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VI.3 Continuous time discrete state space processes

- some of the following material comes from Grimmett and Stirzaker
(2001) and Applied Probability by Berestycki and Sousi (2017) (on the
web)

De�nition VI.6 A process fXt : t � 0g is a Markov process if for every n
and 0 � t1 � � � � � tn, B 2 B1 then

P(Xtn 2 B jXt1 , . . . ,Xtn�1) = P(Xtn 2 B jXtn�1)

and it is time homogeneous if this depends only on tn � tn�1.
- generally the time domain T can be any totally ordered set

- when the state space S is countable we may as well take it to be Z or
N0 (S � N0 assumed hereafter in this section) and then for each t we
have the (possibly in�nitely dimensional) matrix

P (t) = (p(t)xy ) = (P(Xt = y jX0 = x))
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- then for u � 0, using the MP and TH

p(t+u)xy = P(Xt+u = y jX0 = x) = ∑
s2S

P(Xt+u = y ,Xt = s jX0 = x)

= ∑
s2S

P(Xt = s jX0 = x)P(Xt+u = y jXt = s) = ∑
s2S

p(t)xs p
(u)
sy

- so, as with Markov chains these are stochastic matrices (rows
nonnegative and sum to 1) and satisfy (i) P (0) = I (ii) P (t+u) = P (t)P (u)

- a set of matrices that satisfy these properties is known as a semigroup

- so it is immediate that a Poisson process is a continuous time discrete
state space MP
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De�nition VI.7 A Markov process fXt : t � 0g is a standard Markov
process if limt#0 p

(t)
xy = δxy for all x , y 2 S where δxy = 1 when x = y and

is 0 otherwise (Kronecker delta), so limt#0 P (t) = I .

- so p(t+ε)
xy = ∑s2S p

(t)
xs p

(ε)
sy ! p(t)xy as ε ! 0 (by DCT) and P (t) is

continuous in t for a standard MP

- also p(0)xx = 1 and so p
(t)
xx > 0 for all t small enough which implies

p(nt)xx � (p(t)xx )n > 0 which implies p(t)xx > 0 for all t � 0 which implies
aperiodicity

Example VI.7 Poisson process

- then as t ! 0, p(t)0y = P (Nt = y jN0 = 0) = (λt)
y expf�λtg/y ! ! 0

when y > 0 and p(t)00 = expf�λtg ! 1 so a Poisson process is standard �
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De�nition VI.8 The generator matrix G of a standard Markov process
fXt : t � 0g has (i , j)-th element for i , j 2 S

gij = lim
t#0

p(t)ij � δi ,j

t
=
d+p(t)ij
dt

������
t=0

.

- fact - these right derivatives always exist

- note - (conditions for G to be a generator matrix) gii � 0 and gij � 0
when i 6= j and

∑
j2S

gij = ∑
j2S

lim
t#0

p(t)ij � δi ,j

t
�
= lim

t#0

∑j2S p
(t)
ij �∑j2S δij

t

= lim
t#0

1� 1
t

= 0 where * holds under conditions, e.g. S �nite

- so G1 = 0
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- why is G called the generator of the process?

Lemma VI.19 If A 2 Rm�m , then
limn!∞(I + A

n )
n = ∑∞

k=0
Ak
k !

def
= exp(A).

Proof: Let jjAjj be any matrix norm (e.g. Frobenius norm
jjAjj2 = ∑i ,j a

2
ij ) so it satis�es

(i) jjAjj � 0 with jjAjj = 0 i¤ A = 0 (ii) jjaAjj = jajjjAjj
(iii) jjA+ B jj � jjAjj+ jjB jj (iv) jjAB jj � jjAjj jjB jj

By the binomial theorem�
I +

A
n

�n
=

n

∑
k=0

�
n
k

�
Ak

nk
I n�k =

n

∑
k=0

n(n� 1) � � � (n� k + 1)
nk

Ak

k !

=
n

∑
k=0

(1� 1/n) � � � (1� (k � 1)/n)A
k

k !
.

Note that jj∑∞
k=0

Ak
k ! jj � ∑∞

k=0
jjAjjk
k ! = expfjjAjjg < ∞ so ∑∞

k=0
Ak
k ! exists

�nitely.
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For given N and n > N

jj(I + A
n
)n �

N

∑
k=0

Ak

k !
jj

=
jj∑N

k=0[(1� 1/n) � � � (1� (k � 1)/n)� 1]Akk ! �
∑n
k=N+1(1� 1/n) � � � (1� (k � 1)/n)Akk ! jj

� jj∑N
k=0[(1� 1/n) � � � (1� (k � 1)/n)� 1]Akk ! jj+

jj∑n
k=N+1(1� 1/n) � � � (1� (k � 1)/n)Akk ! jj

and the �rst term goes to 0 as n! ∞ while

jj
n

∑
k=N+1

(1� 1/n) � � � (1� (k � 1)/n)A
k

k !
jj

�
n

∑
k=N+1

jjAjjk
k !

