Probability and Stochastic Processes I I - Lecture 6c

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

Michael Evans University of Toronto https://Probability and Stochastic Processes I I - Lec

2024 1 / 23

VI.3 Continuous time discrete state space processes

- some of the following material comes from Grimmett and Stirzaker (2001) and Applied Probability by Berestycki and Sousi (2017) (on the web)

Definition VI.6 A process $\{X_t : t \ge 0\}$ is a *Markov process* if for every *n* and $0 \le t_1 \le \cdots \le t_n$, $B \in B^1$ then

$$P(X_{t_n} \in B \mid X_{t_1}, \dots, X_{t_{n-1}}) = P(X_{t_n} \in B \mid X_{t_{n-1}})$$

and it is *time homogeneous* if this depends only on $t_n - t_{n-1}$.

- generally the time domain T can be any totally ordered set

- when the state space S is countable we may as well take it to be \mathbb{Z} or \mathbb{N}_0 ($S \subset \mathbb{N}_0$ assumed hereafter in this section) and then for each t we have the (possibly infinitely dimensional) matrix

$$P^{(t)} = (p_{xy}^{(t)}) = (P(X_t = y \mid X_0 = x))$$

- then for $u \ge 0$, using the MP and TH

$$p_{xy}^{(t+u)} = P(X_{t+u} = y \mid X_0 = x) = \sum_{s \in S} P(X_{t+u} = y, X_t = s \mid X_0 = x)$$
$$= \sum_{s \in S} P(X_t = s \mid X_0 = x) P(X_{t+u} = y \mid X_t = s) = \sum_{s \in S} p_{xs}^{(t)} p_{sy}^{(u)}$$

- so, as with Markov chains these are stochastic matrices (rows nonnegative and sum to 1) and satisfy (i) $P^{(0)} = I$ (ii) $P^{(t+u)} = P^{(t)}P^{(u)}$

- a set of matrices that satisfy these properties is known as a semigroup

- so it is immediate that a Poisson process is a continuous time discrete state space MP

Definition VI.7 A Markov process $\{X_t : t \ge 0\}$ is a standard Markov process if $\lim_{t \downarrow 0} p_{xy}^{(t)} = \delta_{xy}$ for all $x, y \in S$ where $\delta_{xy} = 1$ when x = y and is 0 otherwise (Kronecker delta), so $\lim_{t \downarrow 0} P^{(t)} = I$.

- so $p_{xy}^{(t+\varepsilon)} = \sum_{s \in S} p_{xs}^{(t)} p_{sy}^{(\varepsilon)} \to p_{xy}^{(t)}$ as $\varepsilon \to 0$ (by DCT) and $P^{(t)}$ is continuous in t for a standard MP

- also $p_{xx}^{(0)} = 1$ and so $p_{xx}^{(t)} > 0$ for all t small enough which implies $p_{xx}^{(nt)} \ge (p_{xx}^{(t)})^n > 0$ which implies $p_{xx}^{(t)} > 0$ for all $t \ge 0$ which implies aperiodicity

Example VI.7 Poisson process

- then as $t \to 0$, $p_{0y}^{(t)} = P(N_t = y | N_0 = 0) = (\lambda t)^y \exp\{-\lambda t\} / y! \to 0$ when y > 0 and $p_{00}^{(t)} = \exp\{-\lambda t\} \to 1$ so a Poisson process is standard **Definition VI.8** The generator matrix G of a standard Markov process $\{X_t : t \ge 0\}$ has (i, j)-th element for $i, j \in S$

$$g_{ij} = \lim_{t\downarrow 0} rac{p_{ij}^{(t)} - \delta_{i,j}}{t} = \left. rac{d^+ p_{ij}^{(t)}}{dt}
ight|_{t=0}$$

- fact - these right derivatives always exist

- note - (conditions for G to be a generator matrix) $g_{ii} \leq 0$ and $g_{ij} \geq 0$ when $i \neq j$ and

$$\sum_{j \in S} g_{ij} = \sum_{j \in S} \lim_{t \downarrow 0} \frac{p_{ij}^{(t)} - \delta_{i,j}}{t} \stackrel{*}{=} \lim_{t \downarrow 0} \frac{\sum_{j \in S} p_{ij}^{(t)} - \sum_{j \in S} \delta_{ij}}{t}$$
$$= \lim_{t \downarrow 0} \frac{1 - 1}{t} = 0 \text{ where * holds under conditions, e.g. } S \text{ finite}$$

- so $G\mathbf{1}=\mathbf{0}$

- why is G called the generator of the process?

