Probability and Stochastic Processes II - Lecture 5d

Michael Evans
University of Toronto
https://utstat.utoronto.ca/mikevans/stac62/staC6320242.html

2024

- what seems like a slightly more general definition of a martingale: the s.p. $\left\{Y_{n}: n \geq 0\right\}$ is a martingale with respect to the s.p. $\left\{X_{n}: n \geq 0\right\}$ whenever $Y_{n}:\left(\Omega, \mathcal{A}_{X_{0}, \ldots, X_{n}}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right), E\left(\left|Y_{n}\right|\right)<\infty$ and

$$
E\left(Y_{n+1} \mid X_{0}, \ldots, X_{n}\right)=Y_{n}
$$

for every $n \in \mathbb{N}_{0}$.

- certainly the previous definition of a martingale satisfies this where $\left\{Y_{n}: n \geq 0\right\}$ is just the same process as $\left\{X_{n}: n \geq 0\right\}$, i.e., $\left\{\left(n, Y_{n}\right): n \geq 0\right\}=\left\{\left(n, X_{n}\right): n \geq 0\right\}$
- note the requirement $Y_{n}:\left(\Omega, \mathcal{A}_{X_{0}, \ldots, X_{n}}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ is just saying that Y_{n} can be thought of as a function of $\left(X_{0}, \ldots, X_{n}\right)$ and recall $\mathcal{A}_{X_{0}, \ldots, X_{n}} \subset \mathcal{A}$ so Y_{n} is a valid r.v.
- if T is a stopping time for $\left\{X_{n}: n \geq 0\right\}$ then it is not necessarily true that T is a stopping time for $\left\{Y_{n}: n \geq 0\right\}$ since $\mathcal{A}_{Y_{0}, \ldots, Y_{n}} \subset \mathcal{A}_{X_{0}, \ldots, X_{n}}$ but we can still consider Y_{T} as, via the same argument used in Prop. V. 7 (just replace the X^{\prime} 's by Y^{\prime} s), Y_{T} is a r.v.
- in fact we can define $\left\{Y_{n}: n \geq 0\right\}$ as a martingale according to Definition V. 3 but for the stopping time results we only need that T be a stopping time for the underlying stochastic process $\left\{X_{n}: n \geq 0\right\}$
- this follows because

$$
\begin{aligned}
& \left.E\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right) \stackrel{*}{=} E\left(E\left(Y_{n+1} \mid X_{0}, \ldots, X_{n}\right) \mid Y_{0}, \ldots, Y_{n}\right)\right) \\
= & E\left(Y_{n} \mid Y_{0}, \ldots, Y_{n}\right)=Y_{n}
\end{aligned}
$$

where for * we use the general definition of conditional expectation provided previously

Definition V. 2 For random variable Y with $E(|Y|)<\infty$ and sub σ-algebra $\mathcal{C} \subset \mathcal{A}$, then $E(Y \mid \mathcal{C})$ is defined as the unique function satisfying

$$
\begin{aligned}
& \text { (i) } E(Y \mid \mathcal{C}):(\Omega, \mathcal{C}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right) \\
& \text { (ii) } E(H Y)= E(H E(Y \mid \mathcal{C})) \text { for every } H:(\Omega, \mathcal{C}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right) \\
& \text { s.t. } E(|H Y|)<\infty
\end{aligned}
$$

and the following result

Proposition V. 14 Suppose \mathcal{C}, \mathcal{D} are sub σ-algebras of \mathcal{A} (i) when $\mathcal{C} \subset \mathcal{D}$ then $E(E(Y \mid \mathcal{C}) \mid \mathcal{D})=E(Y \mid \mathcal{C})$ and (ii) $E(E(Y \mid \mathcal{D}) \mid \mathcal{C})=E(Y \mid \mathcal{C})$.

