Probability and Stochastic Processes I I - Lecture 6 a

Michael Evans
University of Toronto
https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

VI Continuous Processes

- we consider processes where the time domain T and/or the state space is a continuous set like $T=[0, \infty)$ or $T=R^{1}$

VI. 1 Brownian Motion (Wiener Process)

Definition VI. 1 A s.p. $\left\{W_{t}: t \geq 0\right\}$ is a Brownian motion (standard Wiener process) if (i) $P\left(W_{0}=0\right)=1$ (ii) the process has independent increments, namely, for any $0<t_{1}<\cdots<t_{k}$ then $W_{t_{1}}, W_{t_{2}}-W_{t_{1}}, \ldots, W_{t_{k}}-W_{t_{k-1}}$ are mutually stat. ind. and (iii) $W_{t}-W_{s} \sim N(0, t-s)$ for any $0 \leq s \leq t . \square$

- then $\left\{X_{t}: t \geq 0\right\}$ with $X_{t}=\tau W_{t} \sim N\left(0, \tau^{2}(t-s)\right)$ is a general Brownian motion

Proposition VI. $1\left\{X_{t}: t \geq 0\right\}$ is a Gaussian process with mean function 0 and autocovariance function $\sigma(s, t)=\tau^{2} \min (s, t)$.
Proof: For any $0=t_{0}<t_{1}<\cdots<t_{n}$ and $c_{1}, \ldots, c_{n} \in R^{1}$

$$
\begin{aligned}
& \sum_{i=1}^{n} c_{i} X_{t_{i}}=\tau \sum_{i=1}^{n} c_{i} W_{t_{i}}=\tau\left[c_{n}\left(W_{t_{n}}-W_{t_{n-1}}\right)+\right. \\
& \left(c_{n-1}+c_{n}\right)\left(W_{t_{n-1}}-W_{t_{n-2}}\right)+\cdots+\left(c_{1}+\cdots+c_{n}\right) W_{t_{1}} \\
\sim & N\left(0, \tau^{2} \sum_{i=1}^{n}\left(\sum_{j=1}^{n-i+1} c_{n-j+1}\right)^{2}\left(t_{i}-t_{i-1}\right)\right)
\end{aligned}
$$

and so $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)^{\prime}$ is multivariate normal since every linear combination is normal (Prop. III.9.8 in STAC62). Also,

$$
\begin{aligned}
& \sigma(s, t)=E\left(X_{s} X_{t}\right)=\tau^{2} E\left(W_{s} W_{t}\right) \stackrel{s \leq t}{=} \tau^{2} E\left(W_{s}\left(W_{s}+W_{t}-W_{s}\right)\right) \\
= & \tau^{2} E\left(W_{s}^{2}\right)+\tau^{2} E\left(W_{s}\left(W_{t}-W_{s}\right)\right)=\tau^{2} s+\tau^{2} 0=\tau^{2} s=\tau^{2} \min (s, t)
\end{aligned}
$$

Therefore, $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)^{\prime} \sim N_{n}\left(\mathbf{0}, \tau^{2}\left(\min \left(t_{i}, t_{j}\right)\right)\right)$ and so by KCT this is a Gaussian process.

Proposition VI. 2 There exists a version of $\left\{W_{t}: t \geq 0\right\}$ also satisfying (iv) $P\left(W_{t}\right.$ is continuous in $\left.t\right)=1$ and (v) $P\left(W_{t}\right.$ is nowhere differentiable in $t)=1$.
Proof: Accept.

- we restrict attention hereafter to a version where Prop. VI. 2 applies

Example VI. 1

- let $\left\{W_{t}: t \geq 0\right\}$ be a Brownian motion and define $\left\{Y_{t}: t \geq 0\right\}$ by $Y_{t}=\alpha W_{t / \alpha^{2}}$ then
(i) $Y_{0}=0$
(ii) or any $0<t_{1}<\cdots<t_{k}$ then $Y_{t_{1}}=\alpha W_{t_{1} / \alpha^{2}}$,
$Y_{t_{2}}-Y_{t_{1}}=\alpha\left(W_{t_{2} / \alpha^{2}}-W_{t_{21} / \alpha^{2}}\right), \ldots$ are mutually stat. ind. and
(iii) $Y_{t}-Y_{s} \sim N\left(0, \alpha^{2}\left(t / \alpha^{2}-s / \alpha^{2}\right)\right)=N(0, t-s)$ for any $0 \leq s \leq t$
(iv) the sample paths of $\left\{Y_{t}: t \geq 0\right\}$ are continuous
- in other words a Brownian motion is defined in terms of its distributional properties and there are many stochastic processes that satisfy these
- how does Brownian motion arise? as a limiting process
- suppose $Z_{1}, Z_{2}, \ldots \stackrel{i . i . d .}{\sim}-1+2 \operatorname{Bernoulli}(1 / 2)$ with
$E\left(Z_{i}\right)=0, \operatorname{Var}\left(Z_{i}\right)=1$ and put $S_{0}=0, S_{n}=\sum_{i=1}^{n} Z_{i}$ a ssrw
Proposition VI. 3 (Donsker's Theorem or Invariance Principle) As $n \rightarrow \infty$,

