Probability and Stochastic Processes II - Lecture 5d

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC6320242.html

2024

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

2024 1 / 22

- what seems like a slightly more general definition of a martingale: the s.p. $\{Y_n : n \ge 0\}$ is a martingale with respect to the s.p. $\{X_n : n \ge 0\}$ whenever $Y_n : (\Omega, \mathcal{A}_{X_0, \dots, X_n}) \to (\mathbb{R}^1, \mathcal{B}^1), \mathbb{E}(|Y_n|) < \infty$ and

$$E(Y_{n+1} | X_0, \ldots, X_n) = Y_n$$

for every $n \in \mathbb{N}_0$.

- certainly the previous definition of a martingale satisfies this where $\{Y_n : n \ge 0\}$ is just the same process as $\{X_n : n \ge 0\}$, i.e., $\{(n, Y_n) : n \ge 0\} = \{(n, X_n) : n \ge 0\}$

- note the requirement $Y_n : (\Omega, \mathcal{A}_{X_0,...,X_n}) \to (\mathbb{R}^1, \mathcal{B}^1)$ is just saying that Y_n can be thought of as a function of (X_0, \ldots, X_n) and recall $\mathcal{A}_{X_0,...,X_n} \subset \mathcal{A}$ so Y_n is a valid r.v.

- if T is a stopping time for $\{X_n : n \ge 0\}$ then it is not necessarily true that T is a stopping time for $\{Y_n : n \ge 0\}$ since $\mathcal{A}_{Y_0,...,Y_n} \subset \mathcal{A}_{X_0,...,X_n}$ but we can still consider Y_T as, via the same argument used in Prop. V.7 (just replace the X's by Y's), Y_T is a r.v. - in fact we can define $\{Y_n : n \ge 0\}$ as a martingale according to Definition V.3 but for the stopping time results we only need that T be a stopping time for the underlying stochastic process $\{X_n : n \ge 0\}$

- this follows because

$$E(Y_{n+1} | Y_0, \dots, Y_n) \stackrel{*}{=} E(E(Y_{n+1} | X_0, \dots, X_n) | Y_0, \dots, Y_n))$$

= $E(Y_n | Y_0, \dots, Y_n) = Y_n$

where for * we use the general definition of conditional expectation provided previously

Definition V.2 For random variable Y with $E(|Y|) < \infty$ and sub σ -algebra $C \subset A$, then E(Y|C) is defined as the unique function satisfying

(i)
$$E(Y | C)$$
: $(\Omega, C) \to (R^1, B^1)$,
(ii) $E(HY) = E(HE(Y | C))$ for every $H : (\Omega, C) \to (R^1, B^1)$
s.t. $E(|HY|) < \infty$.

and the following result

Proposition V.14 Suppose C, D are sub σ -algebras of A (i) when $C \subset D$ then E(E(Y | C) | D) = E(Y | C) and (ii) E(E(Y | D) | C) = E(Y | C).

- notes

- 1. All equalities hold wp1.
- 2. This generalizes the property of conditional probability

$$P_{(\cdot \mid B)}(A \mid C) = P(A \mid B \cap C)$$

where $P_{(\cdot | B)} = P(\cdot | B)$ 3. This gives TTE for conditional expectations, namely, if $C \subset D$, then E(Y | C) = E(E(Y | D) | C) since $C = C \cap D$ (recall $E(Y | \{\phi, \Omega\}) = E(Y)$).

Proof: (i) Suppose that $C \subset D$. Then E(E(Y | C) | D) = E(Y | C) since, if $K : (\Omega, D) \to (R^1, B^1)$, then E(K | D) = K and

$$E(Y | \mathcal{C}) : (\Omega, \mathcal{C}) \to (\mathbb{R}^1, \mathcal{B}^1)$$

implies
$$E(Y | C) : (\Omega, D) \to (R^1, B^1)$$
 as $C \subset D$,

(ii) We require $E(E(Y | D) | C) : (\Omega, C) \to (R^1, B^1)$ and E(HE(Y | D)) = E(HE(E(Y | D) | C)) for every $H : (\Omega, C) \to (R^1, B^1)$. But now E(HE(Y | D)) = E(HY) because $H : (\Omega, D) \to (R^1, B^1)$ as $C \subset D$. Also E(HY) = E(HE(Y | C)) by definition and so we have

 $E(HE(E(Y | \mathcal{D}) | \mathcal{C})) = E(HE(Y | \mathcal{C}))$

for every $H : (\Omega, \mathcal{C}) \to (\mathbb{R}^1, \mathcal{B}^1)$ and we can conclude that $E(Y | \mathcal{C}) = E(E(Y | \mathcal{D}) | \mathcal{C})$ since both are r.v.'s wrt \mathcal{C} .