- notes

1. All equalities hold $w p 1$.
2. This generalizes the property of conditional probability

$$
P_{(\cdot \mid B)}(A \mid C)=P(A \mid B \cap C)
$$

where $P_{(\cdot \mid B)}=P(\cdot \mid B)$
3. This gives TTE for conditional expectations, namely, if $\mathcal{C} \subset \mathcal{D}$, then
$E(Y \mid \mathcal{C})=E(E(Y \mid \mathcal{D}) \mid \mathcal{C})$ since $\mathcal{C}=\mathcal{C} \cap \mathcal{D}$ (recall
$E(Y \mid\{\phi, \Omega\})=E(Y))$.
Proof: (i) Suppose that $\mathcal{C} \subset \mathcal{D}$. Then $E(E(Y \mid \mathcal{C}) \mid \mathcal{D})=E(Y \mid \mathcal{C})$ since, if $K:(\Omega, \mathcal{D}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$, then $E(K \mid \mathcal{D})=K$ and

$$
E(Y \mid \mathcal{C}):(\Omega, \mathcal{C}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)
$$

implies $E(Y \mid \mathcal{C}):(\Omega, \mathcal{D}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ as $\mathcal{C} \subset \mathcal{D}$.
(ii) We require $E(E(Y \mid \mathcal{D}) \mid \mathcal{C}):(\Omega, \mathcal{C}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ and
$E(H E(Y \mid \mathcal{D}))=E(H E(E(Y \mid \mathcal{D}) \mid \mathcal{C}))$ for every $H:(\Omega, \mathcal{C}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$. But now $E(H E(Y \mid \mathcal{D}))=E(H Y)$ because $H:(\Omega, \mathcal{D}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ as $\mathcal{C} \subset \mathcal{D}$. Also $E(H Y)=E(H E(Y \mid \mathcal{C}))$ by definition and so we have

$$
E(H E(E(Y \mid \mathcal{D}) \mid \mathcal{C}))=E(H E(Y \mid \mathcal{C}))
$$

for every $H:(\Omega, \mathcal{C}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ and we can conclude that $E(Y \mid \mathcal{C})=E(E(Y \mid \mathcal{D}) \mid \mathcal{C})$ since both are r.v.'s wrt \mathcal{C}. \square

- note - when $\mathcal{C} \subset \mathcal{D}$ we can write

$$
E(E(Y \mid \mathcal{C}) \mid \mathcal{D})=E(E(Y \mid \mathcal{D}) \mid \mathcal{C})=E(Y \mid \mathcal{C} \cap \mathcal{D})=E(Y \mid \mathcal{C})
$$

but this result does not hold in general without the nesting (see counterexample at the end of this lecture)

- so * follows from

$$
\begin{aligned}
& E\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right)=E\left(Y_{n+1} \mid \mathcal{A}_{Y_{0}, \ldots, Y_{n}}\right) \\
& E\left(Y_{n+1} \mid X_{0}, \ldots, X_{n}\right)=E\left(Y_{n+1} \mid \mathcal{A}_{X_{0}, \ldots, X_{n}}\right)
\end{aligned}
$$

since $\mathcal{C}=A_{Y_{0}, \ldots, Y_{n}} \subset \mathcal{D}=A_{X_{0}, \ldots, X_{n}}$

Martingale Convergence

Proposition V. 15 (Martingale Convergence Theorem) If a martingale $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ is bounded below (there exists consctant c s.t. $P\left(X_{n}>c\right.$ for all n) $=1$) or is bounded above (there exists consctant c s.t. $P\left(X_{n}<c\right.$ for all $\left.\left.n\right)=1\right)$, then there exists a r.v. X s.t. $X_{n} \xrightarrow{\text { wp } 1} X$.

Proof: Accept.
Example V. 10 (Simple symmetric random walk)

- if $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ is a ssrw then it is a martingale but we know $f_{i j}=1$ for all $i, j \in \mathbb{Z}$ so X_{n} doesn't converge and note that this process is not bounded below or above
- but if we consider the gambler's ruin problem we see that $X_{n} \xrightarrow{\text { wp } 1} X$ where $P(X=0)=a / c$ and $P(X=c)=(c-a) / c$ and note this martingale is bounded above and below \square

