
Probability and Stochastic Processes I I - Lecture 6a

Michael Evans
University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes I I - Lecture 6a 2024 1 / 26



VI Continuous Processes
- we consider processes where the time domain T and/or the state space
is a continuous set like T = [0,∞) or T = R1

VI.1 Brownian Motion (Wiener Process)

De�nition VI.1 A s.p. fWt : t � 0g is a Brownian motion (standard
Wiener process) if (i) P(W0 = 0) = 1 (ii) the process has independent
increments, namely, for any 0 < t1 < � � � < tk then
Wt1 ,Wt2 �Wt1 , . . . ,Wtk �Wtk�1 are mutually stat. ind. and (iii)
Wt �Ws � N(0, t � s) for any 0 � s � t. �
- then fXt : t � 0g with Xt = τWt � N(0, τ2(t � s)) is a general
Brownian motion
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Proposition VI.1 fXt : t � 0g is a Gaussian process with mean function
0 and autocovariance function σ(s, t) = τ2min(s, t).

Proof: For any 0 = t0 < t1 < � � � < tn and c1, . . . , cn 2 R1

n

∑
i=1
ciXti = τ

n

∑
i=1
ciWti = τ[cn(Wtn �Wtn�1) +

(cn�1 + cn)(Wtn�1 �Wtn�2) + � � �+ (c1 + � � �+ cn)Wt1

� N

0@0, τ2 n

∑
i=1

 
n�i+1
∑
j=1

cn�j+1

!2
(ti � ti�1)

1A
and so (Xt1 , . . . ,Xtn )

0 is multivariate normal since every linear combination
is normal (Prop. III.9.8 in STAC62). Also,

σ(s, t) = E (XsXt ) = τ2E (WsWt )
s�t
= τ2E (Ws (Ws +Wt �Ws ))

= τ2E (W 2
s ) + τ2E (Ws (Wt �Ws )) = τ2s + τ20 = τ2s = τ2min(s, t).

Therefore, (Xt1 , . . . ,Xtn )
0 � Nn(0,τ2(min(ti , tj ))) and so by KCT this is a

Gaussian process. �
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Proposition VI.2 There exists a version of fWt : t � 0g also satisfying
(iv) P(Wt is continuous in t) = 1 and (v) P(Wt is nowhere di¤erentiable
in t) = 1.
Proof: Accept.

- we restrict attention hereafter to a version where Prop. VI.2 applies

Example VI.1

- let fWt : t � 0g be a Brownian motion and de�ne fYt : t � 0g by
Yt = αWt/α2 then

(i) Y0 = 0
(ii) or any 0 < t1 < � � � < tk then Yt1 = αWt1/α2 ,
Yt2 � Yt1 = α(Wt2/α2 �Wt21/α2), . . . are mutually stat. ind. and
(iii) Yt � Ys � N(0, α2(t/α2 � s/α2)) = N(0, t � s) for any 0 � s � t
(iv) the sample paths of fYt : t � 0g are continuous
- in other words a Brownian motion is de�ned in terms of its distributional
properties and there are many stochastic processes that satisfy these
�
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- how does Brownian motion arise? as a limiting process

- suppose Z1,Z2, . . . i .i .d .� �1+ 2Bernoulli(1/2) with
E (Zi ) = 0,Var(Zi ) = 1 and put S0 = 0,Sn = ∑n

i=1 Zi a ssrw

Proposition VI.3 (Donsker�s Theorem or Invariance Principle) As n! ∞,n
n�1/2Sbntc : t 2 [0, 1]

o
d! fWt : t 2 [0, 1]g

- space is shrunk by factor 1/
p
n and time speeded up by factor n

- note when t = k/n for k 2 f0, . . . , n� 1g, then

n�1/2Sbntc = n�1/2Sk = n
�1/2

k

∑
i=1
Zi =

�
k
n

�1/2p
k

 
1
k

k

∑
i=1
Zi

!