$$
\left\{n^{-1 / 2} S_{\lfloor n t\rfloor}: t \in[0,1]\right\} \xrightarrow{d}\left\{W_{t}: t \in[0,1]\right\}
$$

- space is shrunk by factor $1 / \sqrt{n}$ and time speeded up by factor n
- note when $t=k / n$ for $k \in\{0, \ldots, n-1\}$, then

$$
\begin{aligned}
n^{-1 / 2} S_{\lfloor n t\rfloor} & =n^{-1 / 2} S_{k}=n^{-1 / 2} \sum_{i=1}^{k} Z_{i}=\left(\frac{k}{n}\right)^{1 / 2} \sqrt{k}\left(\frac{1}{k} \sum_{i=1}^{k} Z_{i}\right) \\
& =t^{1 / 2} \sqrt{k}\left(\frac{1}{k} \sum_{i=1}^{k} Z_{i}\right) \xrightarrow{d} t^{1 / 2} N(0,1)=N(0, t) \\
\text { as } n, k & \rightarrow \infty \text { with } t=k / n \text { fixed (by the CLT) }
\end{aligned}
$$

- sample paths $t \rightarrow n^{-1 / 2} S_{\lfloor n t\rfloor}$ are not continuous but for $k \in\{0, \ldots, n-1\}$

$$
t \rightarrow n^{-1 / 2}\left[(1-n t+k) S_{\lfloor n t\rfloor}+(n t-k) S_{\lfloor n t\rfloor+1}\right] \text { for } t \in\left[\frac{k}{n}, \frac{k+1}{n}\right]
$$

has continuous sample paths and the same convergence result applies and note no derivative exists at each endpoint $t=k / n$ or $t=(k+1) / n$

- for a Brownian motion on $\left[0, t_{0}\right]$ then

$$
\left\{\left(t_{0} / n\right)^{1 / 2} S_{\left\lfloor n t / t_{0}\right\rfloor}: t \in\left[0, t_{0}\right]\right\} \xrightarrow{d}\left\{\left(W_{t}: t \in\left[0, t_{0}\right]\right\}\right.
$$

and for $k \in\{0, \ldots, n-1\}$

$$
\begin{aligned}
& t \rightarrow\left(t_{0} / n\right)^{1 / 2}\left[\left(1-n t / t_{0}+k\right) S_{\left\lfloor n t / t_{0}\right\rfloor}+\left(n t / t_{0}-k\right) S_{\left\lfloor n t / t_{0}\right\rfloor+1}\right] \text { for } \\
& t \in\left[\frac{k}{n} t_{0}, \frac{k+1}{n} t_{0}\right]
\end{aligned}
$$

has continuous sample paths

- these results also tell us how to simulate (approximately) from $\left\{W_{t}: t \in\left[0, t_{0}\right]\right\}$
(1) choose n, generate $U_{1}, \ldots, U_{n} \stackrel{i . i . d .}{\sim}$ Bernoulli(1/2) with $Z_{i}=-1+2 U_{i}$,
(2) for $k \in\{1, \ldots, n\}$ compute $S_{k}=\sum_{i=1}^{k} Z_{i}$ and
(3) $W_{t}=\left(t_{0} / n\right)^{1 / 2}\left[\left(1-n t / t_{0}+k\right) S_{k}+\left(n t / t_{0}-k\right) S_{k+1}\right]$ for $t \in\left[\frac{k}{n} t_{0}, \frac{k+1}{n} t_{0}\right]$ for $k \in\{0, \ldots, n-1\}$

Exercise VI. 1 Generate two (approximate) sample paths for a Brownian motion on [0,2.5] and plot them.