Example V. 11

- $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ with $X_{0}=1$ is a MC with statespace
$\mathcal{S}=\left\{2^{m}: m \in \mathbb{Z}\right\}$ with $p_{i, 2 i}=1 / 3, p_{i, i / 2}=2 / 3$ for $i \in \mathcal{S}$
- $E\left(X_{n+1} \mid X_{0}, \ldots, X_{n}\right)=\frac{1}{3} 2 X_{n}+\frac{2}{3} \frac{1}{2} X_{n}=\frac{2}{3} X_{n}+\frac{1}{3} X_{n}=X_{n}$ so this is a martingale and it is bounded below by 0
- so what is X s.t. $X_{n} \xrightarrow{\text { wp } 1} X$?
- note that $Y_{n}=\log _{2} X_{n}$ is a MC on \mathbb{Z} with transition probabilities $q_{i, i+1}=1 / 3, p_{i, i-1}=2 / 3$ so in fact $Y_{n}=\sum_{i=0}^{n} Z_{i}$ with $Z_{0}=0$ and $Z_{1}, Z_{2}, \ldots \sim 2 \operatorname{Bernoulli}(1 / 3)-1$ is a srw where $E\left(Z_{i}\right)=2 / 3-1=-1 / 3$
- then by the SLLN

$$
P\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n} Z_{i}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} Z_{i}=-\frac{1}{3}\right)=1
$$

which implies

$$
P\left(\lim _{n \rightarrow \infty} Y_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} Z_{i}=-\infty\right)=1
$$

and so

$$
X_{n}=2^{Y_{n}} \xrightarrow{w p 1} 0
$$

and X is degenerate at $0 \square$
Exercise V. 13 Text 3.5.5
Exercise V. 14 Text 3.5.7

Example V. 12 The Branching Process (Galton-Watson Process)

- $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ with $X_{0}=a \in \mathbb{N}_{0}$ is a branching process when $X_{n} \in \mathbb{N}_{0}$ and when $X_{n}=m$ then

$$
X_{n+1}=Z_{1, n}+\cdots+Z_{m, n}
$$

where $Z_{1, n}, \ldots, Z_{m, n} \stackrel{\text { i.i.d. }}{\sim} P_{Z}$, for all m and n, where P_{Z} is a probablity distribution on \mathbb{N}_{0} called the offspring distribution

- if there m sons of a family alive at generation n the i-th individual gives rise to $Z_{i, n}$ new individuals then disappears and concern is with whether or not the family name dies out $\left(X_{n}=0\right)$
- e.g. a mass of a fissile substance where $X_{n}=\#$ of free neutrons capable of splitting an atom to create more free neutrons and we are interested in whether the chain reaction dies out $\left(X_{n}=0\right)$, stays reasonably stable or grows in size
- clearly $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ is a MC and it is time homgeneous with $p_{00}=1, p_{i j}=P_{Z}\left(Z_{1}+\ldots+Z_{i}=j\right)$ where $Z_{1}, \ldots, Z_{j} \stackrel{\text { i.i.d. }}{\sim} P_{Z}$
- also suppose μ is the mean of P_{Z} and that it is finite, then

$$
\begin{aligned}
& E\left(X_{n+1} \mid X_{0}, \ldots, X_{n}\right)=E\left(Z_{1}+\ldots+Z_{X_{n}} \mid X_{0}, \ldots, X_{n}\right)=\mu X_{n} \\
& E\left(X_{n}\right)=\mu E\left(X_{n-1}\right)=\mu^{2} E\left(X_{n-2}\right)=\cdots=\mu^{n} E\left(X_{0}\right)=\mu^{n} a
\end{aligned}
$$

and so a martingale iff $\mu=1$

- therefore, the expected size of the population satisfies

$$
E\left(X_{n}\right) \rightarrow \begin{cases}0 & \text { if } \mu<1 \\ a & \text { if } \mu=1 \\ \infty & \text { if } \mu>1\end{cases}
$$

Case 1: $\mu<1$

- now $E\left(X_{n}\right)=\sum_{i=1}^{\infty} P\left(X_{n} \geq i\right) \geq P\left(X_{n} \geq 1\right)$ and so $P\left(X_{n} \geq 1\right) \rightarrow 0$ when $\mu<1$ so chain reaction stops and $P\left(\lim _{n \rightarrow \infty} X_{n}=0\right)=1$
- in general

$$
P_{a}\left(X_{1}=0\right)=P\left(Z_{1}=0, \ldots, Z_{a}=0\right)=\left(P\left(Z_{1}=0\right)\right)^{a}=P_{Z}^{a}(\{0\})>0
$$

when $P_{Z}(\{0\})>0$ and so $P\left(X_{n}=0\right)>0$ for every n

Case 2: $\mu>1$

- fact: $P\left(\lim _{n \rightarrow \infty} X_{n}=\infty\right)>0$ but this probability is not necessarily 1 since $P\left(\lim _{n \rightarrow \infty} X_{n}=0\right)>0$ whenever $P_{Z}(\{0\})>0$
- intuition: $W_{n}=X_{n} / \mu^{n}$ is a martingale bounded from below, so by Martingale Convergence Theorem, $W_{n} \xrightarrow{w p 1} W$ for some r.v. W and if $P(W>0)>0$, then for any $\omega \in\{W>0\}$ we have

