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- what seems like a slightly more general de�nition of a martingale: the
s.p. fYn : n � 0g is a martingale with respect to the s.p. fXn : n � 0g
whenever Yn : (Ω,AX0,...,Xn )! (R1,B1),E (jYn j) < ∞ and

E (Yn+1 jX0, . . . ,Xn) = Yn

for every n 2 N0.

- certainly the previous de�nition of a martingale satis�es this where
fYn : n � 0g is just the same process as fXn : n � 0g, i.e.,
f(n,Yn) : n � 0g = f(n,Xn) : n � 0g
- note the requirement Yn : (Ω,AX0,...,Xn )! (R1,B1) is just saying that
Yn can be thought of as a function of (X0, . . . ,Xn) and recall
AX0,...,Xn � A so Yn is a valid r.v.

- if T is a stopping time for fXn : n � 0g then it is not necessarily true
that T is a stopping time for fYn : n � 0g since AY0,...,Yn � AX0,...,Xn but
we can still consider YT as, via the same argument used in Prop. V.7 (just
replace the X�s by Y �s), YT is a r.v.
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- in fact we can de�ne fYn : n � 0g as a martingale according to
De�nition V.3 but for the stopping time results we only need that T be a
stopping time for the underlying stochastic process fXn : n � 0g
- this follows because

E (Yn+1 jY0, . . . ,Yn)
�
= E (E (Yn+1 jX0, . . . ,Xn) jY0, . . . ,Yn))

= E (Yn jY0, . . . ,Yn) = Yn

where for * we use the general de�nition of conditional expectation
provided previously

De�nition V.2 For random variable Y with E (jY j) < ∞ and sub
σ-algebra C � A, then E (Y j C) is de�ned as the unique function
satisfying

(i) E (Y j C) : (Ω, C)! (R1,B1),
(ii) E (HY ) = E (HE (Y j C)) for every H : (Ω, C)! (R1,B1)

s.t. E (jHY j) < ∞.

and the following result
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Proposition V.14 Suppose C,D are sub σ-algebras of A (i) when C � D
then E (E (Y j C) j D) = E (Y j C) and (ii) E (E (Y j D) j C) =E (Y j C).
- notes

1. All equalities hold wp1.

2. This generalizes the property of conditional probability

P(� jB )(A jC ) = P(A jB \ C )

where P(� jB ) = P(� jB)
3. This gives TTE for conditional expectations, namely, if C � D, then
E (Y j C) = E (E (Y j D) j C) since C = C\D (recall
E (Y j fφ,Ωg) = E (Y )).
Proof: (i) Suppose that C � D. Then E (E (Y j C) j D) = E (Y j C) since,
if K : (Ω,D)! (R1,B1), then E (K j D) = K and

E (Y j C) : (Ω, C)! (R1,B1)

implies E (Y j C) : (Ω,D)! (R1,B1) as C � D.
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(ii) We require E (E (Y j D) j C) : (Ω, C)! (R1,B1) and
E (HE (Y j D)) = E (HE (E (Y j D) j C)) for every H : (Ω, C)! (R1,B1).
But now E (HE (Y j D)) = E (HY ) because H : (Ω,D)! (R1,B1) as
C � D. Also E (HY ) = E (HE (Y j C)) by de�nition and so we have

E (HE (E (Y j D) j C)) = E (HE (Y j C))

for every H : (Ω, C)! (R1,B1) and we can conclude that
E (Y j C) =E (E (Y j D) j C) since both are r.v.�s wrt C. �
- note - when C � D we can write

E (E (Y j C) j D) = E (E (Y j D) j C) = E (Y j C \ D) = E (Y j C)

but this result does not hold in general without the nesting (see
counterexample at the end of this lecture)

- so * follows from

E (Yn+1 jY0, . . . ,Yn) = E (Yn+1 j AY0,...,Yn )
E (Yn+1 jX0, . . . ,Xn) = E (Yn+1 j AX0,...,Xn )

since C = AY0,...,Yn � D = AX0,...,Xn
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Martingale Convergence

Proposition V.15 (Martingale Convergence Theorem) If a martingale
fXn : n 2 N0g is bounded below (there exists consctant c s.t. P(Xn > c
for all n) = 1) or is bounded above (there exists consctant c s.t.