Definition VI. 2 A process $\left\{X_{t}: t \in T\right\}$ with $T \subset R^{1}$ is a Markov process if it satisfies $X_{t_{n}}\left|X_{t_{1}}, \ldots, X_{t_{n-1}} \sim X_{t_{n}}\right| X_{t_{n-1}}$ for all n and times $t_{1}<\cdots<t_{n}$.

Proposition VI. 5 A general $\mathrm{Bm}\left\{X_{t}: t \geq 0\right\}$ is a Markov process.
Proof: We have that

$$
\begin{aligned}
& P\left(X_{t_{n}} \leq x_{n} \mid X_{t_{1}}=x_{1}, \ldots, X_{t_{n-1}}=x_{n-1}\right) \\
= & P\left(X_{t_{n}}-X_{t_{n-1}} \leq x_{n}-x_{n-1} \mid X_{t_{1}}-X_{0}=x_{1}, \ldots,\right. \\
& \left.X_{t_{n-1}}-X_{t_{n-2}}=x_{n-1}-x_{n-2}\right) \\
= & P\left(X_{t_{n}}-X_{t_{n-1}} \leq x_{n}-x_{n-1}\right) \text { by independent increments } \\
= & \Phi\left(\tau^{-1 / 2}\left(t_{n}-t_{n-1}\right)^{-1 / 2}\left(x_{n}-x_{n-1}\right)\right) \\
= & P\left(X_{t_{n}} \leq x_{n} \mid X_{t_{n-1}}=x_{n-1}\right) \text { by independent increments }
\end{aligned}
$$

using increments $X_{t_{n-1}}-X_{0}, X_{t_{n}}-X_{t_{n-1}}$.

Definition VI. 3 A process $\left\{X_{t}: t \in T\right\}$ with $T \subset R^{1}$ is a martingale if $E\left(\left|X_{t}\right|\right)<\infty$ for all t and

$$
E\left(X_{t_{n}} \mid X_{t_{1}}, \ldots, X_{t_{n-1}}\right)=X_{t_{n-1}}
$$

for all n and times $t_{1}<\cdots<t_{n}$.
Proposition VI. 5 A general $\mathrm{Bm}\left\{X_{t}: t \geq 0\right\}$ is a martingale.
Proof: We have that $X_{t_{n}}-X_{t_{n-1}}$ is statistically independent of the random vector $\left(X_{t_{1}}, \ldots, X_{t_{n-1}}\right)$ for every n and $t_{1}<\cdots<t_{n}$ and so

$$
\begin{aligned}
& E\left(X_{t} \mid X_{t_{1}}, \ldots, X_{t_{n-1}}\right)=E\left(X_{t_{n-1}}+\left(X_{t}-X_{t_{n-1}}\right) \mid X_{t_{1}}, \ldots, X_{t_{n-1}}\right) \\
= & X_{t_{n-1}}+E\left(X_{t}-X_{t_{n-1}}\right)=X_{t_{n-1}}
\end{aligned}
$$

- note that the definitions of Markov process and martingale also apply to conditioning on uncountably many values such as $\left\{X_{s}\right.$: for $\left.0 \leq s \leq s_{0}\right\}$ where $s_{0}<t$
- $T:[0, \infty)$ is a stopping time for the process $\left\{X_{t}: t \geq 0\right\}$ if

$$
\{T \leq t\} \in \mathcal{A}_{\left\{X_{s}: 0 \leq s \leq t\right\}}
$$

- $T_{b}=\inf \left\{s: X_{s}=b\right\}$ is a stopping time, called the first passage time of b, since for $b>0$

$$
\left\{T_{b} \leq t\right\}=\left\{T_{b}>t\right\}^{c}=\left\{X_{s}<b \text { for } s \leq t\right\}^{c} \in \mathcal{A}_{\left\{X_{s}: 0 \leq s \leq t\right\}}
$$

and this makes sense because X_{t} has continuous sample paths so if ever $X_{s}(\omega) \geq b$ the sample path must have hit b and similarly when $b<0$

