} = z \mid Y_{1} = y, X_{0} = j)$$

$$= \begin{array}{l} P(X_{y+z} = i, X_{m} \neq i, y+1 \leq m \leq z+y-1 \mid X_{y} = i, X_{m} \neq i, 1 \leq m \leq y-1, X_{0} = j) \\ = P(X_{y+z} = i, X_{m} \neq i, y+1 \leq m \leq z+y-1 \mid X_{y} = i) \text{ by MP} \\ = P(X_{z} = i, X_{m} \neq i, 1 \leq m \leq z-1 \mid X_{0} = i) \text{ by TH} \\ = P(Y_{1} = z \mid X_{0} = i) \end{array}$$

so in general Y_1, Y_2, Y_3, \ldots are mutually stat. ind. and Y_2, Y_3, \ldots are *i.i.d.* $P(Y_i = z \mid X_0 = i) = P(Y_1 = z \mid X_0 = i)$

- consider N_t/t = renewal rate

Proposition VI.31 (Elementary Renewal Theorem) For a renewal process $\{N_t : t \in T\}$ with $E(Y_n) = \mu < \infty$ for $n \ge 2$, then as $t \to \infty$

(i)
$$\frac{N_t}{t} \xrightarrow{wp1} \frac{1}{\mu}$$
, (ii) $E\left(\frac{N_t}{t}\right) \to \frac{1}{\mu}$.

Proof: (i) By the SLLN $\frac{1}{n}T_n = \frac{1}{n}\sum_{i=1}^n Y_i \xrightarrow{wp_1} \mu$ which implies $\lim_{t\to\infty} N_t = \lim_{t\to\infty} \#\{n: T_n \leq t\} = \infty$ wp1 (otherwise $T_n = \infty$ infinitely often which contradicts $\mu < \infty$). Therefore,

$$\lim_{t\to\infty}\frac{T_{N_t}}{N_t}=\lim_{n\to\infty}\frac{T_n}{n}=\mu \text{ wp1}$$

and since

(ii) fact. 🔳

$$\frac{T_{N_t}}{N_t} \le \frac{t}{N_t} \le \frac{T_{N_t+1}}{N_t}$$

this implies $t/N_t \xrightarrow{wp1} \mu$.

Example VI.10 Renewal process from a Markov chain (continued)

- recall $T_n(i) = \min\{k > T_n(i) : X_k = i\} =$ time of *n*-th visit to state *i*

- when the chain is positive recurrent then $\mu = m_i$ mean recurrence time $< \infty$ and recall the unique stationary distribution is given by $\pi_i = 1/m_i$

Proposition VI.32 (Blackwell Renewal Theorem) For a renewal process with $\mu < \infty$ and s.t. Y_2 is non-arithmetic (there isn't $\delta > 0$ s.t. $P(Y_2 \in \{i\delta : i \in \mathbb{Z}\}) = 1$) then $\lim_{t\to\infty} E(N_{t+h} - N_t) = h/\mu$ for any h > 0.

Proof: fact

Corollary VI.33 If h > 0 is s.t. $P(Y_2 < h) = 0$, then $\lim_{t\to\infty} P(\exists n \text{ s.t. } t < T_n \le t + h) = h/\mu$.

Proof: We have

$$P(\exists n \text{ s.t. } t < T_n \le t+h) = P(N_{t+h} - N_t \ge 1) \\ = P(N_{t+h} - N_t = 1) = E(N_{t+h} - N_t)$$

whence the result follows from the proposition. \blacksquare

Michael Evans University of Toronto https://Probability and Stochastic Processes I I - Lec

- suppose at renewal *i* there is a reward (or cost) R_i where R_1, R_2, \ldots are *i.i.d.* and define the *renewal reward process* by

$$R_t = \sum_{i=1}^{N_t} R_i$$
 = total reward up to time t

Proposition VI.34 (Renewal Reward Theorem) For a renewal process with $\mu < \infty$, then $\frac{R_t}{t} \xrightarrow{wp1} \frac{E(R_1)}{\mu}$. Proof: We have

$$rac{\mathsf{R}_t}{t} = rac{1}{t}\sum_{i=1}^{N_t} \mathsf{R}_i = rac{\mathsf{N}_t}{t}\left(rac{1}{\mathsf{N}_t}\sum_{i=1}^{N_t} \mathsf{R}_i
ight)$$

and by the SLLN

$$\lim_{t\to\infty}\frac{1}{N_t}\sum_{i=1}^{N_t}R_i=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^nR_i=E(R_1).$$

Exercise VI.14 Text 4.5.4

Exercise VI.15 Text 4.5.6

Exercise VI.16 Text 4.6.9

Exercise VI.17 Text 4.6.10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >