Probability and Stochastic Processes I I - Lecture 6b

Michael Evans
University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

VI. 2 Poisson Process

Definition VI. 5 A process $\left\{N_{t}: t \geq 0\right\}$ is a (homogenous) Poisson process of intensity $\lambda>0$ if
(i) $N_{0}=0$ (ii) if $0 \leq t_{1}<\cdots<t_{n}$, then $N_{t_{1}}, N_{t_{2}}-N_{t_{1}}, \ldots, N_{t_{n}}-N_{t_{n-1}}$ are independent and $N_{t_{i}}-N_{t_{i-1}} \sim \operatorname{Poisson}\left(\lambda\left(t_{i}-t_{i-1}\right)\right)$.

- note - $N_{t}=N_{t}-N_{0} \sim \operatorname{Poisson}(\lambda t)$ so $P\left(N_{t}=j\right)=(\lambda t)^{j} e^{-\lambda t} / j$! for $j=0,1,2, \ldots$
- $N_{t}=$ a count of something occurring in $[0, t]$ as, when
$s<t, N_{t}=N_{t}-N_{s}+N_{s} \geq N_{s}$ with probability 1
- recall when $X \sim \operatorname{Poisson}(\lambda)$ then $E(X)=\operatorname{Var}(X)=\lambda$ and mgf $m_{X}(t)=\exp \left(\lambda\left(e^{t}-1\right)\right)$
- recall when $X_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ stat. ind. of $X_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right)$, then $X_{1}+X_{2} \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$
- also, if $X_{n} \sim \operatorname{binomial}\left(n, p_{n}\right)$ where $p_{n}=\lambda / n+o(n)$ then $X_{n} \xrightarrow{d}$ Poisson (λ) as $n \rightarrow \infty$ (see Lecture 22 for STAC62)

Proposition VI. 12 A Poisson process $\left\{N_{t}: t \geq 0\right\}$ is a Markov process and $\left\{N_{t}-\lambda t: t \geq 0\right\}$ is a martingale.

Proof: Suppose $0<t_{1}<\cdots<t_{n}$. Then, for $j_{n} \geq j_{n-1} \geq \cdots \geq j_{1} \geq 0$

$$
\begin{aligned}
& P\left(N_{t_{n}}=j_{n} \mid N_{t_{1}}=j_{1}, \ldots, N_{t_{n-1}}=j_{n-1}\right) \\
= & P\left(N_{t_{n}}-N_{t_{n-1}}+N_{t_{n-1}}=j_{n} \mid N_{t_{1}}=j_{1}, \ldots, N_{t_{n-1}}=j_{n-1}\right) \\
= & P\left(N_{t_{n}}-N_{t_{n-1}}=j_{n}-j_{n-1}\right) \text { by independent increments } \\
= & P\left(N_{t_{n}}-N_{t_{n-1}}=j_{n}-j_{n-1} \mid N_{t_{n-1}}=j_{n-1}\right) \text { by ind. increments } \\
= & P\left(N_{t_{n}}=j_{n} \mid N_{t_{n-1}}=j_{n-1}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& E\left(N_{t_{n}}-\lambda t_{n} \mid N_{t_{1}}=j_{1}, \ldots,, N_{t_{n-1}}=j_{n-1}\right) \\
= & E\left(N_{t_{n}}-\lambda t_{n} \mid N_{t_{n-1}}=j_{n-1}\right) \text { because a MP } \\
= & E\left(N_{t_{n}}-N_{t_{n-1}}-\lambda t_{n}+N_{t_{n-1}} \mid N_{t_{n-1}}=j_{n-1}\right) \\
= & E\left(N_{t_{n}}-N_{t_{n-1}}\right)-\lambda t_{n}+E\left(N_{t_{n-1}} \mid N_{t_{n-1}}=j_{n-1}\right) \text { ind. increments } \\
= & \lambda\left(t_{n}-t_{n-1}\right)-\lambda t_{n}+j_{n-1}=N_{t_{n-1}}-\lambda t_{n-1} .
\end{aligned}
$$