Lemma VI.19 If $A \in \mathbb{R}^{m \times m}$, then $\lim_{n \to \infty} (I + \frac{A}{n})^n = \sum_{k=0}^{\infty} \frac{A^k}{k!} \stackrel{def}{=} \exp(A).$ Proof: Let ||A|| be any matrix norm (e.g. Frobenius norm $||A||^2 = \sum_{i,j} a_{ij}^2$) so it satisfies (i) ||A|| > 0 with ||A|| = 0 iff A = 0 (ii) ||aA|| = |a|||A||

(iii) $||A + B|| \leq ||A|| + ||B||$ (iv) $||AB|| \leq ||A|| ||B||$

By the binomial theorem

$$\left(I + \frac{A}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{A^k}{n^k} I^{n-k} = \sum_{k=0}^n \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{A^k}{k!}$$
$$= \sum_{k=0}^n (1 - 1/n) \cdots (1 - (k-1)/n) \frac{A^k}{k!}.$$

Note that $||\sum_{k=0}^{\infty} \frac{A^k}{k!}|| \leq \sum_{k=0}^{\infty} \frac{||A||^k}{k!} = \exp\{||A||\} < \infty$ so $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ exists finitely.

Michael Evans University of Toronto https://Probability and Stochastic Processes I I - Lec

2024 6 / 23

For given N and n > N

$$\begin{aligned} &||(I + \frac{A}{n})^n - \sum_{k=0}^N \frac{A^k}{k!}|| \\ &= \quad \frac{||\sum_{k=0}^N [(1 - 1/n) \cdots (1 - (k-1)/n) - 1] \frac{A^k}{k!} - \sum_{k=N+1}^n (1 - 1/n) \cdots (1 - (k-1)/n) \frac{A^k}{k!}|| \\ &\leq \quad \frac{||\sum_{k=0}^N [(1 - 1/n) \cdots (1 - (k-1)/n) - 1] \frac{A^k}{k!}|| + }{||\sum_{k=N+1}^n (1 - 1/n) \cdots (1 - (k-1)/n) \frac{A^k}{k!}|| \end{aligned}$$

and the first term goes to 0 as $n \rightarrow \infty$ while

$$||\sum_{k=N+1}^{n} (1-1/n) \cdots (1-(k-1)/n) \frac{A^{k}}{k!}||$$

$$\leq \sum_{k=N+1}^{n} \frac{||A||^{k}}{k!} \leq \sum_{k=N+1}^{\infty} \frac{||A||^{k}}{k!} \to 0 \text{ as } N \to \infty.$$

So choose *N* large to make the second term less than $\epsilon/2$ and n > N to make the first term less than $\epsilon/2$.

Michael Evans University of Toronto https://Probability and Stochastic Processes I I - Lec

- note -
$$||\exp(A)|| \leq \sum_{k=0}^{\infty} rac{||A||^k}{k!} = \exp(||A||) < \infty$$

Proposition VI.20 If standard Markov process $\{X_t : t \ge 0\}$ has generator G and $||\frac{P^{(t)}-l}{t} - G|| \to 0$ as $t \to 0$, then

$$P^{(t)} = \exp(tG) = I + \frac{t}{1!}G + \frac{t^2}{2!}G^2 + \frac{t^3}{3!}G^3 + \cdots$$

Proof: We have

$$P^{(t)} = (P^{(t/m)})^m = (P^{(t/m)})^m = (I + P^{(t/m)} - I)^m$$
$$= \left(I + \frac{t}{m} \frac{P^{(t/m)} - I}{t/m}\right)^m = \left(I + \frac{t}{m} G_m\right)^m$$