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=\lim _{n \rightarrow \infty} \mu^{n} \frac{X_{n}(\omega)}{\mu^{n}}=\infty \text { with probability } 1
$$

Case 3: $\mu=1$

- then $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ is a martingale bounded from below, so by the Martingale Convergence Theorem there is a r.v. X s.t. $X_{n} \xrightarrow{\text { wp } 1} X$
- the branching process is degenerate when $P_{Z}(\{1\})=1$ (then $\mu=1$) and $P(X=a)=1$
- consider now the nongenerate case, namely, $P_{Z}(\{1\})<1$
- since $\mu=1$, this implies that $0<P_{Z}(\{0,1\})<1$ as well
- since X_{n} and X are integer-valued this means $X_{n}(\omega)=j$ for some j for all $n>N_{\omega}$ for some N_{ω} (since X is integer-valued)

Lemma V. 16 If $j>0$ then $P(X=j)=0$ whenever $P_{Z}(\{0,1\})<1$.

- therefore $P(X=0)=1$ and so $P\left(X_{n}=0\right.$ for some $\left.n\right)=1$ and extinction is guaranteed

Proof: Using the continuity of probability measure and definition of the limit infimum of a sequence of sets

$$
\begin{aligned}
& P(X=j)=P\left(X_{n+1}=X_{n}=j \text { for all } n \text { large enough }\right) \\
&= P\left(Z_{1, n}+\cdots+Z_{j, n}=j \text { for all } n \text { large enough }\right) \\
&= P\left(\lim _{n \rightarrow \infty} \inf _{\left.\left.Z_{1, n}+\cdots+Z_{j, n}=j\right\}\right)}^{=}\right. \\
& P\left(\cup_{n=1}^{\infty} \cap_{k=n}^{\infty}\left\{Z_{1, k}+\cdots+Z_{j, k}=j\right\}\right) \\
&= \lim _{n \rightarrow \infty} P\left(\cap_{j=n}^{\infty}\left\{Z_{1, k}+\cdots+Z_{j, k}=j\right\}\right) \\
&= \lim _{n \rightarrow \infty} P\left(\lim _{m \rightarrow \infty} \cap_{k=n}^{n+m}\left\{Z_{1, k}+\cdots+Z_{j, k}=j\right\}\right) \\
&= \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} P\left(\cap_{k=n}^{n+m}\left\{Z_{1, k}+\cdots+Z_{j, k}=j\right\}\right) \\
&= \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \prod_{k=n}^{m+n} P\left(\left\{Z_{1, k}+\cdots+Z_{j, k}=j\right\}\right) \text { by independence } \\
&= 0 \text { whenever } P\left(\left\{Z_{1, k}+\cdots+Z_{j, k}=j\right\}\right)<1
\end{aligned}
$$

which follows from $0<P_{Z}(\{0,1\})<1$.

Example V. 13 Stock Options - Discrete

- let X_{n} denote the price of a stock (say BCE) at the end of trading day n
- a European call on a particular stock is an option to buy a stock at strike price K (say dollars) at a fixed future strike time S (some future trading day)
- we ignore commissions
- you can buy or sell such an option (called covered if you sell when you own the stock)
- consider the case of a buyer who pays C for the option
- if $X_{S} \leq K$ then the option won't be exercised and you lose C
- if $X_{S}>K$ then the option will be exercised and you gain $X_{S}-K-C$
- what price C should you buy (sell) the option?
- this is determined by the no-arbitrage probabilities
- an arbitrage is a situation in the financial markets where you can invest with no possibility of a loss but a possibility of a gain
- it is a basic principle of finance that such opportunities will exist only momentarily and quickly disappear (free money with no risk) so a market with no arbitrage opportunities is an idealization with practical relevance
- consider a portfolio consisting of x shares of the stock and y calls (x or y can be negative called shorting) and suppose the stock can take on only the values $X_{S} \in\{u, d\}$ at fixed time S where $d<a, K<u$ and $X_{0}=a$
- for an arbitrage (with the same profit if $X_{S}=u$ or $X_{S}=d$) we must have