- recall $X \sim$ exponential ${ }_{\text {rate }}(\lambda)$ has density $f_{X}(x)=\lambda e^{-\lambda x}$ for all $x \geq 0$ (exponential scale (λ) has density $\lambda^{-1} e^{-x / \lambda}$)
- has cdf $F(x)=1-e^{-\lambda x}$ for $x \geq 0, E(X)=1 / \lambda, \operatorname{Var}(X)=1 / \lambda^{2}, \operatorname{mgf}$ $m_{X}(t)=\lambda /(\lambda-t)$ for $t<\lambda$
- the gammarate (α, λ) distribution has density

$$
\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1-} e^{-\lambda x} \text { for } x \geq 0
$$

$E(X)=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$ and $m g f m_{X}(t)=\lambda^{\alpha}(\lambda-t)^{-\alpha}$ for $t<\lambda$

- so exponential ${ }_{\text {rate }}(\lambda)=$ gamma $_{\text {rate }}(1, \lambda)$
- if $X_{1} \sim$ gamma $_{\text {rate }}\left(\alpha_{1}, \lambda\right)$ stat. ind. of $X_{2} \sim \operatorname{gamma}_{\text {rate }}\left(\alpha_{2}, \lambda\right)$ then $X_{1}+X_{2} \sim$ gamma $_{\text {rate }}\left(\alpha_{1}+\alpha_{2}, \lambda\right)$
- fact: a Poisson process satisfies the strong Markov property: if T is a finite stopping time for $\left\{N_{t}: t \geq 0\right\}$ then $\left\{N_{T+t}-N_{T}: t \geq 0\right\}$ is a Poisson process of intensity λ which is independent of $\left\{N_{s}: s \leq T\right\}$
- let $T_{1}=\inf \left\{t: N_{t}>0\right\}$ then $\left\{T_{1} \leq t\right\} \in A_{\left\{N_{s}: 0 \leq s \leq t\right\}}$ so it is a stopping time for the process
- let $T_{i}=\inf \left\{t: N_{T_{i-1}+t}-N_{T_{i-1}}>0\right\}$ for $i \geq 1$
- T_{1}, T_{2}, \ldots are called the interarrival times

Proposition VI. $13 T_{1}, T_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim} \operatorname{exponential}(\lambda)$.
Proof: We have

$$
P\left(T_{1}>t\right)=P\left(N_{t}=0\right)=e^{-\lambda t}
$$

which is $1-\operatorname{cdf}$ of T_{1} and so $T_{1} \sim$ exponential (λ). Then $\left\{T_{2}>t\right\}=\left\{N_{T_{1}+t}-N_{T_{1}}=0\right\}$ which, by the SMP is independent $\left\{N_{s}: s \leq T_{1}\right\}$, and so T_{2} is independent of T_{1} with

$$
P\left(T_{2}>t\right)=P\left(N_{T_{1}+t}-N_{T_{1}}=0\right)=e^{-\lambda t}
$$

so $T_{2} \sim$ exponential (λ) with the remaining results for the T_{i} following similarly.

- put $S_{n}=T_{1}+\cdots+T_{n}=$ arrival time for the n-th event \sim gamma (n, λ)

Lemma VI. 14 If $X \sim \operatorname{gamma}(n, \lambda)$, then recalling $\Gamma(n)=(n-1)$! for $x>0$

$$
P(X>x)=\sum_{k=0}^{n-1} \frac{(\lambda x)^{k}}{k!} e^{-\lambda x}
$$

Proof: We have

$$
P(X>x)=\int_{x}^{\infty} \frac{\lambda^{n} z^{n-1}}{(n-1)!} e^{-\lambda z} d z
$$