= t1/2
p
k

 
1
k

k

∑
i=1
Zi

!
d! t1/2N(0, 1) = N(0, t)

as n, k ! ∞ with t = k/n �xed (by the CLT)
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- sample paths t ! n�1/2Sbntc are not continuous but for
k 2 f0, . . . , n� 1g

t ! n�1/2 �(1� nt + k)Sbntc + (nt � k)Sbntc+1� for t 2 �kn , k + 1n
�

has continuous sample paths and the same convergence result applies and
note no derivative exists at each endpoint t = k/n or t = (k + 1)/n

- for a Brownian motion on [0, t0] thenn
(t0/n)

1/2 Sbnt/t0c : t 2 [0, t0]
o

d! f(Wt : t 2 [0, t0]g

and for k 2 f0, . . . , n� 1g

t ! (t0/n)1/2 �(1� nt/t0 + k)Sbnt/t0c + (nt/t0 � k)Sbnt/t0c+1� for
t 2

�
k
n
t0,
k + 1
n

t0

�
has continuous sample paths
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- these results also tell us how to simulate (approximately) from
fWt : t 2 [0, t0]g

(1) choose n, generate U1, . . . ,Un
i .i .d .� Bernoulli(1/2) with Zi = �1+ 2Ui ,

(2) for k 2 f1, . . . , ng compute Sk = ∑k
i=1 Zi and

(3) Wt = (t0/n)1/2 [(1� nt/t0 + k)Sk + (nt/t0 � k)Sk+1] for
t 2

� k
n t0,

k+1
n t0

�
for k 2 f0, . . . , n� 1g
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Exercise VI.1 Generate two (approximate) sample paths for a Brownian
motion on [0, 2.5] and plot them.

De�nition VI.2 A process fXt : t 2 Tg with T � R1 is a Markov process
if it satis�es Xtn jXt1 , . . . ,Xtn�1 � Xtn jXtn�1 for all n and times
t1 < � � � < tn.
Proposition VI.5 A general Bm fXt : t � 0g is a Markov process.
Proof: We have that

P(Xtn � xn jXt1 = x1, . . . ,Xtn�1 = xn�1)
= P(Xtn � Xtn�1 � xn � xn�1 jXt1 � X0 = x1, . . . ,

Xtn�1 � Xtn�2 = xn�1 � xn�2)
= P(Xtn � Xtn�1 � xn � xn�1) by independent increments
= Φ(τ�1/2(tn � tn�1)�1/2(xn � xn�1))
= P(Xtn � xn jXtn�1 = xn�1) by independent increments

using increments Xtn�1 � X0,Xtn � Xtn�1 . �
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De�nition VI.3 A process fXt : t 2 Tg with T � R1 is a martingale if
E (jXt j) < ∞ for all t and

E (Xtn jXt1 , . . . ,Xtn�1) = Xtn�1

for all n and times t1 < � � � < tn.
Proposition VI.5 A general Bm fXt : t � 0g is a martingale.
Proof: We have that Xtn � Xtn�1 is statistically independent of the random
vector (Xt1 , . . . ,Xtn�1) for every n and t1 < � � � < tn and so

E (Xt jXt1 , . . . ,Xtn�1) = E (Xtn�1 + (Xt � Xtn�1) jXt1 , . . . ,Xtn�1)
= Xtn�1 + E (Xt � Xtn�1) = Xtn�1 .

�
- note that the de�nitions of Markov process and martingale also apply to
conditioning on uncountably many values such as fXs : for 0 � s � s0g
where s0 < t
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- T : [0,∞) is a stopping time for the process fXt : t � 0g if

fT � tg 2 AfXs :0�s�tg

- Tb = inffs : Xs = bg is a stopping time, called the �rst passage time of
b, since for b > 0

fTb � tg = fTb > tgc = fXs < b for s � tgc 2 AfXs :0�s�tg

and this makes sense because Xt has continuous sample paths so if ever

Xs (ω) � b the sample path must have hit b and similarly when b < 0
- note let qn 2 Q be s.t. qn ! t so by the cty of sample paths
Xqn (ω)! Xt (ω) so the sample paths are determined at the rational
times which are countable
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- we say fXt : t � 0g has the strong Markov property whenever
XT+t j fXs : s � Tg � XT+t jXT for any stopping time T for the process