$$
\begin{aligned}
& x(u-a)+y(u-K-C)=x(d-a)-y C \text { so } \\
& x(u-d)+y(u-K)=0 \text { and } y=-x \frac{u-d}{u-K}
\end{aligned}
$$

which implies the net profit is

$$
x(d-a)+x \frac{u-d}{u-K} C
$$

- no-arbitrage requres this to be 0 so

$$
\begin{aligned}
& 0=(d-a)+\frac{u-d}{u-K} C \text { or } \\
& C=(a-d) \frac{u-K}{u-d}=(u-K)\left(\frac{a-d}{u-d}\right)+0\left(1-\frac{a-d}{u-d}\right)
\end{aligned}
$$

- the no-arbitrge probabilities are given by

$$
\frac{a-d}{u-d}, 1-\frac{a-d}{u-d}=\frac{u-a}{u-d}
$$

where $\frac{a-d}{u-d}$ is the no-arbitrage probability that the price of the stock rises and so under these probabilities

$$
E\left(X_{S}\right)=u \frac{a-d}{u-d}+d \frac{u-a}{u-d}=a
$$

so the stock price is a martingale and the expected value of the option at time S is

$$
(u-K) \frac{a-d}{u-d}+0 \frac{u-a}{u-d}=C
$$

and so is also a martingale

- this analysis is for a single period (only prices X_{0}, X_{S}) and two prices for the stock but it can be generalized and always the concept of a martingale arising from the principle of no-arbitrge plays a role

Exercise V. 15 Text 3.6.3

Exercise V. 16 Text 3.7.9

Example V. 14 Counterexample, when \mathcal{C}, \mathcal{D} aren't nested, to

$$
E(E(Y \mid \mathcal{C}) \mid \mathcal{D})=E(E(Y \mid \mathcal{D}) \mid \mathcal{C})=E(Y \mid \mathcal{C} \cap \mathcal{D})
$$

- let $\Omega=\{a, b, c\}, \mathcal{A}=2^{\Omega}, P=$ uniform, $Y(a)=1, Y(b)=2, Y(c)=3$

$$
\mathcal{C}=\{\phi, \Omega,\{a\},\{b, c\}\}, \mathcal{D}=\{\phi, \Omega,\{b\},\{a, c\}\}, \mathcal{C} \cap \mathcal{D}=\{\phi, \Omega\}
$$

so $E(Y \mid \mathcal{C} \cap \mathcal{D})=E(Y)=2$, and
$\omega \quad E(Y \mid \mathcal{C})(\omega) \quad E(Y \mid \mathcal{D})(\omega) \quad E(E(Y \mid \mathcal{C}) \mid \mathcal{D})(\omega) E(E(Y \mid \mathcal{D}) \mid \mathcal{C})(\omega)$
$\begin{array}{lllll}a & 1 & \frac{1}{2} 1+\frac{1}{2} 3=2 & \frac{1}{2} 1+\frac{1}{2} \frac{5}{2}=\frac{9}{4} & 2 \\ b & \frac{1}{2} 2+\frac{1}{2} 3=\frac{5}{2} & 2 & \frac{5}{2} & \frac{1}{2} 2+\frac{1}{2} 2=2 \\ \text { c } & \frac{5}{2} & 2 & \frac{9}{4} & 2\end{array}$

Understanding conditioning on a sigma algebra and conditioning in

 general. (optional)- suppose we have a probability model (Ω, \mathcal{A}, P)
- also, we have an information processor Info s.t. when ω occurs then Info (ω) prescribes the truth value of every event in the σ-algebra $\mathcal{C} \subset \mathcal{A}$
- as such all expectations (and thus probabilities) should be based on the original probability model and the information $\operatorname{Info}(\omega)$
- so, for example, our belief that $A \in \mathcal{A}$ is true changes to
$P(A \mid \mathcal{C})(\omega)=E\left(I_{A} \mid \mathcal{C}\right)(\omega)$
Example - if $\mathcal{C}=\left\{\phi, C, C^{c}, \Omega\right\}$ then

$$
P(A \mid \mathcal{C})(\omega)=\left\{\begin{array}{lll}
P(A \mid C) & \text { if } & \omega \in C \\
P\left(A \mid C^{c}\right) & \text { if } & \omega \in C^{c}
\end{array}\right.
$$