using integration by parts with

$$
\begin{aligned}
& u=z^{n-1}, d u=(n-1) z^{n-2}, d v=e^{-\lambda z}, v=-e^{-\lambda z} / \lambda \\
= & \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x}+\int_{x}^{\infty} \frac{\lambda^{n-1} z^{n-2}}{(n-2)!} e^{-\lambda z} d z \\
= & \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x}+\frac{(\lambda x)^{n-2}}{(n-2)!} e^{-\lambda x}+\cdots+\frac{\lambda x}{1!} e^{-\lambda x}+\int_{x}^{\infty} \lambda e^{-\lambda z} d z
\end{aligned}
$$

which gives the result since $\int_{x}^{\infty} \lambda e^{-\lambda z} d z=e^{-\lambda x}$.

Proposition VI. 15 The process $\left\{X_{t}: t \geq 0\right\}$ constructed from r.v.'s $T_{1}, T_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim}$ exponential (λ) by (with $T_{0}=0$)

$$
X_{t}=i \text { when } S_{i} \leq t<S_{i+1}
$$

is a Poisson process of intensity λ.
Proof: Using Lemma VI. $14 P\left(X_{t} \leq i\right)=P\left(S_{i+1}>t\right)=\sum_{k=0}^{i} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$ which is the cdf of the Poisson (λt). Further, if $t_{1}<t_{2}$, then

$$
P\left(X_{t_{1}}=i, X_{t_{2}}-X_{t_{1}}=j\right)=P\left(S_{i} \leq t_{1}<S_{i+1}, S_{i+j} \leq t_{2}<S_{i+j+1}\right)
$$

and if $j \neq 0,1$, then

$$
\begin{aligned}
& P\left(S_{i} \leq t_{1}<S_{i+1}, S_{i+j} \leq t_{2}<S_{i+j+1}\right) \\
= & P\left(\begin{array}{l}
U_{1}=S_{i} \leq t_{1}, t_{1}-U_{1}<V_{1}=T_{i+1}<t_{2}-U_{1} \\
U_{2}=T_{i+2}+\cdots+T_{i+j} \leq t_{2}-U_{1}-V_{1} \\
t_{2}-U_{1}-V_{1}-U_{2}<V_{2}=T_{i+j+1}
\end{array}\right) .
\end{aligned}
$$

Now $U_{1}, V_{1}, U_{2}, V_{2}$ are mutually statistically independent with

$$
\begin{aligned}
& U_{1} \sim \operatorname{gamma}(i, \lambda), V_{1} \sim \operatorname{gamma}(1, \lambda) \\
& U_{2} \sim \operatorname{gamma}(j-1, \lambda), V_{2} \sim \operatorname{gamma}(1, \lambda)
\end{aligned}
$$

Therefore, with $g(\cdot, \alpha, \lambda)$ denoting the gamma (α, λ) density,

$$
\begin{aligned}
& P\left(X_{t_{1}}=i, X_{t_{2}}-X_{t_{1}}=j\right) \\
= & \int_{0}^{t_{1}} g_{i, \lambda}\left(u_{2}\right) \int_{t_{1}-u_{1}}^{t_{2}-u_{1}} g_{1, \lambda}\left(v_{1}\right) \int_{0}^{t_{2}-u_{1}-v_{1}} g_{j-1, \lambda}\left(u_{2}\right) \int_{t_{2}-u_{1}-v_{1}-u_{2}}^{\infty} g_{1, \lambda}\left(v_{2}\right) \\
= & \frac{\left(\lambda t_{1}\right)^{i}}{i!} e^{-\lambda t_{1} d u_{2} d v_{2} d u_{1}} \frac{\left(\lambda\left(t_{2}-t_{1}\right)\right)^{j}}{j!} e^{-\lambda\left(t_{2}-t_{1}\right)} \text { after doing the integration }
\end{aligned}
$$

and a similar result is obtained when $j=0$ or $j=1$. So $X_{t_{1}} \sim$ Poisson $\left(\lambda t_{1}\right)$ independent of $X_{t_{2}}-X_{t_{1}} \sim \operatorname{Poisson}\left(\lambda\left(t_{2}-t_{1}\right)\right)$ and this can be generalized to an arbitrary number of increments.