- note let $q_{n} \in \mathbb{Q}$ be s.t. $q_{n} \rightarrow t$ so by the cty of sample paths $X_{q_{n}}(\omega) \rightarrow X_{t}(\omega)$ so the sample paths are determined at the rational times which are countable
- we say $\left\{X_{t}: t \geq 0\right\}$ has the strong Markov property whenever $X_{T+t}\left|\left\{X_{s}: s \leq T\right\} \sim X_{T+t}\right| X_{T}$ for any stopping time T for the process
- fact: it can be proven that a Bm has the strong Markov property and that $X_{T+t}-X_{T} \mid X_{T}=b$ is a Bm independent of $\left\{X_{s}: 0 \leq s \leq T\right\}$

Proposition VI. 6 For $\mathrm{Bm}\left\{W_{t}: t \geq 0\right\}$ then $P\left(T_{b}<\infty\right)=1$.
Proof: Since the sample paths of $\left\{W_{t}: t \geq 0\right\}$ are continuous, for $b>0$

$$
\begin{aligned}
& p=P\left(T_{b}<\infty\right)=\lim _{t \rightarrow \infty} P\left(T_{b}<t\right) \geq \lim _{t \rightarrow \infty} P\left(W_{t}>b\right) \\
= & \lim _{t \rightarrow \infty} P(\sqrt{t} Z>b) \text { where } Z \sim N(0,1) \\
= & \lim _{t \rightarrow \infty}(1-\Phi(b / \sqrt{t}))=1 / 2
\end{aligned}
$$

and so this inequality holds for any b.

Then by the Strong Markov property for $t^{\prime}<t$

$$
\begin{aligned}
& P\left(T_{2 b}<t \mid T_{b}=t^{\prime}\right) \\
= & P\left(W_{T_{b}+s}=2 b \text { for some } s \in\left(t^{\prime}, t\right) \mid W_{s}<b \text { for } s<t^{\prime}=T_{b}\right) \\
= & P\left(W_{T_{b}+s}-W_{T_{b}}=b \text { for some } s \in\left(t^{\prime}, t\right) \mid W_{s}<b \text { for } s<t^{\prime}=T_{b}\right) \\
= & P\left(T_{b}<t-t^{\prime}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P\left(T_{2 b}<\infty\right)=\lim _{t \rightarrow \infty} P\left(T_{2 b}<t\right) \\
= & \lim _{t \rightarrow \infty} \int_{0}^{t} P\left(T_{2 b}<t \mid T_{b}=t^{\prime}\right) P_{T_{b}}\left(d t^{\prime}\right) \\
= & \lim _{t \rightarrow \infty} \int_{0}^{t} P\left(T_{b}<t-t^{\prime}\right) P_{T_{b}}\left(d t^{\prime}\right) \\
= & \lim _{t \rightarrow \infty} \int_{0}^{\infty} P\left(T_{b}<t-t^{\prime}\right) I_{(0, t]}\left(t^{\prime}\right) P_{T_{b}}\left(d t^{\prime}\right) \text { and by MCT } \\
= & \int_{0}^{\infty} \lim _{t \rightarrow \infty} P\left(T_{b}<t-t^{\prime}\right) I_{(0, t]}\left(t^{\prime}\right) P_{T_{b}}\left(d t^{\prime}\right)=p^{2} \geq 1 / 2
\end{aligned}
$$

and by repeating this argument $p^{n}=\lim _{t \rightarrow \infty} P\left(T_{n b}<t\right) \geq 1 / 2$. This implies $p=1$ otherwise $p^{n} \rightarrow 0$ as $n \rightarrow \infty$.

Lemma VI. 7 If $X \sim N\left(0, \sigma^{2}\right)$, then $Y=|X|$ has density $(2 / \sigma) \varphi(y / \sigma)$ for $y \geq 0$.

Proof: For $y \geq 0$ the cdf of Y is given by

$$
P(Y \leq y)=P(-y \leq X \leq y)=\Phi(y / \sigma)-\Phi(-y / \sigma)=2 \Phi(y / \sigma)-1
$$

and so the pdf of Y is $d P(Y \leq y) / d y=(2 / \sigma) \varphi(y / \sigma)$.