- suppose there are two information processors $\operatorname{Info} \mathcal{C}_{\mathcal{C}}$ and $\operatorname{Info} O_{\mathcal{D}}$ labelled by their corresponding σ-algebras
- if we are told $\operatorname{Info} o_{\mathcal{C}}(\omega)$ and $\operatorname{Info}_{\mathcal{D}}(\omega)$, then what information does this correspond to?
- note - if we know the truth value of every event in a class of sets \mathcal{C}^{*}, then we also know the truth value of every element of the σ-algebra $\mathcal{C}=\sigma\left(\mathcal{C}^{*}\right)$ $=$ the smallest σ-algebra containing \mathcal{C}^{*} (the σ-algebra generated by \mathcal{C}^{*})
- so when there are two information processors Infoc and $\operatorname{Info} O_{D}$ this corresponds to the information processor $\operatorname{Info}_{\sigma(\mathcal{C} \cup \mathcal{D})}$ where $\sigma(\mathcal{C} \cup \mathcal{D})$ is the smallest σ-algebra containing \mathcal{C} and \mathcal{D}
Example (continued) - suppose in addition to $\operatorname{Info}_{\mathcal{C}}(\omega)$ we are told the value of $\operatorname{Info}_{\mathcal{D}}(\omega)$ where $\mathcal{D}=\left\{\phi, D, D^{c}, \Omega\right\}$
- then $\sigma(\mathcal{C} \cup \mathcal{D})=\sigma\left(\left\{C \cap D, C \cap D^{c}, C^{c} \cap D, C^{c} \cap D^{c}\right\}\right)$ where

$$
\left\{C \cap D, C \cap D^{c}, C^{c} \cap D, C^{c} \cap D^{c}\right\}
$$

is the partition of Ω generated by C and D

- then

$$
P(A \mid \sigma(\mathcal{C} \cup \mathcal{D}))(\omega)=\left\{\begin{array}{lll}
P(A \mid C \cap D) & \text { if } \omega \in C \cap D \\
P\left(A \mid C \cap D^{c}\right) & \text { if } \omega \in C \cap D^{c} \\
P\left(A \mid C^{c} \cap D\right) & \text { if } \omega \in C^{c} \cap D \\
P\left(A \mid C^{c} \cap D^{c}\right) & \text { if } \omega \in C^{c} \cap D^{c}
\end{array}\right.
$$

- the fundamental principle of conditional probability: when \mathcal{C} contains a finest partition of Ω, then observing $\operatorname{lnfo}_{\mathcal{C}}(\omega)$ means we must condition on the true element of this partition
- note the Borel sets \mathcal{B}^{1} contain the partition $\left\{\{x\}: x \in \mathbb{R}^{1}\right\}$ but $\sigma\left(\left\{\{x\}: x \in \mathbb{R}^{1}\right\}\right) \neq \mathcal{B}^{1}$
- but for r.v. $X:(\Omega, \mathcal{A}) \rightarrow\left(\mathbb{R}^{1}, \mathcal{B}^{1}\right)$ then \mathcal{A}_{X} contains the finest partition $\left\{X^{-1}\{x\}: x \in \mathbb{R}^{1}\right\}$
note - the proposition about iterated conditional expectations when \mathcal{C} and \mathcal{D} are nested is a result about averages (which is what an expectation is) and is not about a principle of inference (which is what conditional probability is)
- so, for example, when $\mathcal{C} \subset \mathcal{D}$, then the information in $\operatorname{Info}_{\mathcal{C}}(\omega)$ is contained in the information $\operatorname{Info}_{\mathcal{D}}(\omega)$ and the principle of conditional probability says that the correct conditional expectations are given by $E(Y \mid \mathcal{D}) \neq E(Y \mid \mathcal{C})$ and Prop. V. 14 only says that

$$
E(E(Y \mid \mathcal{C}) \mid \mathcal{D})=E(E(Y \mid \mathcal{D}) \mid \mathcal{C})=E(Y \mid \mathcal{C})
$$