- this provides a way to simulate (approximately) a Poisson process of intensity λ

1. select n and generate $T_{1}, T_{2}, \ldots, T_{n} \stackrel{\text { i.i.d. }}{\sim} \operatorname{exponential}(\lambda)$
2. compute $S_{1}, S_{2}, \ldots, S_{n}$
3. compute $N_{t}=i$ when $S_{i} \leq t<S_{i+1}$

- note $E\left(S_{n}\right)=n / \lambda, \operatorname{Var}\left(S_{n}\right)=n / \lambda^{2}$ will give you some idea of how big n has to be to cover say $[0, t]$ as

$$
P\left(S_{n}>t\right)=P\left(\frac{\frac{1}{n} S_{n}-\frac{1}{\lambda}}{\sqrt{1 / n \lambda^{2}}}>\frac{\frac{1}{n} t-\frac{1}{\lambda}}{\sqrt{1 / n \lambda^{2}}}\right)=P\left(Z_{n}>\frac{\lambda t}{\sqrt{n}}-\sqrt{n}\right)
$$

where $Z_{n} \xrightarrow{d} N(0,1)$ and $\lambda t / \sqrt{n}-\sqrt{n} \rightarrow-\infty$
Exercise VI. 6 Simulate a Poisson process of intensity $\lambda=1$ and plot the sample path on [0,50]

Proposition VI. 16 (Superposition) If $\left\{N_{i, t}: t \geq 0\right\}$ is a Poisson process of intensity λ_{i} for $i=1, \ldots, k$, and these processes are mutually statistically independent, then $\left\{\sum_{i=1}^{k} N_{i, t}: t \geq 0\right\}$ is a Poisson process of intensity $\sum_{i=1}^{k} \lambda_{i}$.

Proof: Exercise VI. 7

- note for $\delta>$ then $P\left(N_{t+\delta}-N_{t}=0\right)=e^{-\lambda \delta} \rightarrow 1$ as $\delta \rightarrow 0$

Proposition VI. 17 A Poisson process satisfies
(i) $P\left(N_{t+\delta}-N_{t}=1\right)=\lambda \delta+o(\delta)$
(ii) $P\left(N_{t+\delta}-N_{t} \geq 2\right)=o(\delta)$.

Proof:
(i) $P\left(N_{t+\delta}-N_{t}=1\right)=\lambda \delta e^{-\lambda \delta}=\lambda \delta \sum_{k=0}^{\infty} \frac{(-\lambda \delta)^{k}}{k!}=\lambda \delta+o(\delta)$,
(ii) $P\left(N_{t+\delta}-N_{t} \geq 2\right)=1-P\left(N_{t+\delta}-N_{t}=0\right)-P\left(N_{t+\delta}-N_{t}=1\right)$

$$
\begin{aligned}
& =1-e^{-\lambda \delta}-\lambda \delta e^{-\lambda \delta}=1-\sum_{k=0}^{\infty} \frac{(-\lambda \delta)^{k}}{k!}-\lambda \delta \sum_{k=0}^{\infty} \frac{(-\lambda \delta)^{k}}{k!} \\
& =-\sum_{k=2}^{\infty}\left(\frac{(-\lambda \delta)^{k}}{k!}+\frac{(-\lambda \delta)^{k+1}}{(k+1)!}\right)=o(\delta)
\end{aligned}
$$

- fact - any process satisfying Prop VI. 17 and having independent increments is a Poisson process of intensity λ
- there are also inhomogeneous Poisson processes where the intensity depends on t

Example VI. 5 (clumping)

- suppose $\left\{N_{t}: t \geq 0\right\}$ is a Poisson process of intenstity λ and $T=n \lambda$
- so in each subinterval $[0, \lambda),[\lambda, 2 \lambda), \ldots,[(n-1) \lambda, n \lambda)$ we expect to see

$$
E\left(N_{i \lambda}-N_{(i-1) \lambda}\right)=\lambda
$$

events (one event when $\lambda=1$)