- **note** - when $\mathcal{C} \subset \mathcal{D}$ we can write

$$E(E(Y | C) | D) = E(E(Y | D) | C) = E(Y | C \cap D) = E(Y | C)$$

but this result does not hold in general without the nesting (see counterexample at the end of this lecture)

- so * follows from

$$E(Y_{n+1} | Y_0, ..., Y_n) = E(Y_{n+1} | \mathcal{A}_{Y_0,...,Y_n})$$
$$E(Y_{n+1} | X_0, ..., X_n) = E(Y_{n+1} | \mathcal{A}_{X_0,...,X_n})$$

since
$$\mathcal{C}=\mathcal{A}_{Y_0,...,Y_n}\subset\mathcal{D}=\mathcal{A}_{X_0,...,X_n}$$

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

Martingale Convergence

Proposition V.15 (Martingale Convergence Theorem) If a martingale $\{X_n : n \in \mathbb{N}_0\}$ is bounded below (there exists consctant c s.t. $P(X_n > c$ for all n) = 1) or is bounded above (there exists consctant c s.t. $P(X_n < c \text{ for all } n) = 1$), then there exists a r.v. X s.t. $X_n \xrightarrow{wp1} X$. Proof: Accept.

Example V.10 (Simple symmetric random walk)

- if $\{X_n : n \in \mathbb{N}_0\}$ is a ssrw then it is a martingale but we know $f_{ij} = 1$ for all $i, j \in \mathbb{Z}$ so X_n doesn't converge and note that this process is not bounded below or above

- but if we consider the gambler's ruin problem we see that $X_n \xrightarrow{wp1} X$ where P(X = 0) = a/c and P(X = c) = (c - a)/c and note this martingale is bounded above and below \blacksquare

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Example V.11

- { $X_n : n \in \mathbb{N}_0$ } with $X_0 = 1$ is a MC with statespace $S = \{2^m : m \in \mathbb{Z}\}$ with $p_{i,2i} = 1/3$, $p_{i,i/2} = 2/3$ for $i \in S$ - $E(X_{n+1} | X_0, \dots, X_n) = \frac{1}{3}2X_n + \frac{2}{3}\frac{1}{2}X_n = \frac{2}{3}X_n + \frac{1}{3}X_n = X_n$ so this is a martingale and it is bounded below by 0

- so what is X s.t. $X_n \stackrel{wp1}{\rightarrow} X$?

- note that $Y_n = \log_2 X_n$ is a MC on \mathbb{Z} with transition probabilities $q_{i,i+1} = 1/3$, $p_{i,i-1} = 2/3$ so in fact $Y_n = \sum_{i=0}^n Z_i$ with $Z_0 = 0$ and $Z_1, Z_2, \ldots \sim 2\text{Bernoulli}(1/3) - 1$ is a srw where $E(Z_i) = 2/3 - 1 = -1/3$

- then by the SLLN

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n}Z_{i}=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}Z_{i}=-\frac{1}{3}\right)=1$$

which implies

$$P\left(\lim_{n\to\infty}Y_n=\lim_{n\to\infty}\sum_{i=1}^nZ_i=-\infty\right)=1$$

and so

$$X_n = 2^{Y_n} \stackrel{wp1}{\rightarrow} 0$$

and X is degenerate at $0 \blacksquare$

Exercise V.13 Text 3.5.5

Exercise V.14 Text 3.5.7

- 4 回 ト - 4 回 ト

Example V.12 The Branching Process (Galton-Watson Process)

- $\{X_n : n \in \mathbb{N}_0\}$ with $X_0 = a \in \mathbb{N}_0$ is a branching process when $X_n \in \mathbb{N}_0$ and when $X_n = m$ then

$$X_{n+1} = Z_{1,n} + \cdots + Z_{m,n}$$

where $Z_{1,n}, \ldots, Z_{m,n} \stackrel{i.i.d.}{\sim} P_Z$, for all *m* and *n*, where P_Z is a probability distribution on \mathbb{N}_0 called the *offspring distribution*