P(Xn < c for all n) = 1), then there exists a r.v. X s.t. Xn
wp1! X .

Proof: Accept.

Example V.10 (Simple symmetric random walk)

- if fXn : n 2 N0g is a ssrw then it is a martingale but we know fij = 1 for
all i , j 2 Z so Xn doesn�t converge and note that this process is not
bounded below or above

- but if we consider the gambler�s ruin problem we see that Xn
wp1! X

where P(X = 0) = a/c and P(X = c) = (c � a)/c and note this
martingale is bounded above and below �
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Example V.11

- fXn : n 2 N0g with X0 = 1 is a MC with statespace
S = f2m : m 2 Zg with pi ,2i = 1/3, pi ,i/2 = 2/3 for i 2 S
- E (Xn+1 jX0, . . . ,Xn) = 1

32Xn +
2
3
1
2Xn =

2
3Xn +

1
3Xn = Xn so this is a

martingale and it is bounded below by 0

- so what is X s.t. Xn
wp1! X ?

- note that Yn = log2 Xn is a MC on Z with transition probabilities
qi ,i+1 = 1/3, pi ,i�1 = 2/3 so in fact Yn = ∑n

i=0 Zi with Z0 = 0 and
Z1,Z2, . . . � 2Bernoulli(1/3)� 1 is a srw whereE (Zi ) = 2/3� 1 = �1/3

- then by the SLLN

P

 
lim
n!∞

1
n

n

∑
i=0
Zi = lim

n!∞

1
n

n

∑
i=1
Zi = �

1
3

!
= 1

which implies
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P

 
lim
n!∞

Yn = lim
n!∞

n

∑
i=1
Zi = �∞

!
= 1

and so
Xn = 2Yn

wp1! 0

and X is degenerate at 0 �
Exercise V.13 Text 3.5.5

Exercise V.14 Text 3.5.7
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Example V.12 The Branching Process (Galton-Watson Process)

- fXn : n 2 N0g with X0 = a 2 N0 is a branching process when Xn 2 N0

and when Xn = m then

Xn+1 = Z1,n + � � �+ Zm,n

where Z1,n, . . . ,Zm,n
i .i .d .� PZ , for all m and n, where PZ is a probablity

distribution on N0 called the o¤spring distribution

- if there m sons of a family alive at generation n the i-th individual gives
rise to Zi ,n new individuals then disappears and concern is with whether or
not the family name dies out (Xn = 0)

- e.g. a mass of a �ssile substance where Xn = # of free neutrons capable
of splitting an atom to create more free neutrons and we are interested in
whether the chain reaction dies out (Xn = 0), stays reasonably stable or
grows in size

- clearly fXn : n 2 N0g is a MC and it is time homgeneous with
p00 = 1, pij = PZ (Z1 + . . .+ Zi = j) where Z1, . . . ,Zj

i .i .d .� PZ
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- also suppose µ is the mean of PZ and that it is �nite, then

E (Xn+1 jX0, . . . ,Xn) = E (Z1 + . . .+ ZXn jX0, . . . ,Xn) = µXn
E (Xn) = µE (Xn�1) = µ2E (Xn�2) = � � � = µnE (X0) = µna

and so a martingale i¤ µ = 1

- therefore, the expected size of the population satis�es

E (Xn)!

8<:
0 if µ < 1
a if µ = 1
∞ if µ > 1

Case 1: µ < 1

- now E (Xn) = ∑∞
i=1 P(Xn � i) � P(Xn � 1) and so P(Xn � 1)! 0

when µ < 1 so chain reaction stops and P(limn!∞ Xn = 0) = 1

- in general

Pa(X1 = 0) = P(Z1 = 0, . . . ,Za = 0) = (P(Z1 = 0))a = PaZ (f0g) > 0

when PZ (f0g) > 0 and so P(Xn = 0) > 0 for every n
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Case 2: µ > 1

- fact: P(limn!∞ Xn = ∞) > 0 but this probability is not necessarily 1
since P(limn!∞ Xn = 0) > 0 whenever PZ (f0g) > 0
- intuition: Wn = Xn/µn is a martingale bounded from below, so by