- but for fixed $j>0$

$$
\begin{aligned}
& P\left(N_{i \lambda}-N_{(i-1) \lambda} \geq j \text { for some } i\right) \\
= & 1-P\left(N_{i \lambda}-N_{(i-1) \lambda}<j \text { for all } i\right) \\
\geq & 1-\prod_{i=1}^{n} P\left(N_{\lambda}<j\right) \text { where } N_{\lambda} \sim \operatorname{Poisson}(\lambda) \\
= & 1-P^{n}\left(N_{\lambda}<j\right) \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Example VI. 6 (Waiting time paradox)

- suppose buses arrive according to a fixed schedule as given by the i-th bus where buses arrive at times $1 / \lambda, 2 / \lambda, \ldots$
- you choose a time i / λ to catch the bus each day but arrive in the interval $[(i-1) / \lambda, i / \lambda]$ according to a uniform distribution in the interval so on average you will wait a period $i / \lambda-((i-1) / \lambda+i / \lambda) / 2=1 / 2 \lambda$ for the next bus
- suppose there are n buses during the day and clearly the average time between buses is $1 / \lambda$
- but now suppose (unrealistically) buses arrive according to arrival times $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Uniform}(0, n / \lambda)$
- let $N_{t, n}=\#\left\{X_{i}: X_{i} \leq t\right\}=\#$ of arrivals before time $t \sim$ $\operatorname{binomial}\left(n, p_{n}\right)$ for $0 \leq t<n / \lambda$ and $p_{n}=\lambda t / n$ so the expected number of buses arriving in the interval $[0, t]$ is λt (and so the expected number of buses arriving in the interval $[(i-1) / \lambda, i / \lambda]$ is 1
- note that the conditions for convergence of the binomial to the Poisson apply so $N_{t, n} \xrightarrow{d} N_{t} \sim$ Poisson (λt) and for large n we can consider buses arriving (approximately) according to a Poisson process of intensity λ
- suppose you begin waiting at time t and concern is with how long you need to wait on average until the next bus arrives
- then $\left\{N_{t+s}-N_{t}: s \geq 0\right\}$ is an approximate Poisson process of intensity λ, which means that the interarrival times for this process are i.i.d. exponential (λ), and so the mean waiting time for the next bus after time t is $1 / \lambda$, which is twice as long as when the buses are on a fixed schedule!
- note that this reflects the memoryless feature of the exponential distribution for if $T \sim$ exponential (λ), then for $a, b \geq 0$

$$
\begin{aligned}
& P(T>b+a \mid T>a)=\frac{P(T>b+a, T>a)}{P(T>a)} \\
= & \frac{P(T>b+a)}{P(T>a)}=\frac{e^{-\lambda(b+a)}}{e^{-\lambda a}}=e^{-\lambda b}
\end{aligned}
$$

so the probability you will wait an additional b time units doesn't depend on the fact you have already waited a time units

Proposition VI. 18 (Thinning) Suppose $\left\{N_{t}: t \geq 0\right\}$ is a Poisson process of intenstity λ and each arrival is labeled i with probability p_{i} where $\sum p_{i}=1$ and let $\left\{N_{i, t}: t \geq 0\right\}$ denote the process counting the number of arrivals labeled i. Then $\left\{N_{i, t}: t \geq 0\right\}$ is a Poisson process of intensity $p_{i} \lambda$ and these processes are mutually statistically independent.
Proof: Consider interarrival times $T_{1}, T_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim}$ exponential (λ) and labels $L_{1}, L_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim}\left(p_{1}, p_{2}, \ldots\right)$ so $\left(L_{1}, T_{1}\right),\left(L_{2}, T_{2}\right), \ldots$ are i.i.d. Since the process $\left\{N_{i, t}: t \geq 0\right\}$ is constructed from those pairs with label i this implies that the $\left\{N_{i, t}: t \geq 0\right\}$ processes are mutually statistically independent. Also increments from the individual processes are constructed from separate groups of (labeled) arrival times and so are independent. Now if $s<t$, then for the process labelled 1 ,