�
∞

∑
k=N+1

jjAjjk
k !

! 0 as N ! ∞.

So choose N large to make the second term less than ε/2 and n > N to
make the �rst term less than ε/2. �
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- note - jj exp(A)jj � ∑∞
k=0

jjAjjk
k ! = exp(jjAjj) < ∞

Proposition VI.20 If standard Markov process fXt : t � 0g has generator
G and jjP (t)�It � G jj ! 0 as t ! 0, then

P (t) = exp(tG ) = I +
t
1!
G +

t2

2!
G 2 +

t3

3!
G 3 + � � �

Proof: We have

P (t) = (P (t/m))m = (P (t/m))m = (I + P (t/m) � I )m

=

 
I +

t
m
P (t/m) � I
t/m

!m
=

�
I +

t
m
Gm

�m
and note jjGm � G jj ! 0 as m! ∞. Therefore,
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jjP (t) � exp(tG )jj
= jj

�
I + t

mGm
�m � exp(tG )jj

= jj
�
I + t

mG +
t
m (Gm � G )

�m � exp(tG )jj
= jj(I + t

mG )
m � exp(tG )+

∑m
k=1(1� 1/m) � � � (1� (k � 1)/m) tkk ! (Gm � G )k (I +

t
mG )

m�k jj
� jj(I + t

mG )
m � exp(tG )jj+∑m

k=1
tk
k ! jjGm � G jjk jjI +

t
mG jjm�k

= jj(I + t
mG )

m � exp(tG )jj+ jjI + t
mG jjm ∑m

k=1
tk
k !

�
jjGm�G jj
jjI+ t

mG jj

�k
! 0

since (I + t
mG )

m ! exp(tG ) by Lemma VI.19 and for any ε > 0 there
exists m0 such that for all m � m0, then jjGm � G jj/jjI + t

mG jj � ε so

m

∑
k=1

tk

k !

� jjGm � G jj
jjI + t

mG jj

�k
�

∞

∑
k=1

tk

k !
εk = eε � 1! 0 as ε ! 0.

This proves the result. �
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Example VI.8 Poisson process with intensity λ

- recall (see Prop. VI.17), as t ! 0

p(t)ii = e�λt ! 1, p(t)ii+1 = λt + o(t), p(t)ij = o(t) otherwise

which implies gi ,i = �λ, gi ,i+1 = λ, gi ,j = 0 otherwise so G is bidiagonal
with �λ on the main diagonal and λ on the �rst upper diagonal �

- note G = limt!0 P
(t)�I
t so G can be obtained from knowledge of the

transitions P (t)

- given G , how to compute P (t)?
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- method 1: truncate the series in Prop. VI.20 after �nitely many terms
to approximate P (t)

- method 2: (�nite case) let G 2 Rk�k have left eigenvalues and vectors
(λi ,wi ) so w

0
iG = λiw

0
i and suppose the initial distribution can be

expressed as υ = ∑k
i=1 aiw0i , then the distribution of Xt is given by

υP (t) = υ exp(tG ) =
k

∑
i=1
aiw0i (I +

t
1!
G +

t2

2!
G 2 +

t3

3!
G 3 + � � � )

=
k

∑
i=1
ai (w0i +

t
1!
w0iG +

t2

2!
w0iG

2 +
t3

3!
w0iG

3 + � � � )

=
k

∑
i=1
aiw0i (1+

λi t
1!
+
(λi t)2

2!
+
(λi t)3

3!
+ � � � ) =

k

∑
i=1
aieλi tw0i

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes I I - Lecture 6c 2024 11 / 23



- method 3: Kolmogorov�s forward equations (under conditions)

d+p(t)i ,j
dt

= lim
h#0

p(t+h)i ,j � p(t)i ,j
h

= lim
h#0

 
∑
k2S

p(t)i ,k p
(h)
k ,j

!
� p(t)i ,j

h

= lim
h#0

 
∑
k2S

p(t)i ,k (δkj + gkjh+ o(h))