- note -

$$
P(Y \geq y)=1-(2 \Phi(y / \sigma)-1)=2(1-\Phi(y / \sigma))=2 P(X \geq y)
$$

Proposition VI. 8 For $\operatorname{Bm}\left\{W_{t}: t \geq 0\right\}$ then $M_{t}=\max \left\{W_{s}: 0 \leq s \leq t\right\}$ has the same distribution as $\left|W_{t}\right|$ with density, for $m \geq 0$,

$$
f_{M_{t}}(m)=\sqrt{\frac{2}{\pi t}} \exp \left(-\frac{m^{2}}{2 t}\right)
$$

Proof: Suppose $m>0$, then

$$
P\left(M_{t} \geq m\right)=P\left(M_{t} \geq m, W_{t}-m \geq 0\right)+P\left(M_{t} \geq m, W_{t}-m<0\right)
$$

and using $\left\{T_{m} \leq t\right\}=\left\{M_{t} \geq m\right\}$ we have

$$
P\left(M_{t} \geq m, W_{t}-m<0\right)=P\left(W_{t}-W_{T_{m}}<0, T_{m} \leq t\right)
$$

Then since the distribution of $W_{t}-W_{T_{m}} \mid T_{m}=t^{\prime}$, when $t>t^{\prime}$, is symmetrical about 0

$$
\begin{aligned}
& P\left(M_{t} \geq m, W_{t}-m<0\right)=P\left(W_{t}-W_{T_{m}}<0 \mid T_{m} \leq t\right) P\left(T_{m} \leq t\right) \\
= & P\left(W_{t}-W_{T_{m}} \geq 0 \mid T_{m} \leq t\right) P\left(T_{m} \leq t\right)=P\left(M_{t} \geq m, W_{t}-m \geq 0\right)
\end{aligned}
$$

Therefore

$$
P\left(M_{t} \geq m\right)=2 P\left(M_{t} \geq m, W_{t} \geq m\right)=2 P\left(W_{t} \geq m\right)
$$

since $\left\{W_{t} \geq m\right\} \subset\left\{M_{t} \geq m\right\}$. This gives the result since $W_{t} \sim N(0, t)$.

Proposition VI. 9 For Brownian motion $\left\{W_{t}: t \geq 0\right\}$ then T_{b} has density

$$
f_{T_{b}}(t)=\frac{|b|}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{b^{2}}{2 t}\right) .
$$

- this is an example of the inverse Gaussian (or Wald) distribution which in general has density on $(0, \infty)$

$$
f_{\mu, \lambda}(t)=\sqrt{\frac{\lambda}{2 \pi t^{3}}} \exp \left(-\frac{\lambda}{2 t}\left(\frac{t-\mu}{\mu}\right)^{2}\right)
$$

with $\mu, \lambda>0$ denoted $I G(\mu, \lambda)$, so $T_{b} \sim I G\left(\infty, b^{2}\right)$.

- a plot with $b=2$ and note the long tail
- in fact

$$
\begin{aligned}
E\left(T_{b}\right) & =\int_{0}^{\infty} t \frac{|b|}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{b^{2}}{2 t}\right) d t \text { putting } u=1 / t \\
& =\frac{|b|}{\sqrt{2 \pi}} \int_{0}^{\infty} u^{-3 / 2} \exp \left(-\frac{b^{2}}{2} u\right) d u=\infty
\end{aligned}
$$

Proof of Prop. VI.9: We have from Prop. VI. 8

$$
\begin{aligned}
& P\left(T_{b} \leq t\right)=P\left(M_{t} \geq b\right)=\int_{b}^{\infty} \sqrt{\frac{2}{\pi t}} \exp \left(-\frac{m^{2}}{2 t}\right) d m \\
& \text { and making the change of variable } m \rightarrow u=b^{2} t / m^{2} \\
= & \int_{0}^{t} \frac{|b|}{\sqrt{2 \pi u^{3}}} \exp \left(-\frac{b^{2}}{2 u}\right) d u
\end{aligned}
$$

which implies the result by differentiating wrt to t. \square

Example VI. 2

- for $a, b>0$ put $T_{-a, b}=\min \left(T_{-a}, T_{b}\right)$ which is a stopping time and

$$
\begin{aligned}
P\left(T_{-a, b}\right. & <\infty)=P\left(T_{-a}<\infty \text { or } T_{b}<\infty\right)=1-P\left(T_{-a}=\infty, T_{b}=\infty\right) \\
& \geq 1-P\left(T_{-a}=\infty\right)=1
\end{aligned}
$$