- if there *m* sons of a family alive at generation *n* the *i*-th individual gives rise to $Z_{i,n}$ new individuals then disappears and concern is with whether or not the family name dies out $(X_n = 0)$

- e.g. a mass of a fissile substance where $X_n = \#$ of free neutrons capable of splitting an atom to create more free neutrons and we are interested in whether the chain reaction dies out $(X_n = 0)$, stays reasonably stable or grows in size

- clearly $\{X_n : n \in \mathbb{N}_0\}$ is a MC and it is time homgeneous with

$$p_{00} = 1, p_{ij} = P_Z(Z_1 + \ldots + Z_i = j)$$
 where $Z_1, \ldots, Z_j \stackrel{i.i.d.}{\sim} P_Z$

- also suppose μ is the mean of P_Z and that it is finite, then

$$E(X_{n+1} | X_0, \dots, X_n) = E(Z_1 + \dots + Z_{X_n} | X_0, \dots, X_n) = \mu X_n$$

$$E(X_n) = \mu E(X_{n-1}) = \mu^2 E(X_{n-2}) = \dots = \mu^n E(X_0) = \mu^n a$$

and so a martingale iff $\mu=1$

- therefore, the expected size of the population satisfies

$$E(X_n) \to \begin{cases} 0 & \text{if } \mu < 1\\ a & \text{if } \mu = 1\\ \infty & \text{if } \mu > 1 \end{cases}$$

Case 1: $\mu < 1$

- now $E(X_n) = \sum_{i=1}^{\infty} P(X_n \ge i) \ge P(X_n \ge 1)$ and so $P(X_n \ge 1) \to 0$ when $\mu < 1$ so chain reaction stops and $P(\lim_{n\to\infty} X_n = 0) = 1$

- in general

$$P_{a}(X_{1} = 0) = P(Z_{1} = 0, \dots, Z_{a} = 0) = (P(Z_{1} = 0))^{a} = P_{Z}^{a}(\{0\}) > 0$$

when $P_{Z}(\{0\}) > 0$ and so $P(X_{n} = 0) > 0$ for every n

Case 2: $\mu > 1$

- fact: $P(\lim_{n\to\infty} X_n = \infty) > 0$ but this probability is not necessarily 1 since $P(\lim_{n\to\infty} X_n = 0) > 0$ whenever $P_Z(\{0\}) > 0$

- intuition: $W_n = X_n/\mu^n$ is a martingale bounded from below, so by Martingale Convergence Theorem, $W_n \stackrel{wp1}{\rightarrow} W$ for some r.v. W and if P(W > 0) > 0, then for any $\omega \in \{W > 0\}$ we have

$$\lim_{n\to\infty} X_n(\omega) = \lim_{n\to\infty} \mu^n \frac{X_n(\omega)}{\mu^n} = \infty \text{ with probability 1}$$

Case 3: $\mu = 1$

- then $\{X_n : n \in \mathbb{N}_0\}$ is a martingale bounded from below, so by the Martingale Convergence Theorem there is a r.v. X s.t. $X_n \stackrel{wp1}{\longrightarrow} X$

- the branching process is degenerate when ${\cal P}_Z(\{1\})=1$ (then $\mu=1)$ and ${\cal P}(X=a)=1$

- consider now the nongenerate case, namely, $P_Z(\{1\}) < 1$

- since $\mu = 1$, this implies that $0 < {\sf P}_Z(\{0,1\}) < 1$ as well

- since X_n and X are integer-valued this means $X_n(\omega) = j$ for some j for all $n > N_\omega$ for some N_ω (since X is integer-valued)

Lemma V.16 If j > 0 then P(X = j) = 0 whenever $P_Z(\{0, 1\}) < 1$.