Martingale Convergence Theorem, Wn
wp1! W for some r.v. W and if

P(W > 0) > 0, then for any ω 2 fW > 0g we have

lim
n!∞

Xn(ω) = lim
n!∞

µn
Xn(ω)

µn
= ∞ with probability 1
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Case 3: µ = 1

- then fXn : n 2 N0g is a martingale bounded from below, so by the

Martingale Convergence Theorem there is a r.v. X s.t. Xn
wp1! X

- the branching process is degenerate when PZ (f1g) = 1 (then µ = 1)
and P(X = a) = 1

- consider now the nongenerate case, namely, PZ (f1g) < 1
- since µ = 1, this implies that 0 < PZ (f0, 1g) < 1 as well
- since Xn and X are integer-valued this means Xn(ω) = j for some j for
all n > Nω for some Nω (since X is integer-valued)

Lemma V.16 If j > 0 then P(X = j) = 0 whenever PZ (f0, 1g) < 1.
- therefore P(X = 0) = 1 and so P(Xn = 0 for some n) = 1 and
extinction is guaranteed
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Proof: Using the continuity of probability measure and de�nition of the
limit in�mum of a sequence of sets

P(X = j) = P(Xn+1 = Xn = j for all n large enough)

= P(Z1,n + � � �+ Zj ,n = j for all n large enough)
= P(lim inf

n!∞
fZ1,n + � � �+ Zj ,n = jg)

= P([∞
n=1 \∞

k=n fZ1,k + � � �+ Zj ,k = jg)
= lim

n!∞
P(\∞

j=nfZ1,k + � � �+ Zj ,k = jg)

= lim
n!∞

P( lim
m!∞

\n+mk=n fZ1,k + � � �+ Zj ,k = jg)

= lim
n!∞

lim
m!∞

P(\n+mk=n fZ1,k + � � �+ Zj ,k = jg)

= lim
n!∞

lim
m!∞

m+n

∏
k=n

P(fZ1,k + � � �+ Zj ,k = jg) by independence

= 0 whenever P(fZ1,k + � � �+ Zj ,k = jg) < 1

which follows from 0 < PZ (f0, 1g) < 1. �

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC6320242.html ()Probability and Stochastic Processes II - Lecture 5d 2024 13 / 22



Example V.13 Stock Options - Discrete

- let Xn denote the price of a stock (say BCE) at the end of trading day n

- a European call on a particular stock is an option to buy a stock at strike
price K (say dollars) at a �xed future strike time S (some future trading
day)

- we ignore commissions

- you can buy or sell such an option (called covered if you sell when you
own the stock)

- consider the case of a buyer who pays C for the option

- if XS � K then the option won�t be exercised and you lose C

- if XS > K then the option will be exercised and you gain XS �K � C
- what price C should you buy (sell) the option?

- this is determined by the no-arbitrage probabilities

- an arbitrage is a situation in the �nancial markets where you can invest
with no possibility of a loss but a possibility of a gain
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- it is a basic principle of �nance that such opportunities will exist only
momentarily and quickly disappear (free money with no risk) so a market
with no arbitrage opportunities is an idealization with practical relevance

- consider a portfolio consisting of x shares of the stock and y calls (x or y
can be negative called shorting) and suppose the stock can take on only
the values XS 2 fu, dg at �xed time S where d < a,K < u and X0 = a
- for an arbitrage (with the same pro�t if XS = u or XS = d) we must
have

x(u � a) + y(u �K � C ) = x(d � a)� yC so

x(u � d) + y(u �K ) = 0 and y = �x u � d
u �K

which implies the net pro�t is

x(d � a) + x u � d
u �K C
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- no-arbitrage requres this to be 0 so

0 = (d � a) + u � d
u �K C or

C = (a� d)u �K
u � d = (u �K )

�
a� d
u � d

�
+ 0

�
1� a� d

u � d

�
- the no-arbitrge probabilities are given by

a� d
u � d , 1�

a� d
u � d =

u � a
u � d

where a�d
u�d is the no-arbitrage probability that the price of the stock rises

and so under these probabilities

E (XS ) = u
a� d
u � d + d

u � a
u � d = a

so the stock price is a martingale and the expected value of the option at
time S is