and note $||G_m - G|| \rightarrow 0$ as $m \rightarrow \infty$. Therefore,

$$\begin{split} ||P^{(t)} - \exp(tG)|| \\ &= || \left(I + \frac{t}{m}G_{m}\right)^{m} - \exp(tG)|| \\ &= || \left(I + \frac{t}{m}G + \frac{t}{m}(G_{m} - G)\right)^{m} - \exp(tG)|| \\ &= ||(I + \frac{t}{m}G)^{m} - \exp(tG) + \\ \sum_{k=1}^{m} (1 - 1/m) \cdots (1 - (k - 1)/m) \frac{t^{k}}{k!} (G_{m} - G)^{k} (I + \frac{t}{m}G)^{m-k}|| \\ &\leq ||(I + \frac{t}{m}G)^{m} - \exp(tG)|| + \sum_{k=1}^{m} \frac{t^{k}}{k!} ||G_{m} - G||^{k} ||I + \frac{t}{m}G||^{m-k} \\ &= ||(I + \frac{t}{m}G)^{m} - \exp(tG)|| + ||I + \frac{t}{m}G||^{m} \sum_{k=1}^{m} \frac{t^{k}}{k!} \left(\frac{||G_{m} - G||}{||I + \frac{t}{m}G||}\right)^{k} \to 0 \\ &\text{since } (I + \frac{t}{m}G)^{m} \to \exp(tG) \text{ by Lemma VI.19 and for any } \varepsilon > 0 \text{ there} \\ &\text{exists } m_{0} \text{ such that for all } m \ge m_{0}, \text{ then } ||G_{m} - G||/||I + \frac{t}{m}G|| \le \varepsilon \text{ so} \end{split}$$

$$\sum_{k=1}^m rac{t^k}{k!} \left(rac{||\mathcal{G}_m - \mathcal{G}||}{||I + rac{t}{m}\mathcal{G}||}
ight)^k \leq \sum_{k=1}^\infty rac{t^k}{k!} arepsilon^k = e^arepsilon - 1 o 0 ext{ as } arepsilon o 0.$$

This proves the result.

イロト イ団ト イヨト イヨト

Example VI.8 Poisson process with intensity λ

- recall (see Prop. VI.17), as $t \rightarrow 0$

$$p_{ii}^{(t)}=e^{-\lambda t}
ightarrow 1$$
 , $p_{ii+1}^{(t)}=\lambda t+o(t)$, $p_{ij}^{(t)}=o(t)$ otherwise

which implies $g_{i,i} = -\lambda$, $g_{i,i+1} = \lambda$, $g_{i,j} = 0$ otherwise so G is bidiagonal with $-\lambda$ on the main diagonal and λ on the first upper diagonal

- note $G = \lim_{t \to 0} \frac{P^{(t)} - I}{t}$ so G can be obtained from knowledge of the transitions $P^{(t)}$

- given G, how to compute $P^{(t)}$?

- **method 1**: truncate the series in Prop. VI.20 after finitely many terms to approximate $P^{(t)}$

- method 2: (finite case) let $G \in \mathbb{R}^{k \times k}$ have left eigenvalues and vectors $(\lambda_i, \mathbf{w}_i)$ so $\mathbf{w}'_i G = \lambda_i \mathbf{w}'_i$ and suppose the initial distribution can be expressed as $v = \sum_{i=1}^{k} a_i \mathbf{w}'_i$, then the distribution of X_t is given by

$$vP^{(t)} = v \exp(tG) = \sum_{i=1}^{k} a_i \mathbf{w}'_i (I + \frac{t}{1!}G + \frac{t^2}{2!}G^2 + \frac{t^3}{3!}G^3 + \cdots)$$

= $\sum_{i=1}^{k} a_i (\mathbf{w}'_i + \frac{t}{1!}\mathbf{w}'_i G + \frac{t^2}{2!}\mathbf{w}'_i G^2 + \frac{t^3}{3!}\mathbf{w}'_i G^3 + \cdots)$
= $\sum_{i=1}^{k} a_i \mathbf{w}'_i (1 + \frac{\lambda_i t}{1!} + \frac{(\lambda_i t)^2}{2!} + \frac{(\lambda_i t)^3}{3!} + \cdots) = \sum_{i=1}^{k} a_i e^{\lambda_i t} \mathbf{w}'_i$

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lec

- method 3: Kolmogorov's forward equations (under conditions)

$$\frac{d^{+}p_{i,j}^{(t)}}{dt} = \lim_{h \downarrow 0} \frac{p_{i,j}^{(t+h)} - p_{i,j}^{(t)}}{h} = \lim_{h \downarrow 0} \frac{\left(\sum_{k \in S} p_{i,k}^{(t)} p_{k,j}^{(h)}\right) - p_{i,j}^{(t)}}{h}$$
$$= \lim_{h \downarrow 0} \frac{\left(\sum_{k \in S} p_{i,k}^{(t)} (\delta_{kj} + g_{kj}h + o(h))\right) - p_{i,j}^{(t)}}{h} = \sum_{k \in S} p_{i,k}^{(t)} g_{kj}$$
so $\frac{d^{+}P^{(t)}}{dt} = P^{(t)}G$

which is a system of linear differential equations which can be solved subject to boundary condition $P^{(0)} = I$

