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- the following result is concerned with stopping times for random walks

Proposition V.11 (Wald's Theorem) Suppose X, = Y. Z; where
Zy=aand Z1,2,,... are i.i.d. with finite mean m. Let T be a stopping
time for {X, : n € No} with E(T) < co. Then E(X7) =a+ mE(T).

Proof: Note that P(T < o0) = 1, otherwise E(T) = oo. Also,
{T=t}=(Xo,...,X;) ' B; for some B; € Bt*! and so
{(T=t}=(Z4,..., Z;)"1B] for some B, € Bt*1.

Now supposing E (X7 — a) exists then

T ) n
E(Xr —a)=E (2 Z,) =F (Z z,-/T>,-> =F (nImeZZ;/T>,> .
i=1 i=1 i=1

We have

Y Zilr=i| <Y _1Zi| Ir=i < Y| Zi| 17>
i=1 i=1 i=1
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and so
E (ZW’M) =Y E(1Z|Ir=) = Y E(1Z))P(T > i)
i=1 =1 i=1

- E(z)) f P(T > i) = E(Z))E(T) < o0

since {T > i} ={T <i—1} € Az, .7 ,and |Z]| and IT>; are
statistically independent so

E(|Zi|Ir>i) = E(IZ)E(Ir>i)) = E(|1Z][)P(T > i).
Therefore by DCT

E(XT - a) =E ( lim ZZ,‘/T>,’> = lim Z E(Z,'/Tz,')

= Y E(Zlr=i) =) E(Z)E(Ir=i) = mE(T).
i=1 i=1
This implies that E(X7 — a) exist finitely which implies E(X7) is finite
and so E(X7) = a+ mE(T) as required. B
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Example V.8 Random walks

- Xp =Y oZ where Zy = aand 21,2, ... are i.i.d. with mean 0, then
X, is a martingale

- Wald's theorem establishes that E(X7) = E (Xp) and these are different
conditions than the various optional stopping results that were proved
required H

Example V.9

- let Z1, 25, ... be the outcomes from independent rolls of a fair die so
Z: €{1,2,3,4,5,6} and E(Z;)) =35

-let X, =Y 17

-let R=inf{n>1:2Z,=5}so

o0 00 5 i—1
E(R ng>,_§pR>,_g(6>
= 1/(1-5/6)=6<o0

and R is a stopping time with finite expectation for the process
{Z, : n > 1} and thus for the process {X, : n > 1} as well
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- so with Xo = 0 by Wald's Theorem E(Xg) = (3.5)6 =21

-also S =inf{n >1:Z, =3} is a stopping time for this process with
expectation 6 so E(Xs) = 21

- now consider E(Xg_1) and note
{R—1=n}={R=n+1} ¢ Ax,
for the process{ X, : n> 1}

x, s0 R — 1 is not a stopping time

- but Xg_1 = Xr — 5 and so
E(Xg_1) = E(Xg) ~5=21-5=16 <21 —3 = E(Xs_1)
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- recall Gambler’s Ruin where we showed if T; = 1st time X, = i we
showed (Lecture 3c)

s(a) = P,(To > T.) = prob. gambler acquires full fortune

2B pr1/2
-(52)
c p=1/2
To < T.) = prob. gambler is ruined
ey P #1/2
/c p=1/2
and put T = min( Ty, T.) = stopping time of the gambling

Proposition V.12 (Expected stopping time for Gambler’s ruin) If
{X, : n >0} is the random walk with Xy = a > 0 and

21,2, ... iofd- 2Bernoulli(p) — 1 with p # 1/2, then with
T =min(To, T¢)

-
|
s ©
—

cs(a) — a

E(T) = 21
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Proof: We have E(Z;)) =2p—1. Let T, =min(T,n)so T, T T and
MCT gives E(T,) — E(T). So by Wald's Theorem

E(Xr,) = a+ (2p— 1)E(T,).