- therefore P(X = 0) = 1 and so $P(X_n = 0$ for some n) = 1 and extinction is guaranteed

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ……

Proof: Using the continuity of probability measure and definition of the limit infimum of a sequence of sets

$$P(X = j) = P(X_{n+1} = X_n = j \text{ for all } n \text{ large enough})$$

$$= P(Z_{1,n} + \dots + Z_{j,n} = j \text{ for all } n \text{ large enough})$$

$$= P(\lim_{n \to \infty} \inf \{Z_{1,n} + \dots + Z_{j,n} = j\})$$

$$= P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \{Z_{1,k} + \dots + Z_{j,k} = j\})$$

$$= \lim_{n \to \infty} P(\bigcap_{j=n}^{\infty} \{Z_{1,k} + \dots + Z_{j,k} = j\})$$

$$= \lim_{n \to \infty} \min_{m \to \infty} P(\bigcap_{k=n}^{n+m} \{Z_{1,k} + \dots + Z_{j,k} = j\})$$

$$= \lim_{n \to \infty} \lim_{m \to \infty} \prod_{k=n}^{m+n} P(\{Z_{1,k} + \dots + Z_{j,k} = j\})$$
by independence
$$= 0 \text{ whenever } P(\{Z_{1,k} + \dots + Z_{j,k} = j\}) < 1$$

which follows from $0 < P_Z(\{0,1\}) < 1$.

Example V.13 Stock Options - Discrete

- let X_n denote the price of a stock (say BCE) at the end of trading day n

- a European call on a particular stock is an option to buy a stock at strike price K (say dollars) at a fixed future strike time S (some future trading day)

- we ignore commissions

- you can buy or sell such an option (called *covered* if you sell when you own the stock)

- consider the case of a buyer who pays C for the option
- if $X_S \leq K$ then the option won't be exercised and you lose C
- if $X_S > K$ then the option will be exercised and you gain $X_S K C$
- what price C should you buy (sell) the option?
- this is determined by the no-arbitrage probabilities

14 / 22

- it is a basic principle of finance that such opportunities will exist only momentarily and quickly disappear (free money with no risk) so a market with no arbitrage opportunities is an idealization with practical relevance

- consider a portfolio consisting of x shares of the stock and y calls (x or y can be negative called *shorting*) and suppose the stock can take on only the values $X_5 \in \{u, d\}$ at fixed time S where d < a, K < u and $X_0 = a$

- for an arbitrage (with the same profit if $X_S = u$ or $X_S = d$) we must have

$$x(u-a) + y(u-K-C) = x(d-a) - yC$$
 so
$$x(u-d) + y(u-K) = 0 \text{ and } y = -x\frac{u-d}{u-K}$$

which implies the net profit is

$$x(d-a) + x\frac{u-d}{u-K}C$$

- no-arbitrage requres this to be 0 so

$$0 = (d - a) + \frac{u - d}{u - K}C \text{ or}$$
$$C = (a - d)\frac{u - K}{u - d} = (u - K)\left(\frac{a - d}{u - d}\right) + 0\left(1 - \frac{a - d}{u - d}\right)$$

- the no-arbitrge probabilities are given by

$$\frac{a-d}{u-d}$$
, $1-\frac{a-d}{u-d}=\frac{u-a}{u-d}$

where $\frac{a-d}{u-d}$ is the no-arbitrage probability that the price of the stock rises and so under these probabilities

$$E(X_S) = u rac{a-d}{u-d} + d rac{u-a}{u-d} = a$$

so the stock price is a martingale and the expected value of the option at time S is

$$(u-K)\frac{a-d}{u-d} + 0\frac{u-a}{u-d} = C$$

and so is also a martingale

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

- this analysis is for a single period (only prices X_0, X_5) and two prices for the stock but it can be generalized and always the concept of a martingale arising from the principle of no-arbitrge plays a role

Exercise V.15 Text 3.6.3

Exercise V.16 Text 3.7.9

Example V.14 Counterexample, when C, D aren't nested, to

$$E(E(Y | C) | D) = E(E(Y | D) | C) = E(Y | C \cap D)$$

- let $\Omega = \{a, b, c\}$, $\mathcal{A} = 2^{\Omega}$, $\mathcal{P} =$ uniform, Y(a) = 1, Y(b) = 2, Y(c) = 3

$$\mathcal{C} = \{\phi, \Omega, \{\mathsf{a}\}, \{\mathsf{b}, \mathsf{c}\}\}, \mathcal{D} = \{\phi, \Omega, \{\mathsf{b}\}, \{\mathsf{a}, \mathsf{c}\}\}, \mathcal{C} \cap \mathcal{D} = \{\phi, \Omega\}$$

so $E(Y | C \cap D) = E(Y) = 2$, and

Understanding conditioning on a sigma algebra and conditioning in general. (optional)