- method 4: Kolmogorov's backward equations (under conditions)

$$\frac{d^{+}p_{i,j}^{(t)}}{dt} = \lim_{h \downarrow 0} \frac{p_{i,j}^{(t+h)} - p_{i,j}^{(t)}}{h} = \lim_{h \downarrow 0} \frac{\left(\sum_{k \in S} p_{i,k}^{(h)} p_{k,j}^{(t)}\right) - p_{i,j}^{(t)}}{h}$$
$$= \lim_{h \downarrow 0} \frac{\left(\sum_{k \in S} (\delta_{ik} + g_{ik} h + o(h)) p_{k,j}^{(t)}\right) - p_{i,j}^{(t)}}{h} = \sum_{k \in S} g_{ik} p_{k,j}^{(t)}$$
so $\frac{d^{+}P^{(t)}}{dt} = GP^{(t)}$

which is a system of linear differential equations which can be solved subject to boundary condition $P^{(0)} = I$

- suppose $X_0 = x$ then we can consider $H_x = \sup\{t : X_u = x \text{ for } u \in [0, t)\}$ = the *holding time at state x*, so it is the time of the next transition to a new state

Proposition VI.20 If $\{X_t : t \ge 0\}$ is a time homogeneous MP then

$$P(H_x > t + u \mid X_0 = x, H_x > t) = P(H_x > u \mid X_0 = x)$$

Proof: We have

$$P(H_x > t + u | X_0 = x, H_x > t)$$

$$= P(X_v = x \text{ for all } v \in [0, t + u] | X_v = x \text{ for all } v \in [0, t])$$

$$= P(X_v = x \text{ for all } v \in [t, t + u] | X_t = x \text{ for all } v \in [0, t])$$

$$= P(X_v = x \text{ for all } v \in [t, t + u] | X_t = x) \text{ by MP}$$

$$= P(X_v = x \text{ for all } v \in [0, u] | X_0 = x) \text{ by TH}$$

$$= P(H_x > u | X_0 = x).$$

- this result implies that H_x has a fixed distribution, given by $P(H_x \le u \mid X_0 = x)$ and this distribution has the *memoryless property*

- also if we define $H_{t,x}$ to be the holding time when $X_t = x$ then

$$P(H_{t,x} > u | X_t = x) = P(X_{t+v} = x \text{ for every } v \in [0, u] | X_t = x)$$

= $P(X_v = x \text{ for every } v \in [0, u] | X_0 = x) \text{ by TH}$
= $P(H_x > u | X_0 = x)$

and so the distribution of the holding time only depends on the state x

- for a Poisson process with intensity λ the distribution of H_x is exponential(λ) because of the memoryless feature of the exponential distribution so it is independent of x

Proposition VI.21 A positive r.v. X has the memoryless property iff it has an exponential distribution.

Proof: We already proved in Example VI.6 that the exponential distribution has the memoryless property. So consider the converse which implies for $x, y \ge 0$

$$G(x+y) = P(X > x+y) = P(X > x+y | X > x)P(X > x)$$

= $P(X > y)P(X > x) = G(x)G(y).$

As P(X > 0) = 1, $\exists n \text{ s.t. } P(X > 1/n) > 0$ so with $\lambda = -\log G(1)$

$$e^{-\lambda} = G(1) = G\left(\frac{1}{n} + \frac{n-1}{n}\right) = G\left(\frac{1}{n}\right)G\left(\frac{n-1}{n}\right) = \cdots = G^n\left(\frac{1}{n}\right)$$

so $G\left(\frac{1}{n}\right) = e^{-\lambda/n}$. Similarly, $G(k) = e^{-k\lambda}$ for any $k \in \mathbb{N}$ and for any positive rational p/q then $G(p/q) = G^p(1/q) = e^{-(p/q)\lambda}$. Since the cdf of X is right continuous this implies $G(x_n) \downarrow G(x)$ for any rational sequence $x_n \downarrow x$ which implies $G(x) = e^{-\lambda x}$.

- note - Prop VI.21 implies that $H_x \sim \text{exponential}(\lambda_x)$ but it does not say that these have constant rate λ

- for a standard Markov chain $\{X_t : t \ge 0\}$ define jump times J_0, J_1, J_2, \ldots by $J_0 = 0$ and for $n \ge 1$, $J_n = \inf\{t \ge J_{n-1} : X_t \ne X_{J_{n-1}}\}$

Proposition VI.22 Under conditions, a standard Markov chain $\{X_t : t \ge 0\}$ is equivalent to an initial distribution, as given by the distribution of X_0 , a set of independent *holding times* H_0, H_1, H_2, \ldots where $H_i \sim \text{exponential}(-g_{ii})$ and a *jump Markov chain* $\{\hat{X}_n : n \in \mathbb{N}_0\}$ with $\hat{X}_0 = X_0$, transition probabilities

$$\hat{p}_{ij} = P(\hat{X}_1 = j \mid \hat{X}_0 = i) = -g_{ij}/g_{ii}$$

and $X_t = \hat{X}_n$ when $J_n \leq t < J_{n+1}$.

