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VI.2 Poisson Process

De�nition VI.5 A process fNt : t � 0g is a (homogenous) Poisson
process of intensity λ > 0 if
(i) N0 = 0 (ii) if 0 � t1 < � � � < tn, then Nt1 ,Nt2 �Nt1 , . . . ,Ntn �Ntn�1
are independent and Nti �Nti�1 � Poisson(λ(ti � ti�1)).
- note - Nt = Nt �N0 � Poisson(λt) so P(Nt = j) = (λt)je�λt/j ! for
j = 0, 1, 2, . . .

- Nt = a count of something occurring in [0, t] as, when
s < t,Nt = Nt �Ns +Ns � Ns with probability 1
- recall when X � Poisson(λ) then E (X ) = Var(X ) = λ and mgf
mX (t) = exp(λ(et � 1))
- recall when X1 � Poisson(λ1) stat. ind. of X2 � Poisson(λ2), then
X1 + X2 � Poisson(λ1 + λ2)

- also, if Xn � binomial(n, pn) where pn = λ/n+ o(n) then Xn
d!

Poisson(λ) as n! ∞ (see Lecture 22 for STAC62)
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Proposition VI.12 A Poisson processfNt : t � 0g is a Markov process
and fNt � λt : t � 0g is a martingale.
Proof: Suppose 0 < t1 < � � � < tn. Then, for jn � jn�1 � � � � � j1 � 0

P(Ntn = jn jNt1 = j1, . . . ,Ntn�1 = jn�1)
= P(Ntn �Ntn�1 +Ntn�1 = jn jNt1 = j1, . . . , ,Ntn�1 = jn�1)
= P(Ntn �Ntn�1 = jn � jn�1) by independent increments
= P(Ntn �Ntn�1 = jn � jn�1 jNtn�1 = jn�1) by ind. increments
= P(Ntn = jn jNtn�1 = jn�1).

Also,

E (Ntn � λtn jNt1 = j1, . . . , ,Ntn�1 = jn�1)
= E (Ntn � λtn jNtn�1 = jn�1) because a MP
= E (Ntn �Ntn�1 � λtn +Ntn�1 jNtn�1 = jn�1)
= E (Ntn �Ntn�1)� λtn + E (Ntn�1 jNtn�1 = jn�1) ind. increments
= λ(tn � tn�1)� λtn + jn�1 = Ntn�1 � λtn�1.

�
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- recall X � exponentialrate (λ) has density fX (x) = λe�λx for all x � 0
(exponentialscale (λ) has density λ�1e�x/λ)

- has cdf F (x) = 1� e�λx for x � 0,E (X ) = 1/λ,Var(X ) = 1/λ2, mgf
mX (t) = λ/(λ� t) for t < λ

- the gammarate (α,λ) distribution has density

λα

Γ(α)
xα�1�e�λx for x � 0

E (X ) = α/λ,Var(X ) = α/λ2 and mgf mX (t) = λα(λ� t)�α for t < λ

- so exponentialrate (λ) = gammarate (1,λ)

- if X1 � gammarate (α1,λ) stat. ind. of X2 � gammarate (α2,λ) then
X1 + X2 � gammarate (α1 + α2,λ)
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- fact: a Poisson process satis�es the strong Markov property: if T is a
�nite stopping time for fNt : t � 0g then fNT+t �NT : t � 0g is a
Poisson process of intensity λ which is independent of fNs : s � Tg
- let T1 = infft : Nt > 0g then fT1 � tg 2 AfNs :0�s�tg so it is a
stopping time for the process

- let Ti = infft : NTi�1+t �NTi�1 > 0g for i � 1
- T1,T2, . . . are called the interarrival times

Proposition VI.13 T1,T2, . . . i .i .d .� exponential(λ).

Proof: We have
P(T1 > t) = P(Nt = 0) = e�λt

which is 1 - cdf of T1 and so T1 � exponential(λ). Then
fT2 > tg = fNT1+t �NT1 = 0g which, by the SMP is independent
fNs : s � T1g, and so T2 is independent of T1 with

P(T2 > t) = P(NT1+t �NT1 = 0) = e�λt

so T2 � exponential(λ) with the remaining results for the Ti following
similarly. �
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- put Sn = T1 + � � �+ Tn = arrival time for the n-th event �
gamma(n,λ)

Lemma VI.14 If X � gamma(n,λ), then recalling Γ(n) = (n� 1)! for
x > 0

P(X > x) =
n�1
∑
k=0

(λx)k

k !
e�λx .

Proof: We have

P(X > x) =
Z ∞

x

λnzn�1

(n� 1)!e
�λz dz

using integration by parts with

u = zn�1, du = (n� 1)zn�2, dv = e�λz , v = �e�λz/λ

=
(λx)n�1

(n� 1)! e
�λx +

Z ∞

x

λn�1zn�2

(n� 2)! e
�λz dz

=
(λx)n�1

(n� 1)! e
�λx +

(λx)n�2

(n� 2)! e
�λx + � � �+ λx

1!
e�λx +

Z ∞

x
λe�λz dz

which gives the result since
R ∞
x λe�λz dz = e�λx . �

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes I I - Lecture 6b 2024 6 / 18



Proposition VI.15 The process fXt : t � 0g constructed from r.v.�s

T1,T2, . . . i .i .d .� exponential(λ) by (with T0 = 0)

Xt = i when Si � t < Si+1

is a Poisson process of intensity λ.