- fact: it can be proven that a Bm has the strong Markov property and
that XT+t � XT jXT = b is a Bm independent of fXs : 0 � s � Tg
Proposition VI.6 For Bm fWt : t � 0g then P(Tb < ∞) = 1.
Proof: Since the sample paths of fWt : t � 0g are continuous, for b > 0

p = P(Tb < ∞) = lim
t!∞

P(Tb < t) � lim
t!∞

P(Wt > b)

= lim
t!∞

P(
p
tZ > b) where Z � N(0, 1)

= lim
t!∞

(1�Φ(b/
p
t)) = 1/2

and so this inequality holds for any b.
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Then by the Strong Markov property for t 0 < t

P(T2b < t jTb = t 0)
= P(WTb+s = 2b for some s 2 (t 0, t) jWs < b for s < t 0 = Tb)

= P(WTb+s �WTb = b for some s 2 (t 0, t) jWs < b for s < t 0 = Tb)

= P(Tb < t � t 0).

Therefore,

P(T2b < ∞) = lim
t!∞

P(T2b < t)

= lim
t!∞

Z t

0
P(T2b < t jTb = t 0)PTb (dt 0)

= lim
t!∞

Z t

0
P(Tb < t � t 0)PTb (dt 0)

= lim
t!∞

Z ∞

0
P(Tb < t � t 0)I(0,t ](t 0)PTb (dt 0) and by MCT

=
Z ∞

0
lim
t!∞

P(Tb < t � t 0)I(0,t ](t 0)PTb (dt 0) = p2 � 1/2
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and by repeating this argument pn = limt!∞ P(Tnb < t) � 1/2. This
implies p = 1 otherwise pn ! 0 as n! ∞. �
Lemma VI.7 If X � N(0, σ2), then Y = jX j has density (2/σ)ϕ(y/σ)
for y � 0.
Proof: For y � 0 the cdf of Y is given by

P(Y � y) = P(�y � X � y) = Φ(y/σ)�Φ(�y/σ) = 2Φ(y/σ)� 1

and so the pdf of Y is dP(Y � y)/dy = (2/σ)ϕ(y/σ). �
- note -

P(Y � y) = 1� (2Φ(y/σ)� 1) = 2(1�Φ(y/σ)) = 2P(X � y)
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Proposition VI.8 For Bm fWt : t � 0g then Mt = maxfWs : 0 � s � tg
has the same distribution as jWt j with density, for m � 0,

fMt (m) =

r
2

πt
exp

�
�m

2

2t

�
.

Proof: Suppose m > 0, then

P(Mt � m) = P(Mt � m,Wt �m � 0) + P(Mt � m,Wt �m < 0).
and using fTm � tg = fMt � mg we have

P(Mt � m,Wt �m < 0) = P(Wt �WTm < 0,Tm � t).
Then since the distribution of Wt �WTm jTm = t 0, when t > t 0, is
symmetrical about 0

P(Mt � m,Wt �m < 0) = P(Wt �WTm < 0 jTm � t)P(Tm � t)
= P(Wt �WTm � 0 jTm � t)P(Tm � t) = P(Mt � m,Wt �m � 0).

Therefore

P(Mt � m) = 2P(Mt � m,Wt � m) = 2P(Wt � m)
since fWt � mg � fMt � mg. This gives the result since Wt � N(0, t).
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Proposition VI.9 For Brownian motion fWt : t � 0g then Tb has density

fTb (t) =
jbjp
2πt3

exp
�
�b

2

2t

�
.

- this is an example of the inverse Gaussian (or Wald) distribution which in
general has density on (0,∞)

fµ,λ(t) =

r
λ

2πt3
exp

 
� λ

2t

�
t � µ

µ

�2!

with µ,λ > 0 denoted IG (µ,λ), so Tb � IG (∞, b2).
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- a plot with b = 2 and note the long tail