!
� p(t)i ,j

h
= ∑

k2S
p(t)i ,k gkj

so
d+P (t)

dt
= P (t)G

which is a system of linear di¤erential equations which can be solved
subject to boundary condition P (0) = I
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- method 4: Kolmogorov�s backward equations (under conditions)

d+p(t)i ,j
dt

= lim
h#0

p(t+h)i ,j � p(t)i ,j
h

= lim
h#0

 
∑
k2S

p(h)i ,k p
(t)
k ,j

!
� p(t)i ,j

h

= lim
h#0

 
∑
k2S
(δik + gikh+ o(h))p

(t)
k ,j

!
� p(t)i ,j

h
= ∑

k2S
gikp

(t)
k ,j

so
d+P (t)

dt
= GP (t)

which is a system of linear di¤erential equations which can be solved
subject to boundary condition P (0) = I
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- suppose X0 = x then we can consider Hx = supft : Xu = x for
u 2 [0, t)g = the holding time at state x , so it is the time of the next
transition to a new state

Proposition VI.20 If fXt : t � 0g is a time homogeneous MP then

P(Hx > t + u j X0 = x ,Hx > t) = P(Hx > u jX0 = x)

Proof: We have

P(Hx > t + u jX0 = x ,Hx > t)
= P(Xv = x for all v 2 [0, t + u] jXv = x for all v 2 [0, t])
= P(Xv = x for all v 2 [t, t + u] jXt = x for all v 2 [0, t])
= P(Xv = x for all v 2 [t, t + u] jXt = x) by MP
= P(Xv = x for all v 2 [0, u] jX0 = x) by TH
= P(Hx > u jX0 = x).

�
- this result implies that Hx has a �xed distribution, given by
P(Hx � u jX0 = x) and this distribution has the memoryless property
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- also if we de�ne Ht ,x to be the holding time when Xt = x then

P(Ht ,x > u jXt = x) = P(Xt+v = x for every v 2 [0, u] jXt = x)
= P(Xv = x for every v 2 [0, u] jX0 = x) by TH
= P(Hx > u jX0 = x)

and so the distribution of the holding time only depends on the state x

- for a Poisson process with intensity λ the distribution of Hx is
exponential(λ) because of the memoryless feature of the exponential
distribution so it is independent of x

Proposition VI.21 A positive r.v. X has the memoryless property i¤ it
has an exponential distribution.
Proof: We already proved in Example VI.6 that the exponential
distribution has the memoryless property. So consider the converse which
implies for x , y � 0
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G (x + y) = P(X > x + y) = P(X > x + y jX > x)P(X > x)
= P(X > y)P(X > x) = G (x)G (y).

As P(X > 0) = 1, 9 n s.t. P(X > 1/n) > 0 so with λ = � logG (1)

e�λ = G (1) = G
�
1
n
+
n� 1
n

�
= G

�
1
n

�
G
�
n� 1
n

�
= � � � = G n

�
1
n

�
so G

� 1
n

�
= e�λ/n. Similarly, G (k) = e�kλ for any k 2 N and for any

positive rational p/q then G (p/q) = G p(1/q) = e�(p/q)λ. Since the cdf
of X is right continuous this implies G (xn) # G (x) for any rational
sequence xn # x which implies G (x) = e�λx . �
- note - Prop VI.21 implies that Hx � exponential(λx ) but it does not say
that these have constant rate λ
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- for a standard Markov chain fXt : t � 0g de�ne jump times J0, J1, J2, . . .
by J0 = 0 and for n � 1, Jn = infft � Jn�1 : Xt 6= XJn�1g
Proposition VI.22 Under conditions, a standard Markov chain
fXt : t � 0g is equivalent to an initial distribution, as given by the
distribution of X0, a set of independent holding times H0,H1,H2, . . .
where Hi � exponential(�gii ) and a jump Markov chain fX̂n : n 2 N0g
with X̂0 = X0, transition probabilities

p̂ij = P(X̂1 = j j X̂0 = i) = �gij/gii
and Xt = X̂n when Jn � t < Jn+1.
- this gives a method for simulating the process

1. generate X0 according to the initial distribution and suppose X0 = i1

2. generate Hi1 � exponential(�gi1 i1) and X̂1 � p̂i1 j for j 2 S and
suppose X̂1 = i2

3. generate Hi2 � exponential(�gi1 i1) and X̂2 � p̂i2 j for j 2 S and
suppose X̂1 = i3

etc.
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Exercise VI.11 Suppose S = f1, 2, 3g,λ1 = 3,λ2 = 2,λ3 = 4 and

G =

0@ �3 3 0
1 �2 1
0 4 �4

1A .
Generate this process for 20 steps.

Example VI.9 Simple Birth and Death process

- suppose X0 = 1

- for a pure birth process suppose holding times B1,B2, . . . are stat. ind.
and Bi � exponential(λi ) is the holding time when in state i a transition
is to state i + 1 (so p̂ii+1 = 1 when i � 1) so Ji = B1 + � � �+ Bi and note
this is a Poisson process of intensity λ when λi = λ for every i and note a
natural choice might be λi = iλ for some λ > 0

- a process is called explosive if there can be in�nitely many jumps
(arrivals) in a �nite interval which occurs for a birth process whenever the
explosion time ζ = ∑∞

i=0 Bi < ∞
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Lemma VI.23 (i) If ∑∞
i=0 1/λi < ∞, then P(ζ < ∞) = 1. (ii) If

∑∞
i=0 1/λi = ∞, then P(ζ < ∞) = 0.

