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V1.2 Poisson Process

Definition V1.5 A process {N; : t > 0} is a (homogenous) Poisson
process of intensity A > 0 if

() No=0(ii)if0 <ty <--- <ty then Ni, Npy — Ny, ..., N;
are independent and N;, — N;,_, ~ Poisson(A(t; — ti_1)).

- note - Ny = N; — Ny ~ Poisson(At) so P(N; = j) = (At)fe /! for
j=012...

- N; = a count of something occurring in [0, t] as, when

s < t, Ny = Ny — Ns + Ns > Ns with probability 1

- recall when X ~ Poisson(A) then E(X) = Var(X) = A and mgf

mx (t) = exp(A(e — 1))

- recall when X; ~ Poisson(A;) stat. ind. of Xy ~ Poisson(A;), then
X1+ Xp ~ Poisson(A1 + Ay)

- also, if X, ~ binomial(n, p,) where p, = A/n+ o(n) then X, N
Poisson(A) as n — oo (see Lecture 22 for STAC62)
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Proposition VI.12 A Poisson process{/N; : t > 0} is a Markov process
and {N; — At :t >0} is a martingale.

Proof: Suppose 0 < t; < -+ < t,. Then, for j, > j,—1 > --->j1 >0
P(Ntn :jn ’ Nt1 :J'ly---yNt,,,l :jn—l)

P(Ntn - Ntn,l + Nt,,,l :.jn ‘ Ntl :J'ly BRI Nt,,,l :.jn—l)

P(N;, — N, _, = jo — jn—1) by independent increments

P(Ng, — Nt , = jo— jo—1| Nt, , = jn—1) by ind. increments
(

P Nt,7 :jn | Nt,,_1 :jn—l)-

Also,
E Nt,, - /\tn | Nt‘l :jl ,,,,,, Ntn71 :jnfl)
E(Ny, — Atn| Ny, , = jo—1) because a MP
= E n Ntnfl - )\tn + Ntnfl | Ntnfl :.jn*]-)

E
= A

N, — Ni, ) — Aty + E(Ne, | | Ni, | = jo—1) ind. increments
th — tn—l) — Aty + -1 = Ntn,l — Aty_1.

(
(
(N
(
(
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- recall X ~ exponential,,se(A) has density fx(x) = Ae™ for all x > 0
(exponentialscae (A) has density /\_le_x/)‘)

- has cdf F(x) =1—e ™ for x >0, E(X) =1/A, Var(X) = 1/A?, mgf
my(t) =A/(A—t)fort <A

- the gamma,.¢e (a, A) distribution has density

Aﬂ(

1,(0(>x”‘_1_e_/\x forx >0

E(X) =a/A, Var(X) = a/A? and mgf mx (t) = A%(A —t) " for t < A
- s0 exponential,ae(A) = gamma,are (1, A)

- if X1 ~ gamma e (21, A) stat. ind. of Xy ~ gamma,ate(a2, A) then
X1+ Xo ~ gammayate (w1 + a2, A)
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- fact: a Poisson process satisfies the strong Markov property: if T is a
finite stopping time for {N; : t > 0} then {N74, — Ny :t >0} is a
Poisson process of intensity A which is independent of {N; :s < T}

-let Ty = inf{t: Ny >0} then {T1 <t} € Ary g<s<) SOt s a
stopping time for the process

-let T, =inf{t:Nr_,++— N7, >0} fori>1
- T1, Ts, ... are called the interarrival times
Proposition VI.13 Ty, T»,... "% exponential(A).
Proof: We have
P(Tl > t) = P(Nt = 0) = ef/\t

which is 1 - cdf of T; and so T; ~ exponential(A). Then
{Ty > t} = {N7,++ — N7, = 0} which, by the SMP is independent
{Ns :s < Ti}, and so T, is independent of Ty with

P(Ty > t) = P(Nr,4t — Ny, =0) = e

so T, ~ exponential(A) with the remaining results for the T; following
similarly. H
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-put S, =Ty +---+ T, = arrival time for the n-th event ~
gamma(n, A)