- this gives a method for simulating the process

- 1. generate X_0 according to the initial distribution and suppose $X_0 = i_1$
- 2. generate $H_{i_1} \sim \text{exponential}(-g_{i_1i_1})$ and $\hat{X}_1 \sim \hat{p}_{i_1j}$ for $j \in S$ and suppose $\hat{X}_1 = i_2$
- 3. generate $H_{i_2} \sim \text{exponential}(-g_{i_1i_1})$ and $\hat{X}_2 \sim \hat{p}_{i_2j}$ for $j \in S$ and suppose $\hat{X}_1 = i_3$

etc.

Exercise VI.11 Suppose $S = \{1, 2, 3\}$, $\lambda_1 = 3$, $\lambda_2 = 2$, $\lambda_3 = 4$ and

$$G=\left(egin{array}{ccc} -3 & 3 & 0 \ 1 & -2 & 1 \ 0 & 4 & -4 \end{array}
ight).$$

Generate this process for 20 steps.

Example VI.9 Simple Birth and Death process

- suppose $X_0 = 1$

- for a pure birth process suppose holding times B_1, B_2, \ldots are stat. ind. and $B_i \sim \text{exponential}(\lambda_i)$ is the holding time when in state *i* a transition is to state i + 1 (so $\hat{p}_{ii+1} = 1$ when $i \ge 1$) so $J_i = B_1 + \cdots + B_i$ and note this is a Poisson process of intensity λ when $\lambda_i = \lambda$ for every *i* and note a natural choice might be $\lambda_i = i\lambda$ for some $\lambda > 0$

- a process is called *explosive* if there can be infinitely many jumps (arrivals) in a finite interval which occurs for a birth process whenever the *explosion time* $\zeta = \sum_{i=0}^{\infty} B_i < \infty$

Lemma VI.23 (i) If $\sum_{i=0}^{\infty} 1/\lambda_i < \infty$, then $P(\zeta < \infty) = 1$. (ii) If $\sum_{i=0}^{\infty} 1/\lambda_i = \infty$, then $P(\zeta < \infty) = 0$.

Proof: (i) $E(\sum_{i=0}^{\infty} B_i) \stackrel{MCT}{=} \sum_{i=0}^{\infty} E(B_i) = \sum_{i=0}^{\infty} 1/\lambda_i < \infty$ which implies $P(\sum_{i=0}^{\infty} B_i < \infty) = 1$.

$$E\left(\exp\left\{-\sum_{i=0}^{\infty}B_i\right\}\right) = E\left(\prod_{i=0}^{\infty}\exp\left\{-B_i\right\}\right) \stackrel{MCT}{=} \prod_{i=0}^{\infty}E(\exp\left\{-B_i\right\})$$
$$= \prod_{i=1}^{\infty}m_{B_i}(-1) = \prod_{i=0}^{\infty}\frac{\lambda_i}{1+\lambda_i} = 0 \text{ with } m_{B_i} = \text{ mgf of } B_i$$

which implies $P(\sum_{i=0}^{\infty} B_i = \infty) = 1$.

- a simple birth process only makes transitions $i \rightarrow i + 1$ but a birth and death process can also make the transition $i \rightarrow i - 1$ where a death occurs according to stat. ind. holding times D_1, D_2, \ldots with $D_i \sim$ exponential(μ_i) and the B_i and D_i processes are independent

-
$$P(H_i > t) = P(\min(B_i, D_i) > t) = P(B_i > t)P(D_i > t) = \exp(-(\lambda_i + \mu_i))$$
 so $H_i \sim \text{exponential}(\lambda_i + \mu_i)$

$$-p_{i,i+1} = P(B_i < D_i) = \int_0^\infty (1 - e^{-\lambda_i x -}) \mu_i e^{-\mu_i x} dx = 1 - \mu_i / (\lambda_i + \mu_i) = \lambda_i / (\lambda_i + \mu_i)$$
 so $p_{i,i-1} = \mu_i / (\lambda_i + \mu_i)$

- when $\lambda_0=0$ concern is with the probability of extinction

Proposition VI.24 Suppose \hat{P} is a transition matrix for a Markov chain $\{\hat{X}_n : n \in \mathbb{N}_0\}$ and $\{N_t : t \ge 0\}$ is an independent Poisson process of intensity λ . The process $\{X_t : t \ge 0\}$ given by $X_t = \hat{X}_{N_t}$ has generator $G = \lambda(\hat{P} - I)$.