- since Bm is a martingale and $\left|W_{t}\right|_{\left\{T_{-a, b} \geq t\right\}} \leq \max (a, b)$ so Prop. V. 10 (Optional Stopping Corollary) applies (suitably generalized) which implies

$$
\begin{aligned}
E\left(W_{T_{-a, b}}\right) & =E\left(W_{0}\right)=0=P\left(W_{T_{-a, b}}=-a\right)(-a)+P\left(W_{T_{-a, b}}=b\right) b \\
& =\left(1-P\left(W_{T_{-a, b}}=b\right)\right)(-a)+P\left(W_{T_{-a, b}}=b\right) b
\end{aligned}
$$

which implies

$$
P\left(W_{T_{-a, b}}=b\right)=\frac{a}{a+b}
$$

Proposition VI. 10 If $Y_{t}=W_{t}^{2}-t$, then $\left\{Y_{t}: t \geq 0\right\}$ is a martingale.
Proof: For $0<t<s$ and using the Strong Markov property with stopping time $T \equiv t$ and Prop. VI. 5

$$
\begin{aligned}
& E\left(Y_{s} \mid\left\{W_{r}: r \leq t\right\}\right)=E\left(W_{s}^{2}-s \mid\left\{W_{r}: r \leq t\right\}\right) \\
= & \operatorname{Var}\left(W_{s} \mid\left\{W_{r}: r \leq t\right\}\right)+\left(E\left(W_{s} \mid\left\{W_{r}: r \leq t\right\}\right)\right)^{2}-s \\
= & \operatorname{Var}\left(\left(W_{s}-W_{t}\right)+W_{t} \mid\left\{W_{r}: r \leq t\right\}\right)+\left(E\left(W_{s} \mid\left\{W_{r}: r \leq t\right\}\right)\right)^{2}-s \\
= & (s-t)+W_{t}^{2}-s=W_{t}^{2}-t=Y_{t}
\end{aligned}
$$

Now $A_{\left\{Y_{r}: r \leq t\right\}} \subset A_{\left\{W_{r}: r \leq t\right\}}$ and therefore by Prop. V. 14

$$
\begin{aligned}
& E\left(Y_{s} \mid\left\{Y_{r}: r \leq t\right\}\right)=E\left(E\left(Y_{s} \mid\left\{W_{r}: r \leq t\right\}\right) \mid\left\{Y_{r}: r \leq t\right\}\right\} \\
= & E\left(E\left(Y_{t} \mid\left\{Y_{r}: r \leq t\right\}\right\}=Y_{t}\right.
\end{aligned}
$$

Example VI. 3

- for $a, b>0$ put $T_{-a, b}=\min \left(T_{-a}, T_{b}\right)$ which is a stopping time for $\left\{W_{t}: t \geq 0\right\}$
- then

$$
\begin{aligned}
& E\left(Y_{T_{-a, b}}\right)=E\left(W_{T_{-a, b}}^{2}-T_{-a, b}\right)=E\left(W_{T_{-a, b}}^{2}\right)-E\left(T_{-a, b}\right) \\
= & \frac{a^{2} b}{a+b}+\frac{a b^{2}}{a+b}-E\left(T_{-a, b}\right)=a b-E\left(T_{-a, b}\right)
\end{aligned}
$$

which establishes

$$
E\left(T_{-a, b}\right)=a b
$$

provided $E\left(Y_{T_{-a, b}}\right)=E\left(Y_{0}\right)=0$

- now $T_{m}=\min \left(T_{-a, b}, m\right)$ is a bounded stopping time and $\left\{Y_{t}: t \geq 0\right\}$ is a martingale and so $E\left(Y_{T_{m}}\right)=E\left(Y_{0}\right)=0$ by the Optional Stopping lemma, Prop V. 8 and so

$$
E\left(Y_{T_{m}}\right)=E\left(W_{T_{m}}^{2}\right)-E\left(T_{m}\right)=0
$$

- then $T_{m} \xrightarrow{w p 1} T_{-a, b}$ as $m \longrightarrow \infty$ which implies

$$
\begin{aligned}
E(T) & =\lim _{m \rightarrow \infty} E\left(T_{m}\right) \text { by MCT } \\
& =\lim _{m \rightarrow \infty} E\left(W_{T_{m}}^{2}\right) \\
& =E\left(W_{T_{-a, b}}^{2}\right)=a b \text { by DCT }
\end{aligned}
$$

since $W_{T_{m}}^{2} \xrightarrow{w p 1} W_{T_{-a, b}}^{2}$ and $W_{T_{-a, b}}^{2} \leq \max \left(a^{2}, b^{2}\right)$ and $E\left(W_{T_{-a, b}}^{2}\right)=a b$

Definition VI. 4 A process $\left\{X_{t}: t \geq 0\right\}$ s.t. $X_{t}=x_{0}+\mu t+\sigma W_{t}$ is called a diffusion with initial value x_{0}, drift μ and volatility σ.