Proof: (i) E (∑∞
i=0 Bi )

MCT
= ∑∞

i=0 E (Bi ) = ∑∞
i=0 1/λi < ∞ which implies

P(∑∞
i=0 Bi < ∞) = 1.

(ii)

E

 
exp

(
�

∞

∑
i=0
Bi

)!
= E

 
∞

∏
i=0
exp f�Big

!
MCT
=

∞

∏
i=0
E (exp f�Big)

=
∞

∏
i=1
mBi (�1) =

∞

∏
i=0

λi
1+ λi

= 0 with mBi = mgf of Bi

which implies P (∑∞
i=0 Bi = ∞) = 1.
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- a simple birth process only makes transitions i ! i + 1 but a birth and
death process can also make the transition i ! i � 1 where a death occurs
according to stat. ind. holding times D1,D2, . . . with Di �
exponential(µi ) and the Bi and Di processes are independent

- P(Hi > t) = P(min(Bi ,Di ) > t) = P(Bi > t)P(Di > t) =
exp (�(λi + µi )) so Hi � exponential(λi + µi )

- pi ,i+1 = P(Bi < Di ) =
R ∞
0 (1� e�λi x�)µie

�µi x dx =
1� µi/(λi + µi ) = λi/(λi + µi ) so pi ,i�1 = µi/(λi + µi )

- when λ0 = 0 concern is with the probability of extinction
�
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Proposition VI.24 Suppose P̂ is a transition matrix for a Markov chain
fX̂n : n 2 N0g and fNt : t � 0g is an independent Poisson process of
intensity λ. The process fXt : t � 0g given by Xt = X̂Nt has generator
G = λ(P̂ � I ).
Proof: We have

p(t)i ,j = P(X̂Nt = j j X̂0 = i) =
∞

∑
k=0

P(Nt = k, X̂k = j j X̂0 = i)

=
∞

∑
k=0

P(Nt = k)P(X̂k = j j X̂0 = i) =
∞

∑
k=0

(λt)k

k !
e�λt p̂(k )ij

=
1

∑
k=0

(λt)k

k !
e�λt p̂(k )ij + o(t) = e�λtδij + λte�λt p̂ij + o(t)

= (1� λt)δij + λtp̂ij + o(t) = δij + λt(p̂ij � δij ) + o(t)

Therefore,

gi ,j = lim
t#0

p(t)i ,j � δi ,j

t
= lim

t#0

λt(p̂ij � δij ) + o(t)
t

= λ(p̂ij � δij ).

�
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- what about stationary distributions and convergence?

- for a stationary distribution π we want πP (t) = π for all t and so we
must have πP (t+h) � πP (t) = 0 and so by Kolmogorov�s forward
equations

0 = lim
h#0

π(P (t+h) � P (t))
h

= πP (t)G = πG

and so π is a solution of the linear equations πG = 0

De�nition VI.9 The probability distribution π is stationary for the MP
fXt : t � 0g with generator G whenever πG = 0.

De�nition VI.10 The MP fXt : t � 0g with generator G is reversible wrt
probability distribution π if πigij = πjgji for all i , j 2 S .
Proposition VI.25 If the MP fXt : t � 0g with generator G is reversible
wrt probability distribution π, then π is stationary.

Proof: We have

∑
k2S

πkgkj = ∑
k2S

πjgjk = πj ∑
k2S

gjk = 0

since the rows of G sum to 0. �
Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes I I - Lecture 6c 2024 22 / 23



- the MP fXt : t � 0g is irreducible if the jump chain is irreducible (i ! j
for all i , j 2 S) and recall it is always aperiodic
Proposition VI.26 If the standard MP fXt : t � 0g is irreducible with
stationary distribution π, then (under conditions) limt!∞ p

(t)
i ,j = πj .

Proof: Since π is stationary πG = 0 which implies πGP (t) = 0 and by
Kolmogorov�s backward equations this implies

d+πP (t)

dt
= π

d+P (t)

dt
= πGP (t) = 0

so πP (t) is constant in t. Since limt#0 P (t) = I (standard Markov process)
this implies that the constant value of πP (t) is
limt#0 πP (t) = π limt#0 P (t) = πI = π.
�
Exercise VI.12 Text 4.4.4

Exercise VI.13 Text 4.4.14
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