Proof: Using Lemma VI.14 P(Xt � i) = P(Si+1 > t) = ∑i
k=0

(λt)k

k ! e
�λt

which is the cdf of the Poisson(λt). Further, if t1 < t2, then

P(Xt1 = i ,Xt2 � Xt1 = j) = P(Si � t1 < Si+1,Si+j � t2 < Si+j+1)

and if j 6= 0, 1, then

P(Si � t1 < Si+1,Si+j � t2 < Si+j+1)

= P

0@ U1 = Si � t1, t1 � U1 < V1 = Ti+1 < t2 � U1,
U2 = Ti+2 + � � �+ Ti+j � t2 � U1 � V1,
t2 � U1 � V1 � U2 < V2 = Ti+j+1

1A .
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Now U1,V1,U2,V2 are mutually statistically independent with

U1 � gamma(i ,λ),V1 � gamma(1,λ)
U2 � gamma(j � 1,λ),V2 � gamma(1,λ).

Therefore, with g(�, α,λ) denoting the gamma(α,λ) density,

P(Xt1 = i ,Xt2 � Xt1 = j)

=
Z t1

0
gi ,λ(u2)

Z t2�u1

t1�u1
g1,λ(v1)

Z t2�u1�v1

0
gj�1,λ(u2)

Z ∞

t2�u1�v1�u2
g1,λ(v2)

dv2du2dv2du1

=
(λt1)i

i !
e�λt1 (λ(t2 � t1))

j

j !
e�λ(t2�t1) after doing the integration

and a similar result is obtained when j = 0 or j = 1. So Xt1 �
Poisson(λt1) independent of Xt2 � Xt1 � Poisson(λ(t2 � t1)) and this can
be generalized to an arbitrary number of increments. �
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- this provides a way to simulate (approximately) a Poisson process of
intensity λ

1. select n and generate T1,T2, . . . ,Tn
i .i .d .� exponential(λ)

2. compute S1,S2, . . . ,Sn
3. compute Nt = i when Si � t < Si+1
- note E (Sn) = n/λ,Var(Sn) = n/λ2 will give you some idea of how big
n has to be to cover say [0, t] as

P(Sn > t) = P

 
1
nSn �

1
λp

1/nλ2
>

1
n t �

1
λp

1/nλ2

!
= P

�
Zn >

λtp
n
�
p
n
�

where Zn
d! N(0, 1) and λt/

p
n�

p
n! �∞

Exercise VI.6 Simulate a Poisson process of intensity λ = 1 and plot the
sample path on [0, 50]
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Proposition VI.16 (Superposition) If fNi ,t : t � 0g is a Poisson process
of intensity λi for i = 1, . . . , k, and these processes are mutually
statistically independent, then f∑k

i=1 Ni ,t : t � 0g is a Poisson process of
intensity ∑k

i=1 λi .

Proof: Exercise VI.7

- note for δ > then P(Nt+δ �Nt = 0) = e�λδ ! 1 as δ ! 0

Proposition VI.17 A Poisson process satis�es
(i) P(Nt+δ �Nt = 1) = λδ+ o(δ)
(ii) P(Nt+δ �Nt � 2) = o(δ).
Proof:

(i) P(Nt+δ �Nt = 1) = λδe�λδ = λδ
∞

∑
k=0

(�λδ)k

k !
= λδ+ o(δ),
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(ii) P(Nt+δ �Nt � 2) = 1� P(Nt+δ �Nt = 0)� P(Nt+δ �Nt = 1)

= 1� e�λδ � λδe�λδ = 1�
∞

∑
k=0

(�λδ)k

k !
� λδ

∞

∑
k=0

(�λδ)k

k !

= �
∞

∑
k=2

�
(�λδ)k

k !
+
(�λδ)k+1

(k + 1)!

�
= o(δ).

�
- fact - any process satisfying Prop VI.17 and having independent
increments is a Poisson process of intensity λ

- there are also inhomogeneous Poisson processes where the intensity
depends on t

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes I I - Lecture 6b 2024 11 / 18



Example VI.5 (clumping)

- suppose fNt : t � 0g is a Poisson process of intenstity λ and T = nλ

- so in each subinterval [0,λ), [λ, 2λ), . . . , [(n� 1)λ, nλ) we expect to see

E (Niλ �N(i�1)λ) = λ

events (one event when λ = 1)

- but for �xed j > 0

P(Niλ �N(i�1)λ � j for some i)
= 1� P(Niλ �N(i�1)λ < j for all i)

� 1�
n

∏
i=1
P(Nλ < j) where Nλ � Poisson(λ)

= 1� Pn(Nλ < j)! 1 as n! ∞

�
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Example VI.6 (Waiting time paradox)

- suppose buses arrive according to a �xed schedule as given by the i-th
bus where buses arrive at times 1/λ, 2/λ, . . .