Now X7, ey Xt and since X7, € {0,1,..., c} then | X7,| < ¢ and so the
DCT implies E(X7,) — E(X7). Together these imply

E(X7) = nIme E(Xr,)=a+(2p—1) nImeE(Tn) =a+ (2p—1)E(T)

But also E(X7) = cs(a) +0r(a) = cs(a) so a+ (2p —1)E(T) = cs(a)
which implies (2) -

BT =1
|

- note a corollary of this is that E(T) < oo (a simpler proof as opposed to
Prop. 1.7.6 in the text)
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- consider now the gambler’s ruin problem with p = 1/2 so {X, : n > 0}
is a ssrw and a martingale as in this case 2p —1 =20

- we need a few more results about martingales

Proposition V.12 Let {X, : n > 0} be a random walk with X, =Y, Z;
where Zy = a and /1, 2, ... are i.i.d. with mean 0 and variance v < oo.
The the process {Y, : n > 0}, where

Yo=(X,—a)?—nv= (X", Z,-)2 — nv, is a martingale.

Proof: We have

2
n
E|Y, <E <ZZ,-> + nv = nv+nv =2nv
i=1

so the process {Y, : n > 0} has finite mean. Then, since Z,1 is
independent of Zy, Z1, ..., Z, and so independent of Yy, Y1,..., Y),
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2
n
= E (ZZ,JFZ,,H) —(n+1)v|Yo,..., Y,
i=1

2
n n
E ():z,-) —nv +2 ():z,-) Zo1+ 22—V Yoo, Yo
i=1

i=1

Y, +2E(Zyi1)E ((Z z,-) | Yo, ..., Yn> +E(Z24) —v
i=1

= Y, +0+v—-v=Y,
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Proposition V.13 For the gambler’s ruin process {X, : n > 0} with
p=1/2, then E(T) = Var(X7) = a(c — a).

Proof: Note first that

Var(Z;) = p12 + (=1)2(1—p) — (2p—1)> =1— (2p — 1)2 = 1 when
p=1/2. By Prop. V.12 Y,, = (X, — a)?> — n is a martingale. For a
constant m > 0 then S, = min(T, m) is a bounded stopping time for
{X,:n>0} and thus Ys, = (Xs,, —a)> —nisarv.

By the Optional Stopping Lemma (Prop. V.8 slightly extended so if T is a
stopping time wrt {X, : n > 0} and {Y, : n > 0} is a martingale where
Y, = f(X,) then E(Y7) = E(Y0))

E(Ys,)=E(Yy)=(a—a)’—-0=0
and since Ys, = (Xs, —a)? — Sy, this implies
E(Sm) = E((Xs, —a)*).

Also, Sp, T T as m — co by MCT E(S,,) T E(T).
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Now since X5, € {0,1,..., c} then (Xs, —a)? < max{a?, (c — a)?} and

(X5 — a)? ey (X7 — a)? the DCT implies that

E(T) = lim E(Sy) = lim E((Xs, —a)?) — E((Xr —a)%) = Var(Xr)

since, see Example V.7, E(X7) = a. Finally

Var(X1) = g(c— a)? + C:aaz = a(cc— a)(c— a+a)=a(c—a).

[ |
Exercise V.8 Text 3.4.2

Exercise V.9 Suppose Xi, ..., X, are i.i.d. with E(X;) = 1. Prove
Y, = XpX1Xo - - - X, is a martingale where Xj is a constant. Such a
process is used to model stock prices where Xj is the initial price and
X; = the rate of return on the stock in period /.
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Exercise V.10 A process {Y, : n > 0} with E(Y}) finite for all n, is a
supermartingale (submartingale) if E(Y,+1| Yo, ..., Yn) < (>)Ya. Prove
that if {Y, : n > 0} is a martingale and g is a convex function such that
E(g(Yy)) finite for all n, then {g(Y;,) : n > 0} is a submartingale.

Exercise V.11 If {X, : n > 0} is a martingale and E(X?) < oo for all n
then E((Xpi1 — Xo)2 | Xo, ..., Xn) = E(X2,, | Xor ..., Xn) — X2.
Exercise V.12 If {X, : n > 0} is a martingale and E(X?) < oo for all n
and 0 </ << k < nthen
E((% — X0)X) = 0.

E((Xn = X)(X; = X)) =
The last property is referred to as orthogonal increments. Recall that
< X,Y >= E(XY) is an inner product on L?(Q), A, P) = the set of all

random variables defined on the probability space with finite second
moment. Deduce from this that

E(X0 — X0)?) = 2 E((X — Xk 1)?).
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