- suppose we have a probability model (Ω, \mathcal{A}, P)

- also, we have an *information processor Info* s.t. when ω occurs then $Info(\omega)$ prescribes the truth value of every event in the σ -algebra $\mathcal{C} \subset \mathcal{A}$ - as such all expectations (and thus probabilities) should be based on the original probability model and the information $Info(\omega)$

- so, for example, our belief that $A \in \mathcal{A}$ is true changes to $P(A \mid C)(\omega) = E(I_A \mid C)(\omega)$

Example - if $\mathcal{C} = \{\phi, \mathcal{C}, \mathcal{C}^c, \Omega\}$ then

$$P(A | C)(\omega) = \begin{cases} P(A | C) & \text{if } \omega \in C \\ P(A | C^{c}) & \text{if } \omega \in C^{c} \end{cases}$$

- suppose there are two information processors $Info_C$ and $Info_D$ labelled by their corresponding σ -algebras

- if we are told $Info_{\mathcal{C}}(\omega)$ and $Info_{\mathcal{D}}(\omega)$, then what information does this correspond to?

- note - if we know the truth value of every event in a class of sets C^* , then we also know the truth value of every element of the σ -algebra $C = \sigma(C^*)$ = the smallest σ -algebra containing C^* (the σ -algebra generated by C^*)

- so when there are two information processors $Info_{\mathcal{C}}$ and $Info_{\mathcal{D}}$ this corresponds to the information processor $Info_{\sigma(\mathcal{C}\cup\mathcal{D})}$ where $\sigma(\mathcal{C}\cup\mathcal{D})$ is the smallest σ -algebra containing \mathcal{C} and \mathcal{D}

Example (continued) - suppose in addition to $Info_{\mathcal{C}}(\omega)$ we are told the value of $Info_{\mathcal{D}}(\omega)$ where $\mathcal{D} = \{\phi, D, D^c, \Omega\}$

- then $\sigma(\mathcal{C}\cup\mathcal{D})=\sigma(\{\mathcal{C}\cap D,\mathcal{C}\cap D^c,\mathcal{C}^c\cap D,\mathcal{C}^c\cap D^c\})$ where

 $\{C \cap D, C \cap D^c, C^c \cap D, C^c \cap D^c\}$

is the partition of Ω generated by ${\it C}$ and ${\it D}$

- then

$$P(A \mid \sigma(\mathcal{C} \cup \mathcal{D}))(\omega) = \begin{cases} P(A \mid C \cap D) & \text{if } \omega \in C \cap D \\ P(A \mid C \cap D^c) & \text{if } \omega \in C \cap D^c \\ P(A \mid C^c \cap D) & \text{if } \omega \in C^c \cap D \\ P(A \mid C^c \cap D^c) & \text{if } \omega \in C^c \cap D^c \end{cases}$$

- the fundamental *principle of conditional probability*: when C contains a finest partition of Ω , then observing $Info_{\mathcal{C}}(\omega)$ means we must condition on the true element of this partition

- note the Borel sets \mathcal{B}^1 contain the partition $\{\{x\}: x \in \mathbb{R}^1\}$ but $\sigma(\{\{x\}: x \in \mathbb{R}^1\}) \neq \mathcal{B}^1$

- but for r.v. $X : (\Omega, \mathcal{A}) \to (\mathbb{R}^1, \mathcal{B}^1)$ then \mathcal{A}_X contains the finest partition $\{X^{-1}\{x\} : x \in \mathbb{R}^1\}$

note - the proposition about iterated conditional expectations when C and D are nested is a result about *averages* (which is what an expectation is) and is not about a principle of inference (which is what conditional probability is)

- so, for example, when $\mathcal{C} \subset \mathcal{D}$, then the information in $Info_{\mathcal{C}}(\omega)$ is contained in the information $Info_{\mathcal{D}}(\omega)$ and the principle of conditional probability says that the correct conditional expectations are given by $E(Y \mid \mathcal{D}) \neq E(Y \mid \mathcal{C})$ and Prop. V.14 only says that

$$E(E(Y | C) | D) = E(E(Y | D) | C) = E(Y | C)$$