Lemma VI.14 If X ~ gamma(n, A), then recalling T'(n) = (n— 1)! for
x>0

P(X > x) =

Proof: We have

[e9) /\n n—1
P(X > x) :/X (nil)!e_Azdz

using integration by parts with

u=z"1 du= n—1)”2dV—e)‘z,v:—e_/\z//\
/\ n—1 /\n 1 n2
— (nx_l 7/\x_’_/ 7/\de

(
_ (/\X) —Ax (Ax)n 2 —Ax Ax —Ax * —Az
(n_l)e +me +‘+?e +/); /\e dZ

which gives the result since fxoo AeMdz=e> 1

Michael Evans University of Toronto https://Probability and Stochastic Processes | | - Lec




Proposition VI.15 The process {X; : t > 0} constructed from r.v.’s

T To,... &S exponential(A) by (with Ty = 0)
Xy =iwhen S; <t < Sy

is a Poisson process of intensity A.

Proof: Using Lemma VI1.14 P(X; < i) = P(S;y1 > t) = Yi_, (/\kt!)k e M
which is the cdf of the Poisson(At). Further, if t; < tp, then
P(th =1, th _Xt1 :J) = P(SI <t < 5i+1.5i+j <t < 5i+j+1)
and if j # 0,1, then
P(Si<t <Si1,54j <t <Siiji1)
U1:5,'§t1,t1—U1 < V= ,'+1<t2—U1,

= P| lb=To+ - +Tyj<tb—U -V,
b—U—Vi—U <V, = i+j+1
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Now Ui, Vi, Uz, Vo are mutually statistically independent with

Ui ~ gamma(i,A), Vi ~ gamma(1,A)
Uy ~ gamma(j—1,A), Vo ~ gamma(1, 7).

Therefore, with g (-, a, A) denoting the gamma(a, A) density,

P(Xy, =i, Xe, = Xt, =)

t1 th—uy th—u1—wvy (9]
= /0 gi,A(U2)/t gl,A(Vl)/o gjel,)\(uz)/ gl,A(V2>

11— th—ui—vi—up

dvodurdvoduy

i — J
(Aty) e‘Athe_/\(”_“) after doing the integration

i J!
and a similar result is obtained when j =0 or j = 1. So X, ~
Poisson(At;) independent of X;, — X;, ~ Poisson(A(t, — t1)) and this can
be generalized to an arbitrary number of increments.
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- this provides a way to simulate (approximately) a Poisson process of
intensity A

1. select n and generate Ty, Tp, ..., T, iofd- exponential(A)
2. compute 51, 5,...,5,
3. compute Ny = iwhen §; <t < 541

- note E(S,) = n/A, Var(S,) = n/A? will give you some idea of how big
n has to be to cover say [0, t] as

lg 1 141
P(S,,>t):P<” A n_ A :P(Zn>/\t—ﬁ)

\/l/n)\2 \/l/n/\2 Vn

where Z, % N(0,1) and At/\/n—+/n — —o0

Exercise V1.6 Simulate a Poisson process of intensity A = 1 and plot the
sample path on [0, 50]
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Proposition V1.16 (Superposition) If {N;; : t > 0} is a Poisson process
of intensity A; for i =1,..., k, and these processes are mutually
statistically independent, then {Zf‘zl N :t >0} is a Poisson process of
intensity Y5_; A;.

Proof: Exercise VI.7
- note for § > then P(N; 15— N; =0) = e — 1asd — 0

Proposition VI.17 A Poisson process satisfies
(i) P(Ners — Ny = 1) = A6+ 0(0)
(i) P(Neys — Ny > 2) = o(9).

Proof:

_ B © (—A8)k
(i) P(Neps — Ny = 1) = Ase ™ = Mk;) ( o YN o(5),
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(ll) P(Nt—+5—Nt22):1—P(Nt+§—Nt:0)—P(Nt+5—Nt:1)

e M_geM—1_ (—Ad)*
=1 AS 1 k;) i

@ ((—AS)K  (—AS)kH!
:_k;( P (k+1)!>:°(5)'

- fact - any process satisfying Prop VI.17 and having independent
increments is a Poisson process of intensity A

- there are also inhomogeneous Poisson processes where the intensity
depends on t
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Example V1.5 (clumping)
- suppose {N; : t > 0} is a Poisson process of intenstity A and T = nA
- so in each subinterval [0,A), [A,2A),...,[(n—1)A, nA) we expect to see

E(Nix = Njj—1)p) = A
events (one event when A = 1)

- but for fixed j > 0

P(Njx — Nij_1)n > j for some i)
= ].—P(N,'/\—/\/(,-,l))L < j for all i)
> 1—J[P(Nx <) where N ~ Poisson(A)

i=1
= 1-P"(N)<j)—1lasn—
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Example V1.6 (Waiting time paradox)

- suppose buses arrive according to a fixed schedule as given by the i-th
bus where buses arrive at times 1/A,2/A, ...