- in fact

E (Tb) =
Z ∞

0
t
jbjp
2πt3

exp
�
�b

2

2t

�
dt putting u = 1/t

=
jbjp
2π

Z ∞

0
u�3/2 exp

�
�b

2

2
u
�
du = ∞

Proof of Prop. VI.9: We have from Prop. VI.8

P(Tb � t) = P(Mt � b) =
Z ∞

b

r
2

πt
exp

�
�m

2

2t

�
dm

and making the change of variable m! u = b2t/m2

=
Z t

0

jbjp
2πu3

exp
�
� b

2

2u

�
du

which implies the result by di¤erentiating wrt to t. �
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Example VI.2

- for a, b > 0 put T�a,b = min(T�a,Tb) which is a stopping time and

P(T�a,b < ∞) = P(T�a < ∞ or Tb < ∞) = 1� P(T�a = ∞,Tb = ∞)
� 1� P(T�a = ∞) = 1.

- since Bm is a martingale and jWt jIfT�a,b�tg � max(a, b) so Prop. V.10
(Optional Stopping Corollary) applies (suitably generalized) which implies

E (WT�a,b ) = E (W0) = 0 = P(WT�a,b = �a)(�a) + P(WT�a,b = b)b

= (1� P(WT�a,b = b))(�a) + P(WT�a,b = b)b

which implies
P(WT�a,b = b) =

a
a+ b

�
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Proposition VI.10 If Yt = W 2
t � t, then fYt : t � 0g is a martingale.

Proof: For 0 < t < s and using the Strong Markov property with stopping
time T � t and Prop. VI.5

E (Ys j fWr : r � tg) = E (W 2
s � s j fWr : r � tg)

= Var(Ws j fWr : r � tg) + (E (Ws j fWr : r � tg))2 � s
= Var((Ws �Wt ) +Wt j fWr : r � tg) + (E (Ws j fWr : r � tg))2 � s
= (s � t) +W 2

t � s = W 2
t � t = Yt .

Now AfYr :r�tg � AfWr :r�tg and therefore by Prop. V.14

E (Ys j fYr : r � tg) = E (E (Ys j fWr : r � tg) j fYr : r � tgg
= E (E (Yt j fYr : r � tgg = Yt

�
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Example VI.3

- for a, b > 0 put T�a,b = min(T�a,Tb) which is a stopping time
forfWt : t � 0g
- then

E (YT�a,b ) = E (W
2
T�a,b � T�a,b) = E (W

2
T�a,b )� E (T�a,b)

=
a2b
a+ b

+
ab2

a+ b
� E (T�a,b) = ab� E (T�a,b)

which establishes
E (T�a,b) = ab

provided E (YT�a,b ) = E (Y0) = 0

- now Tm = min(T�a,b ,m) is a bounded stopping time and fYt : t � 0g
is a martingale and so E (YTm ) = E (Y0) = 0 by the Optional Stopping
lemma, Prop V.8 and so

E (YTm ) = E (W
2
Tm )� E (Tm) = 0
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- then Tm
wp1! T�a,b as m �! ∞ which implies

E (T ) = lim
m!∞

E (Tm) by MCT

= lim
m!∞

E (W 2
Tm )

= E (W 2
T�a,b ) = ab by DCT

since W 2
Tm

wp1! W 2
T�a,b

and W 2
T�a,b

� max(a2, b2) and E (W 2
T�a,b

) = ab
�
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De�nition VI.4 A process fXt : t � 0g s.t. Xt = x0 + µt + σWt is called
a di¤usion with initial value x0, drift µ and volatility σ.

- sometimes this is denoted by X0 = x0 and dXt = µdt + σdWt

Proposition VI.11 If fXt : t � 0g is a di¤usion then
E (Xt ) = x0 + µt,Var(Xt ) = σ2t and Cov(Xs ,Xt ) = σ2min(s, t) and

Xt � Xs � N(µ(t � s), σ2(t � s))

and nonoverlapping increments are mutually statistically independent.