- you choose a time i/λ to catch the bus each day but arrive in the
interval [(i � 1)/λ, i/λ] according to a uniform distribution in the interval
so on average you will wait a period i/λ� ((i � 1)/λ+ i/λ)/2 = 1/2λ
for the next bus

- suppose there are n buses during the day and clearly the average time
between buses is 1/λ

- but now suppose (unrealistically) buses arrive according to arrival times

X1,X2, . . . ,Xn
i .i .d .� Uniform(0, n/λ)

- let Nt ,n = #fXi : Xi � tg = # of arrivals before time t �
binomial(n, pn) for 0 � t < n/λ and pn = λt/n so the expected number
of buses arriving in the interval [0, t] is λt (and so the expected number of
buses arriving in the interval [(i � 1)/λ, i/λ] is 1
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- note that the conditions for convergence of the binomial to the Poisson

apply so Nt ,n
d! Nt � Poisson(λt) and for large n we can consider buses

arriving (approximately) according to a Poisson process of intensity λ

- suppose you begin waiting at time t and concern is with how long you
need to wait on average until the next bus arrives

- then fNt+s �Nt : s � 0g is an approximate Poisson process of intensity
λ, which means that the interarrival times for this process are i .i .d .
exponential(λ), and so the mean waiting time for the next bus after time t
is 1/λ, which is twice as long as when the buses are on a �xed schedule!

- note that this re�ects the memoryless feature of the exponential
distribution for if T � exponential(λ), then for a, b � 0

P(T > b+ a jT > a) = P(T > b+ a ,T > a)
P(T > a)

=
P(T > b+ a )
P(T > a)

=
e�λ(b+a)

e�λa = e�λb

so the probability you will wait an additional b time units doesn�t depend
on the fact you have already waited a time units
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Proposition VI.18 (Thinning) Suppose fNt : t � 0g is a Poisson process
of intenstity λ and each arrival is labeled i with probability pi where
∑ pi = 1 and let fNi ,t : t � 0g denote the process counting the number of
arrivals labeled i . Then fNi ,t : t � 0g is a Poisson process of intensity piλ
and these processes are mutually statistically independent.

Proof: Consider interarrival times T1,T2, . . . i .i .d .� exponential(λ) and

labels L1, L2, . . . i .i .d .� (p1, p2, . . .) so (L1,T1), (L2,T2), . . . are i .i .d . Since
the process fNi ,t : t � 0g is constructed from those pairs with label i this
implies that the fNi ,t : t � 0g processes are mutually statistically
independent. Also increments from the individual processes are constructed
from separate groups of (labeled) arrival times and so are independent.
Now if s < t, then for the process labelled 1,
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P(N1,t = j) =
∞

∑
k=j

P(N1,t = j jNt = k)P(Nt = k)

=
∞

∑
k=j

�
k
j

�
pj1(1� p1)k�j

(λt)k

k !
e�λt

=
(λtp1)

j

j !
e�λt

∞

∑
k=j

(λ(1� p1)t)k�j
(k � j)!

=
(λtp1)

j

j !
e�λteλ(1�pi )t =

(p1λt)
j

j !
e�p1λt

and
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P(N1,t+s �N1,t = j) =
∞

∑
k=0

P(N1,t+s �N1,t = j ,N1,t = k)

=
∞

∑
k=0

∞

∑
n=j

∞

∑
m=k

�
P(N1,t+s = k + j ,N1,t = k jNt = m,Nt+s = m+ n)
�P(Nt = m,Nt+s �Nt = n)

�

=
∞

∑
k=0

∞

∑
n=j

∞

∑
m=k

n
(mk )p

k
1 (1� p1)m�k

(λt)m

m! e
�λt
o

�
n
(nj )p

j
1(1� p1)n�ke�λt (λs)n

n! e
�λs
o

=
∞

∑
k=0

(p1λt)
k

k !
e�p1λt (p1λs)

j

j !
e�p1λs =

(p1λs)
j

j !
e�p1λs

so the increments are Poisson of intensity p1λ and the same argument
applies to any of the labelled processes. �
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- a Poisson process is a particular example of what is known as a counting
process as it counts the number of events occurring randomly in any
subset (a, b) of [0,∞)

- you can also have processes that count the number of events occurring
randomly in any subset of a general set S (e.g. R1,R2,R3,S1,S2, etc.)

- if there is a measure µ on S (e.g. volume measure) we say the process is
a Poisson process of intensity λ if, whenever A1,A2, . . . � S satisfy
µ(Ai ) < ∞ and Ai \ Aj = φ for all i and j 6= i , then the counts are
mutually staistically independent and such that the count for Ai is
distributed Poisson(λµ(Ai ))

Exercise VI.8 Text 4.3.7

Exercise VI.9 Text 4.3.8

Exercise VI.10 Text 4.3.18
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