$$
\begin{aligned}
& P\left(N_{1, t}=j\right)=\sum_{k=j}^{\infty} P\left(N_{1, t}=j \mid N_{t}=k\right) P\left(N_{t}=k\right) \\
= & \sum_{k=j}^{\infty}\binom{k}{j} p_{1}^{j}\left(1-p_{1}\right)^{k-j} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \\
= & \frac{\left(\lambda t p_{1}\right)^{j}}{j!} e^{-\lambda t} \sum_{k=j}^{\infty} \frac{\left(\lambda\left(1-p_{1}\right) t\right)^{k-j}}{(k-j)^{!}} \\
= & \frac{\left(\lambda t p_{1}\right)^{j}}{j!} e^{-\lambda t} e^{\lambda\left(1-p_{i}\right) t}=\frac{\left(p_{1} \lambda t\right)^{j}}{j!} e^{-p_{1} \lambda t}
\end{aligned}
$$

and

$$
\begin{aligned}
& P\left(N_{1, t+s}-N_{1, t}=j\right)=\sum_{k=0}^{\infty} P\left(N_{1, t+s}-N_{1, t}=j, N_{1, t}=k\right) \\
= & \sum_{k=0}^{\infty} \sum_{n=j}^{\infty} \sum_{m=k}^{\infty}\left\{\begin{array}{l}
P\left(N_{1, t+s}=k+j, N_{1, t}=k \mid N_{t}=m, N_{t+s}=m+n\right) \\
\times P\left(N_{t}=m, N_{t+s}-N_{t}=n\right)
\end{array}\right. \\
= & \sum_{k=0}^{\infty} \sum_{n=j}^{\infty} \sum_{m=k}^{\infty}\left\{\begin{array}{l}
\left.\binom{m}{k} p_{1}^{k}\left(1-p_{1}\right)^{m-k} \frac{(\lambda t)^{m}}{m!} e^{-\lambda t}\right\} \\
\times\left\{\binom{n}{j} p_{1}^{j}\left(1-p_{1}\right)^{n-k} e^{-\lambda t} \frac{(\lambda s)^{n}}{n!} e^{-\lambda s}\right\}
\end{array}\right. \\
= & \sum_{k=0}^{\infty} \frac{\left(p_{1} \lambda t\right)^{k}}{k!} e^{-p_{1} \lambda t} \frac{\left(p_{1} \lambda s\right)^{j}}{j!} e^{-p_{1} \lambda s}=\frac{\left(p_{1} \lambda s\right)^{j}}{j!} e^{-p_{1} \lambda s}
\end{aligned}
$$

so the increments are Poisson of intensity $p_{1} \lambda$ and the same argument applies to any of the labelled processes.

- a Poisson process is a particular example of what is known as a counting process as it counts the number of events occurring randomly in any subset (a, b) of $[0, \infty)$
- you can also have processes that count the number of events occurring randomly in any subset of a general set S (e.g. $R^{1}, R^{2}, R^{3}, S^{1}, S^{2}$, etc.)
- if there is a measure μ on S (e.g. volume measure) we say the process is
a Poisson process of intensity λ if, whenever $A_{1}, A_{2}, \ldots \subset S$ satisfy $\mu\left(A_{i}\right)<\infty$ and $A_{i} \cap A_{j}=\phi$ for all i and $j \neq i$, then the counts are mutually staistically independent and such that the count for A_{i} is distributed Poisson $\left(\lambda \mu\left(A_{i}\right)\right)$

Exercise VI. 8 Text 4.3.7
Exercise VI. 9 Text 4.3.8
Exercise VI. 10 Text 4.3.18