- sometimes this is denoted by $X_{0}=x_{0}$ and $d X_{t}=\mu d t+\sigma d W_{t}$

Proposition VI. 11 If $\left\{X_{t}: t \geq 0\right\}$ is a diffusion then
$E\left(X_{t}\right)=x_{0}+\mu t, \operatorname{Var}\left(X_{t}\right)=\sigma^{2} t$ and $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\sigma^{2} \min (s, t)$ and

$$
X_{t}-X_{s} \sim N\left(\mu(t-s), \sigma^{2}(t-s)\right)
$$

and nonoverlapping increments are mutually statistically independent.
Exercise VI. 2 Text 4.1.4
Exercise VI. 3 Text 4.1.6
Exercise VI. 4 Text 4.1.11
Exercise VI. 5 Text 4.1.12

Example VI. 4 Stock options - continuous

$$
X_{t}=\text { price of stock at time } t \geq 0=x_{0} \exp \left(\mu t+\sigma W_{t}\right)
$$

- so $Y_{t}=\log x_{0}+\mu t+\sigma W_{t}$ is a diffusion
- this is an assumption here but it can be justified by looking at the limit of a model (the binomial model) where there are n time steps and the stock goes up by a fixed factor $u>1$ or down by a fixed factor $d<1$ at each time step, so the stock price is $u x_{0}$ or $d x_{0}$ where $u=1+r_{u}, d=1-r_{d}$
- relating this to the discrete case the martingale probability that the stock goes up in one period is

$$
\frac{x_{0}-\left(1-r_{d}\right) x_{0}}{\left(1+r_{u}\right) x_{0}-\left(1-r_{d}\right) x_{0}}=\frac{r_{d}}{r_{u}+r_{d}}
$$

- but a more complete analysis also takes into account the risk-free rate r where no arbitrage implies $r_{d}<r<r_{u}$ and in that case the martingale probability that the stock goes up is $\left(r-r_{d}\right) /\left(r_{u}+r_{d}\right)$
- after one year 1 unit grows to $(1+r)$, if instead it compounds n times during the year then 1 unit grows to $(1+r / n)^{n} \rightarrow e^{r}$ and if this is done for t years 1 unit grows to $(1+r / n)^{n t} \rightarrow e^{r t}$ and $t>0$
- since $1 / n \rightarrow 0$ this referred to as continuous compounding
- so a stock price X_{t} at future time t has present value

$$
D_{t}=e^{-r t} X_{t}=e^{-r t} x_{0} \exp \left(\mu t+\sigma W_{t}\right)=x_{0} \exp \left((\mu-r) t+\sigma W_{t}\right)
$$

- what price C should be paid for a (European) call with strike price K at strike time S ?
- when is the process $\left\{D_{t}: t \geq 0\right\}$ a martingale, for $s_{0}<t$?

$$
\begin{aligned}
& E\left(D_{t} \mid\left\{D_{s}: 0 \leq s \leq s_{0}\right\}\right)=D_{s_{0}} E\left(D_{t} / D_{s_{0}} \mid\left\{D_{s}: 0 \leq s \leq s_{0}\right\}\right\} \\
= & D_{s_{0}} E\left(\exp \left((\mu-r)\left(t-s_{0}\right)+\sigma\left(W_{t}-W_{s_{0}}\right) \mid\left\{W_{s}: 0 \leq s \leq s_{0}\right\}\right)\right. \\
= & D_{s_{0}} \exp \left((\mu-r)\left(t-s_{0}\right)\right) E\left(\exp \left(\sigma\left(W_{t}-W_{s_{0}}\right)\right)\right. \\
& \text { and } E\left(\exp \left(\sigma\left(W_{t}-W_{s_{0}}\right)\right)=\operatorname{mgf} \text { of } N\left(0, t-s_{0}\right) \text { r.v. evalated at } \sigma\right. \\
= & D_{s_{0}} \exp \left((\mu-r)\left(t-s_{0}\right)\right) \exp \left(\sigma^{2}\left(t-s_{0}\right) / 2\right)=D_{s_{0}} \exp \left(\left(\mu-r+\sigma^{2} / 2\right)\right. \\
= & D_{s_{0}} \text { iff } \mu=r-\sigma^{2} / 2 .
\end{aligned}
$$