- you choose a time i/ A to catch the bus each day but arrive in the
interval [(/ —1)/A, i/A] according to a uniform distribution in the interval
so on average you will wait a period i/A — ((i—1)/A+i/A)/2=1/2A
for the next bus

- suppose there are n buses during the day and clearly the average time
between buses is 1/A

- but now suppose (unrealistically) buses arrive according to arrival times
X1, Xo,..., X, - Uniform(0, n/A)

- let Npp = #{X; : X; < t} = # of arrivals before time t ~

binomial(n, p,) for 0 < t < n/A and p, = At/n so the expected number

of buses arriving in the interval [0, t] is At (and so the expected number of
buses arriving in the interval [(i —1)/A,i/A]is 1
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- note that the conditions for convergence of the binomial to the Poisson

apply so N, < Ny ~ Poisson(At) and for large n we can consider buses
arriving (approximately) according to a Poisson process of intensity A

- suppose you begin waiting at time t and concern is with how long you
need to wait on average until the next bus arrives

- then {N;;+s — N; : s > 0} is an approximate Poisson process of intensity
A, which means that the interarrival times for this process are i.i.d.
exponential(A), and so the mean waiting time for the next bus after time ¢
is 1/A, which is twice as long as when the buses are on a fixed schedule!

- note that this reflects the memoryless feature of the exponential
distribution for if T ~ exponential(A), then for a, b > 0
P(T>b+a, T>a)
P(T > a)
- P(T>b+a) _eiA(b‘Fa) —e_Ab
- P(T>a) et
so the probability you will wait an additional b time units doesn’t depend
on the fact you have already waited a time units

P(T>b+a|T>a)=
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Proposition VI.18 (Thinning) Suppose {N; : t > 0} is a Poisson process
of intenstity A and each arrival is labeled i with probability p; where

Y. pi =1andlet {N;;:t >0} denote the process counting the number of
arrivals labeled i. Then {N;; : t > 0} is a Poisson process of intensity p;A
and these processes are mutually statistically independent.

Proof: Consider interarrival times Ty, 1o, ... id- exponential(A) and
labels Ly, Lo, ... Ld- (p1,pP2,...)so (L1, T1),(Lp, T2),... are i.i.d. Since
the process {N; : t > 0} is constructed from those pairs with label i this
implies that the {N;; : t > 0} processes are mutually statistically
independent. Also increments from the individual processes are constructed
from separate groups of (labeled) arrival times and so are independent.

Now if s < t, then for the process labelled 1,
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and
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P(Nl,t+s—Nl,t—J ZP N1t+s—N1t—J Nlt—k)

ZZZ{ xP(Nt—m,/VHs—Nt—”) J

o {(Dpk1—p)m e ]
k=0 n=j m=k x{( )p’(l_pl) kef)‘t(A:!)ne*)‘s}
(

— i (pl)\t) 7p1)xt pl)\s) 7p1)xs — (plAS)J efpl)xs
&k J! J!

so the increments are Poisson of intensity p1A and the same argument
applies to any of the labelled processes. ll
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- a Poisson process is a particular example of what is known as a counting
process as it counts the number of events occurring randomly in any
subset (a, b) of [0, )

- you can also have processes that count the number of events occurring
randomly in any subset of a general set S (e.g. R!, R?, R3,S!, S?, etc.)

- if there is a measure y on S (e.g. volume measure) we say the process is
a Poisson process of intensity A if, whenever Aj, Ay, ... C S satisfy

1(Aj) < oo and AiNA; = ¢ for all i and j # i, then the counts are
mutually staistically independent and such that the count for A; is
distributed Poisson(Au(A;))

Exercise V1.8 Text 4.3.7
Exercise VI.9 Text 4.3.8
Exercise VI.10 Text 4.3.18
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