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V1.3 Continuous time discrete state space processes

- some of the following material comes from Grimmett and Stirzaker
(2001) and Applied Probability by Berestycki and Sousi (2017) (on the
web)

Definition V1.6 A process {X; : t > 0} is a Markov process if for every n
and 0<t; <---<t, Be B! then

P(th € B|Xt1,...,Xt"71) - P(th € B|th71)

and it is time homogeneous if this depends only on t, — t,_1.
- generally the time domain T can be any totally ordered set

- when the state space S is countable we may as well take it to be Z or
INo (S C INg assumed hereafter in this section) and then for each t we
have the (possibly infinitely dimensional) matrix

PO = (p)) = (P(X; = y | Xo = X))
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- then for u > 0, using the MP and TH

seS

= Y PXe=5[X =x)PXeru=y | Xe =5) = Y_ pl¥/ply)
seS seS

- s0, as with Markov chains these are stochastic matrices (rows
nonnegative and sum to 1) and satisfy (i) P(®) = [ (ii) P(t+e) = p(t) p(v)

- a set of matrices that satisfy these properties is known as a semigroup

- so it is immediate that a Poisson process is a continuous time discrete
state space MP
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Definition V1.7 A Markov process {X; : t > 0} is a standard Markov
process if lim;|q pfqt,) = Jy, forall x,y € S where é,, =1 when x = y and

is 0 otherwise (Kronecker delta), so lim; o P(t) = I.

- S0 p£;+€) =Y cs pg)pgf/) — )((;) as e — 0 (by DCT) and P(t) is

continuous in t for a standard MP

- also pﬁg) =1 and so pg() > 0 for all t small enough which implies
pﬁﬁ” > (pg())” > 0 which implies p,(ot() > 0 for all t > 0 which implies
aperiodicity

Example VI.7 Poisson process

) = P(Ne =y | No = 0) = (A)” exp{—At}/y! — 0

when y > 0 and pég) = exp{—At} — 1 so a Poisson process is standard Bl

-thenast — 0, p
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Definition V1.8 The generator matrix G of a standard Markov process
{X; : t >0} has (i,j)-th element for i,j € S

piS't) _ 51,’], B d+p:§'t)

t dt

i = lim
8 =10
t=0
- fact - these right derivatives always exist

- note - (conditions for G to be a generator matrix) g; < 0 and g; > 0
when i # j and

()

t
Z 8ij = lim = |lim
jes jestiot t0 t
. 1-1 " -
= |I[B1 5 = 0 where * holds under conditions, e.g. S finite
t
-s0G1=0
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- why is G called the generator of the process?
Lemma VI.19 If A€ R™*™, then
limy oo (1 +2)7 = Y20 41 = exp(A).
Proof: Let ||A|| be any matrix norm (e.g. Frobenius norm
|A[|? = ¥;; a3) so it satisfies
(i) [IAll = 0 with [|A[[ = 0/iff A= 0 (ii) [|aA|| = [a]||A]|
(iii) [[A+ Bl < [lA[l +[IB]] (iv) [|AB]| < [|A[[||B]|

By the binomial theorem

A\ "o\ AR & n(n—1)---(n—k+1) Ak
(1+3) = L) K

n

k=0 k=0
n Ak
= Y (1-1/n)---(1—(k—=1)/n)=.
Kl
k=0
(e} k ) k o0 k .
Note that || 50 47| < Tio H':‘!l = exp{||Al|} < o0 so Y32 4 exists

finitely.
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For given N and n > N
N
Ak
Ll
_ ||Zk:0[(1—1/n)---(1—(k_1)/
Yhenir(T=1/n)--- (1~ /
1N o[(1—1/n) - (1— j
Ty (U =1/n) (1= (k= 1)/n)A]]
and the first term goes to 0 as n — co while

n

I Y a=1/m (1= (= 1/m

k=N+1
. [Al = ALK

k=N+1

So choose N large to make the second term less than €/2 and n > N to
make the first term less than ¢/2. B
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k
- note - || exp(A)|| < Tio Hi‘!l = exp(||A]|) < o0

Proposition VI.20 If standard Markov process {X; : t > 0} has generator
G and HP(ti” — G|| = 0as t— 0, then

PO — exp(t6) = 1+ L6+ L2 4 Lt
= exp(tG) = TR T T A

Proof: We have

P(t) _ (P(t‘/m))m — (P(t/m))m — (/ + P(t/m) _ /)m

(t/m _\" m
= ([_}_t'ljl) — </+tGm>
m t/m m

and note ||Gp, — G|| — 0 as m — oo. Therefore,
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P — exp(tcm
= (I +£Gm)" —exp(tcm
H( + G—i— G))m—exp tG)l|
(1 + LG)m —exp<rc>+
Y (1 —1/m) - (1 (k—1)/m)5(Gp — G)K(I + £ G)™ K|
<|[|(1+LG)m —exp(tc>||+2f:1%||cm—G\|k||/+ic||m*k