Proof: We have

ľ

$$\begin{aligned} p_{i,j}^{(t)} &= P(\hat{X}_{N_t} = j \mid \hat{X}_0 = i) = \sum_{k=0}^{\infty} P(N_t = k, \hat{X}_k = j \mid \hat{X}_0 = i) \\ &= \sum_{k=0}^{\infty} P(N_t = k) P(\hat{X}_k = j \mid \hat{X}_0 = i) = \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} e^{-\lambda t} \hat{p}_{ij}^{(k)} \\ &= \sum_{k=0}^{1} \frac{(\lambda t)^k}{k!} e^{-\lambda t} \hat{p}_{ij}^{(k)} + o(t) = e^{-\lambda t} \delta_{ij} + \lambda t e^{-\lambda t} \hat{p}_{ij} + o(t) \\ &= (1 - \lambda t) \delta_{ij} + \lambda t \hat{p}_{ij} + o(t) = \delta_{ij} + \lambda t (\hat{p}_{ij} - \delta_{ij}) + o(t) \end{aligned}$$

Therefore,

$$g_{i,j} = \lim_{t\downarrow 0} \frac{p_{i,j}^{(t)} - \delta_{i,j}}{t} = \lim_{t\downarrow 0} \frac{\lambda t(\hat{p}_{ij} - \delta_{ij}) + o(t)}{t} = \lambda(\hat{p}_{ij} - \delta_{ij}).$$

Michael Evans University of Toronto https://Probability and Stochastic Processes I I - Lec

2024 21 / 23

- what about stationary distributions and convergence?

- for a stationary distribution π we want $\pi P^{(t)} = \pi$ for all t and so we must have $\pi P^{(t+h)} - \pi P^{(t)} = 0$ and so by Kolmogorov's forward equations

$$0 = \lim_{h \downarrow 0} \frac{\pi(P^{(t+h)} - P^{(t)})}{h} = \pi P^{(t)} G = \pi G$$

and so π is a solution of the linear equations $\pi G = 0$

Definition VI.9 The probability distribution π is *stationary* for the MP $\{X_t : t \ge 0\}$ with generator G whenever $\pi G = 0$.

Definition VI.10 The MP $\{X_t : t \ge 0\}$ with generator G is *reversible* wrt probability distribution π if $\pi_i g_{ij} = \pi_j g_{ji}$ for all $i, j \in S$.

Proposition VI.25 If the MP $\{X_t : t \ge 0\}$ with generator G is reversible wrt probability distribution π , then π is stationary.

Proof: We have

$$\sum_{k \in \mathcal{S}} \pi_k g_{kj} = \sum_{k \in \mathcal{S}} \pi_j g_{jk} = \pi_j \sum_{k \in \mathcal{S}} g_{jk} = 0$$

since the rows of G sum to 0.

Michael Evans University of Toronto https://Probability and Stochastic Processes I I - Lec

- the MP $\{X_t : t \ge 0\}$ is irreducible if the jump chain is irreducible $(i \rightarrow j$ for all $i, j \in S$) and recall it is always aperiodic

Proposition VI.26 If the standard MP $\{X_t : t \ge 0\}$ is irreducible with stationary distribution π , then (under conditions) $\lim_{t\to\infty} p_{i,j}^{(t)} = \pi_j$.

Proof: Since π is stationary $\pi G = 0$ which implies $\pi GP^{(t)} = 0$ and by Kolmogorov's backward equations this implies

$$\frac{d^{+}\pi P^{(t)}}{dt} = \pi \frac{d^{+}P^{(t)}}{dt} = \pi G P^{(t)} = 0$$

so $\pi P^{(t)}$ is constant in t. Since $\lim_{t\downarrow 0} P^{(t)} = I$ (standard Markov process) this implies that the constant value of $\pi P^{(t)}$ is $\lim_{t\downarrow 0} \pi P^{(t)} = \pi \lim_{t\downarrow 0} P^{(t)} = \pi I = \pi$.

Exercise VI.12 Text 4.4.4

Exercise VI.13 Text 4.4.14