Exercise VI.2 Text 4.1.4

Exercise VI.3 Text 4.1.6

Exercise VI.4 Text 4.1.11

Exercise VI.5 Text 4.1.12
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Example VI.4 Stock options - continuous

Xt = price of stock at time t � 0 = x0 exp(µt + σWt )

- so Yt = log x0 + µt + σWt is a di¤usion

- this is an assumption here but it can be justi�ed by looking at the limit of
a model (the binomial model) where there are n time steps and the stock
goes up by a �xed factor u > 1 or down by a �xed factor d < 1 at each
time step, so the stock price is ux0 or dx0 where u = 1+ ru , d = 1� rd
- relating this to the discrete case the martingale probability that the stock
goes up in one period is

x0 � (1� rd )x0
(1+ ru)x0 � (1� rd )x0

=
rd

ru + rd

- but a more complete analysis also takes into account the risk-free rate r
where no arbitrage implies rd < r < ru and in that case the martingale
probability that the stock goes up is (r � rd )/(ru + rd )
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- after one year 1 unit grows to (1+ r), if instead it compounds n times
during the year then 1 unit grows to (1+ r/n)n ! er and if this is done
for t years 1 unit grows to (1+ r/n)nt ! ert and t > 0

- since 1/n! 0 this referred to as continuous compounding

- so a stock price Xt at future time t has present value

Dt = e�rtXt = e�rtx0 exp(µt + σWt ) = x0 exp((µ� r)t + σWt )

- what price C should be paid for a (European) call with strike price K at
strike time S?

- when is the process fDt : t � 0g a martingale, for s0 < t?
E (Dt j fDs : 0 � s � s0g) = Ds0E (Dt/Ds0 j fDs : 0 � s � s0gg

= Ds0E (exp((µ� r)(t � s0) + σ(Wt �Ws0) j fWs : 0 � s � s0g)
= Ds0 exp((µ� r)(t � s0))E (exp(σ(Wt �Ws0))

and E (exp(σ(Wt �Ws0)) = mgf of N(0, t � s0) r.v. evalated at σ

= Ds0 exp((µ� r)(t � s0)) exp(σ2(t � s0)/2) = Ds0 exp((µ� r + σ2/2)(t � s0))
= Ds0 i¤ µ = r � σ2/2.
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Proposition VI.11 (Black-Scholes) Under the martingale probability
distribution the no-arbitrage price for the call is given by

C = E (e�rS max(0,XS �K )) = x0Φ
�
(r + σ2/2)S � log(K/x0)

σS1/2

�
�

e�rSKΦ
�
(r � σ2/2)S � log(K/x0)

σS1/2

�
Proof: We have E (e�rS max(0,XS �K )) = e�rSE (max(0,XS �K )) and

E (max(0,XS �K )) =
Z ∞

K
(x �K )PXS (dx)

=
Z ∞

K
x PXS (dx)�KPXS (XS > K )

PXS (XS > K ) = P(x0 exp(µS + σWS ) > K )

= P
�
WS >

log(K/x0)� µS
σ

�
= P

�
WS <

µS � log(K/x0)
σ

�
= Φ

�
µS � log(K/x0)

σS1/2

�
since WS � N(0,S).
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Since XS > K i¤ x0 exp(µS + σWS ) > K i¤ WS > (log(K/x0)� µS)/σZ ∞

(log(K/x0)�µS )/σ
x0 exp(µS + σw)PWS (dw)

= x0 exp(µS)
Z ∞

(log(K/x0)�µS )/σ
exp(σw)PWS (dw)Z ∞

(log(K/x0)�µS )/σ
exp(σw)PWS (dw)

=
Z ∞

(log(K/x0)�µS )/σ

1p
2πS

exp
�

σw � w
2

2S

�
dw

= exp(σ2S/2)
Z ∞

(log(K/x0)�µS )/σ

1p
2πS

exp
�
� (w � σS)2

2S

�
dw

= exp(σ2S/2)
�
1�Φ

�
log(K/x0)� µS � σ2S

σS1/2

��
= exp(σ2S/2)Φ

�
(µ+ σ2)S � log(K/x0)

σS1/2

�
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and therefore Z ∞

(log(K/x0)�µS )/σ
x0 exp(µS + σw)PWS (dw)

= x0 exp(µS + σ2S/2)Φ
�
(µ+ σ2)S � log(K/x0)

σS1/2

�
= x0 exp(rS)Φ

�
(r + σ2/2)S � log(K/x0)

σS1/2

�
which completes the proof. �
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