=[(I+5G)" (tG)|| + || + L G||m 66" _,
TP Y i (el

since (I + £G)™ — exp(tG) by Lemma VI.19 and for any & > 0 there
exists mg such that for all m > myg, then ||G, — G||/||l + £ G|| < e so

. || Gm —GH> S
— ] < —ef=e"—-1—0ase—0.
La(ifzal) <La

This proves the result.
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Example V1.8 Poisson process with intensity A

- recall (see Prop. VI.17), as t — 0

pl-(,-t) —e M 1, pl-(itll = At+ o(t),p,g-t) = o(t) otherwise
which implies g;; = —A, gii+1 = A, gij = 0 otherwise so G is bidiagonal
with —A on the main diagonal and A on the first upper diagonal B

Pty
t

- note G = lim;_ so G can be obtained from knowledge of the

transitions P(t)

- given G, how to compute P(t)?

Michael Evans University of Toronto https://Probability and Stochastic Processes | | - Lec



- method 1: truncate the series in Prop. V1.20 after finitely many terms
to approximate P(t)

- method 2: (finite case) let G € R¥*¥ have left eigenvalues and vectors
(A, wj) so w:-G = /\,-w:- and suppose the initial distribution can be
expressed as v = Zf-‘zl ajw/}, then the distribution of X; is given by

_ 2 3
P = vexp(tG) = Za, I+ G+ G+3'G )

k
= ) ai(w —|— wG—|— wG2—1—3,wG3 )

At Ait)2 (M) k _

Il
'm» Iz

Il
—
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- method 3: Kolmogorov's forward equations (under conditions)

dt A0 h lim ;
(E pi(,?(‘skj + giih + o(h))) — pfj_)
- I’:IE = h :%Pf,?gkj
so Al — plg

dt

which is a system of linear differential equations which can be solved
subject to boundary condition P(®) = |
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- method 4: Kolmogorov's backward equations (under conditions)

h
() (c+h) (0 Y pel | -l
d P i Pij " —Pij _ lim \KES
dt  hlo h ~ hlo h
(E (Oik + gikh + O(h))Pl((Z)) - P,(S')
. keS t
= lim p Zkzgg;kpi,}
€
+p(t)
o) L = 6P\
dt

which is a system of linear differential equations which can be solved
subject to boundary condition P(®) = |
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- suppose Xp = x then we can consider H, = sup{t: X, = x for
u € [0,t)} = the holding time at state x, so it is the time of the next
transition to a new state

Proposition VI.20 If {X; : t > 0} is a time homogeneous MP then
P(Hy > t+u| Xo =x,Hx > t) = P(Hx > u| Xo = x)
Proof: We have
P(Hy > t+u| Xo = x, Hx > t)

(X, =xforall ve[0,t+u]| X, =xforall v elot])

(X, = xforall v e[t t+u]|Xe = xforall v elot])
= P(X, =xforall v et t+u]|X; = x) by MP

(X, =xforall ve[0u]|Xp=x)by TH

(HX > u]XO:x).
]

- this result implies that H, has a fixed distribution, given by
P(H, < u|Xo = x) and this distribution has the memoryless property
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- also if we define H; x to be the holding time when X; = x then

P(H;x > u| Xy = x) = P(X¢4+v = x for every v € [0, u] | Xy = x)
= P(X, = x forevery v € [0, u] | Xo = x) by TH
P(HX > U|X0 :X)

and so the distribution of the holding time only depends on the state x

- for a Poisson process with intensity A the distribution of H, is
exponential(A) because of the memoryless feature of the exponential
distribution so it is independent of x

Proposition VI.21 A positive r.v. X has the memoryless property iff it
has an exponential distribution.

Proof: We already proved in Example V1.6 that the exponential
distribution has the memoryless property. So consider the converse which
implies for x,y > 0

Michael Evans University of Toronto https://Probability and Stochastic Processes | | - Lec



Gx+y) = PX>x+y)=PX>x+y|X>x)P(X >x)
= P(X>y)P(X>x)=G(x)G(y).

As P(X >0)=1,3 nst. P(X>1/n) > 0sowith A = —log G(1)

P () o (2)o(5) oo (2

so G () = e~ Similarly, G(k) = e ** for any k € N and for any
positive rational p/q then G(p/q) = GP(1/q) = e~ (P/9)*_Since the cdf
of X is right continuous this implies G(x,) | G(x) for any rational
sequence x, | x which implies G(x) = e ™. B

- note - Prop VI.21 implies that H, ~ exponential(Ay) but it does not say
that these have constant rate A
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- for a standard Markov chain {X; : t > 0} define jump times Jy, J1, J, ...
by o =0and forn >1,J, =inf{t > Jo_1: Xe X, _,}

Proposition V1.22 Under conditions, a standard Markov chain
{X; :t >0} is equivalent to an initial distribution, as given by the
distribution of Xj, a set of independent holding times Hy, Hi, Hz, . ..
where H; ~ exponential(—g;;) and a jump Markov chain {X, : n € No}
with Xy = X, transition probabilities

pj = P(Xi=j|Xo=1) = —gj/gi
and X; = X, when J, < t < Jpy1.
- this gives a method for simulating the process

1. generate Xp according to the initial distribution and suppose Xy = i1

2. generate H; ~ exponential(—g;;,) and X; ~ p;,; for j € S and
suppose X1 = i

3. generate H;, ~ exponential(—g;,;,) and Xo ~ p,; for j € S and
suppose X1 = i3

etc.