Proposition VI. 11 (Black-Scholes) Under the martingale probability distribution the no-arbitrage price for the call is given by

$$
\begin{aligned}
& C=E\left(e^{-r S} \max \left(0, X_{S}-K\right)\right)=x_{0} \Phi\left(\frac{\left(r+\sigma^{2} / 2\right) S-\log \left(K / x_{0}\right)}{\sigma S^{1 / 2}}\right)- \\
& e^{-r S} K \Phi\left(\frac{\left(r-\sigma^{2} / 2\right) S-\log \left(K / x_{0}\right)}{\sigma S^{1 / 2}}\right)
\end{aligned}
$$

Proof: We have $E\left(e^{-r S} \max \left(0, X_{S}-K\right)\right)=e^{-r S} E\left(\max \left(0, X_{S}-K\right)\right)$ and

$$
\begin{aligned}
& E\left(\max \left(0, X_{S}-K\right)\right)=\int_{K}^{\infty}(x-K) P_{X_{S}}(d x) \\
= & \int_{K}^{\infty} x P_{X_{S}}(d x)-K P_{X_{S}}\left(X_{S}>K\right) \\
& P_{X_{S}}\left(X_{S}>K\right)=P\left(x_{0} \exp \left(\mu S+\sigma W_{S}\right)>K\right) \\
= & P\left(W_{S}>\frac{\log \left(K / x_{0}\right)-\mu S}{\sigma}\right)=P\left(W_{S}<\frac{\mu S-\log \left(K / x_{0}\right)}{\sigma}\right) \\
= & \Phi\left(\frac{\mu S-\log \left(K / x_{0}\right)}{\sigma S^{1 / 2}}\right) \text { since } W_{S} \sim N(0, S) .
\end{aligned}
$$

Since $X_{S}>K$ iff $x_{0} \exp \left(\mu S+\sigma W_{S}\right)>K$ iff $W_{S}>\left(\log \left(K / x_{0}\right)-\mu S\right) / \sigma$

$$
\begin{aligned}
& \int_{\left(\log \left(K / x_{0}\right)-\mu S\right) / \sigma}^{\infty} x_{0} \exp (\mu S+\sigma w) P_{W_{S}}(d w) \\
= & x_{0} \exp (\mu S) \int_{\left(\log \left(K / x_{0}\right)-\mu S\right) / \sigma}^{\infty} \exp (\sigma w) P_{W_{S}}(d w) \\
& \int_{\left(\log \left(K / x_{0}\right)-\mu S\right) / \sigma}^{\infty} \exp (\sigma w) P_{W_{S}}(d w) \\
= & \int_{\left(\log \left(K / x_{0}\right)-\mu S\right) / \sigma}^{\infty} \frac{1}{\sqrt{2 \pi S}} \exp \left(\sigma w-\frac{w^{2}}{2 S}\right) d w \\
= & \exp \left(\sigma^{2} S / 2\right) \int_{\left(\log \left(K / x_{0}\right)-\mu S\right) / \sigma}^{\infty} \frac{1}{\sqrt{2 \pi S}} \exp \left(-\frac{(w-\sigma S)^{2}}{2 S}\right) d w \\
= & \exp \left(\sigma^{2} S / 2\right)\left\{1-\Phi\left(\frac{\log \left(K / x_{0}\right)-\mu S-\sigma^{2} S}{\sigma S^{1 / 2}}\right)\right\} \\
= & \exp \left(\sigma^{2} S / 2\right) \Phi\left(\frac{\left(\mu+\sigma^{2}\right) S-\log \left(K / x_{0}\right)}{\sigma S^{1 / 2}}\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \int_{\left(\log \left(K / x_{0}\right)-\mu S\right) / \sigma}^{\infty} x_{0} \exp (\mu S+\sigma w) P_{W_{S}}(d w) \\
= & x_{0} \exp \left(\mu S+\sigma^{2} S / 2\right) \Phi\left(\frac{\left(\mu+\sigma^{2}\right) S-\log \left(K / x_{0}\right)}{\sigma S^{1 / 2}}\right) \\
= & x_{0} \exp (r S) \Phi\left(\frac{\left(r+\sigma^{2} / 2\right) S-\log \left(K / x_{0}\right)}{\sigma S^{1 / 2}}\right)
\end{aligned}
$$

which completes the proof.