(u �K ) a� d
u � d + 0

u � a
u � d = C

and so is also a martingale
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- this analysis is for a single period (only prices X0,XS ) and two prices for
the stock but it can be generalized and always the concept of a martingale
arising from the principle of no-arbitrge plays a role
�
Exercise V.15 Text 3.6.3

Exercise V.16 Text 3.7.9
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Example V.14 Counterexample, when C,D aren�t nested, to

E (E (Y j C) j D) = E (E (Y j D) j C) = E (Y j C \ D)

- let Ω = fa, b, cg,A = 2Ω,P = uniform, Y (a) = 1,Y (b) = 2,Y (c) = 3

C = fφ,Ω, fag, fb, cgg,D = fφ,Ω, fbg, fa, cgg, C \ D = fφ,Ωg

so E (Y j C \ D) = E (Y ) = 2, and

ω E (Y j C)(ω) E (Y j D)(ω) E (E (Y j C) j D)(ω) E (E (Y j D) j C)(ω)
a 1 1

21+
1
23 = 2

1
21+

1
2
5
2 =

9
4 2

b 1
22+

1
23 =

5
2 2 5

2
1
22+

1
22 = 2

c 5
2 2 9

4 2
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Understanding conditioning on a sigma algebra and conditioning in
general. (optional)
- suppose we have a probability model (Ω,A,P)
- also, we have an information processor Info s.t. when ω occurs then
Info(ω) prescribes the truth value of every event in the σ-algebra C � A
- as such all expectations (and thus probabilities) should be based on the
original probability model and the information Info(ω)

- so, for example, our belief that A 2 A is true changes to
P(A j C)(ω) = E (IA j C)(ω)
Example - if C = fφ,C ,C c ,Ωg then

P(A j C)(ω) =
�
P(A jC ) if ω 2 C
P(A jC c ) if ω 2 C c

�
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- suppose there are two information processors InfoC and InfoD labelled by
their corresponding σ-algebras

- if we are told InfoC(ω) and InfoD(ω), then what information does this
correspond to?

- note - if we know the truth value of every event in a class of sets C�, then
we also know the truth value of every element of the σ-algebra C = σ(C�)
= the smallest σ-algebra containing C� (the σ-algebra generated by C�)
- so when there are two information processors InfoC and InfoD this
corresponds to the information processor Infoσ(C[D) where σ(C [D) is the
smallest σ-algebra containing C and D
Example (continued) - suppose in addition to InfoC(ω) we are told the
value of InfoD(ω) where D =fφ,D,Dc ,Ωg
- then σ(C [ D) =σ(fC \D,C \Dc ,C c \D,C c \Dcg) where

fC \D,C \Dc ,C c \D,C c \Dcg

is the partition of Ω generated by C and D
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- then

P(A j σ(C [ D))(ω) =

8>><>>:
P(A jC \D) if ω 2 C \D
P(A jC \Dc ) if ω 2 C \Dc
P(A jC c \D) if ω 2 C c \D
P(A jC c \Dc ) if ω 2 C c \Dc

�
- the fundamental principle of conditional probability : when C contains a
�nest partition of Ω, then observing InfoC(ω) means we must condition
on the true element of this partition

- note the Borel sets B1 contain the partition ffxg : x 2 R1g but
σ(ffxg : x 2 R1g) 6= B1

- but for r.v. X : (Ω,A)! (R1,B1) then AX contains the �nest
partition fX�1fxg : x 2 R1g
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note - the proposition about iterated conditional expectations when C and
D are nested is a result about averages (which is what an expectation is)
and is not about a principle of inference (which is what conditional
probability is)
- so, for example, when C � D, then the information in InfoC(ω) is
contained in the information InfoD(ω) and the principle of conditional
probability says that the correct conditional expectations are given by
E (Y j D) 6= E (Y j C) and Prop. V.14 only says that

E (E (Y j C) j D) = E (E (Y j D) j C) = E (Y j C)
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