Michael Evans University of Toronto https://Probability and Stochastic Processes | | - Lec



Exercise VI.11 Suppose S = {1,2,3},A; =3, =2,A3 =4 and

Generate this process for 20 steps.
Example V1.9 Simple Birth and Death process
- suppose Xp =1

- for a pure birth process suppose holding times By, By, ... are stat. ind.
and B; ~ exponential(A;) is the holding time when in state / a transition
is to state / + 1 (so pji+1 = 1 when i > 1) so J; = By + - - - + B; and note
this is a Poisson process of intensity A when A; = A for every i and note a
natural choice might be A; = /A for some A > 0

- a process is called explosive if there can be infinitely many jumps
(arrivals) in a finite interval which occurs for a birth process whenever the
explosion time { = Y ;- q Bi < o0
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Lemma V1.23 (i) If Y72, 1/A; < oo, then P({ < c0) = 1. (ii) If
Y201/Aj = oo, then P({ < o0) =0.

Proof: (i) E(X20 B/) "<’ Y E(B)) = X2, 1/A; < oo which implies

P(X2, B < o) = 1.

(i)
> - MCT 1
E <exp{— ZB,}) =E (Hexp{—B,}) = [[E(exp {—Bi})
i=0 i=0 i=0
= ﬁmg (-1) = IO—OI Ai = 0 with mg. = mgf of B;
i1 =0 1t A '
which implies P (} ;o) Bi = o0) =1
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- a simple birth process only makes transitions i — i + 1 but a birth and
death process can also make the transition i — i — 1 where a death occurs
according to stat. ind. holding times Dy, Dy, ... with D; ~
exponential(y;) and the B; and D; processes are independent

- P(H,‘ > t) = P(min(B,-, D,') > t) = P(B,‘ > t)P(D,' > t) =
exp (—(Aj +p;)) so Hi ~ exponential(A; + ;)

- Pii+1 = P(B,' < D,') = fooo(l — ef/\ixf>‘uie*14ix dx =
L—p;/(Ni+wy) = Ai/ (A + ;) so pii1 = p/ (Ai + ;)

- when Ag = 0 concern is with the probability of extinction
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Proposition V1.24 Suppose P is a transition matrix for a Markov chain
{X,:n€Ng} and {N;:t >0} is an independent Poisson process of
intensity A. The process {X;: t > 0} given by X; = Xy, has generator
G=AP—-1).

Proof: We have

) = P(Xn, =j|So=1)= Y P(Ne=k X=X =)
k=0
ad I N i ad )Ltk A (k
= ZP Xk:j|X0:I):Z(k'> e’\tp,-(j)
k=0 k=0 :

1
- kg P Bll) 1 o(e) = e oy + Ate ™Mby + o)
= (L= At)dj + Athj + o(t) = 6 + At(pyj — 6;) + o(t)

Therefore,

o

(t) R
Pij — dij L /\t(p,'j — 5,’1') + O(t) aal )
8ij = |'l"8 A = It'lrg n = A(pij — 55).
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- what about stationary distributions and convergence?

- for a stationary distribution 77 we want 7TP(t) = 7 for all t and so we
must have 7Pt — 7P(t) = 0 and so by Kolmogorov's forward
equations

(t+h) _ p(t)
0 — 1im ~(P )
hl0 h
and so 77 is a solution of the linear equations G = 0

= PG = G

Definition V1.9 The probability distribution 7t is stationary for the MP
{X¢ : t > 0} with generator G whenever 7G = 0.

Definition VI1.10 The MP {X; : t > 0} with generator G is reversible wrt
probability distribution 7 if 77;g;; = m;gji forall i,j € S.
Proposition V1.25 If the MP {X; : t > 0} with generator G is reversible
wrt probability distribution 7T, then 7T is stationary.
Proof: We have

Y kg = Y Tigk =TT ), gk =0

keS keS keS
since the rows of G sum to 0. W
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- the MP {X; : t > 0} is irreducible if the jump chain is irreducible (i — j
for alli,j € S) and recall it is always aperiodic

Proposition V1.26 If the standard MP {X; : t > 0} is irreducible with
stationary distribution 7t, then (under conditions) lim;_« pfj.) = 7;.

Proof: Since 7 is stationary 71G = 0 which implies 71GP(*) = 0 and by
Kolmogorov's backward equations this implies

d*t Pt d+p)
dt n

=nGPY =0

so tP(t) is constant in t. Since lim o P = | (standard Markov process)
this implies that the constant value of TP(®) is

lim¢ o TP = mlim; o P = 7l = 7.

|

Exercise VI.12 Text 4.4.4
Exercise VI1.13 Text 4.4.14
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