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- the following result is concerned with stopping times for random walks

Proposition V.11 (Wald�s Theorem) Suppose Xn = ∑n
i=0 Zi where

Z0 = a and Z1,Z2, . . . are i .i .d . with �nite mean m. Let T be a stopping
time for fXn : n 2 N0g with E (T ) < ∞. Then E (XT ) = a+mE (T ).

Proof: Note that P(T < ∞) = 1, otherwise E (T ) = ∞. Also,
fT = tg = (X0, . . . ,Xt )�1Bt for some Bt 2 Bt+1 and so
fT = tg = (Z0, . . . ,Zt )�1B 0t for some B 0t 2 Bt+1.
Now supposing E (XT � a) exists then

E (XT � a) = E
 

T

∑
i=1
Zi

!
= E

 
∞

∑
i=1
Zi IT�i

!
= E

 
lim
n!∞

n

∑
i=1
Zi IT�i

!
.

We have ����� n∑i=1 Zi IT�i
����� � n

∑
i=1
jZi j IT�i �

∞

∑
i=1
jZi j IT�i
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and so

E

 
∞

∑
i=1
jZi j IT�i

!
=

∞

∑
i=1
E (jZi j IT�i ) =

∞

∑
i=1
E (jZi j)P(T � i)

= E (jZ1j)
∞

∑
i=1
P(T � i) = E (jZ1j)E (T ) < ∞

since fT � ig = fT � i � 1gc 2 AZ0,...,Zi�1 and jZi j and IT�i are
statistically independent so

E (jZi j IT�i ) = E (jZi j)E (IT�i ) = E (jZi j)P(T � i) .
Therefore by DCT

E (XT � a) = E
 
lim
n!∞

n

∑
i=1
Zi IT�i

!
= lim

n!∞

n

∑
i=1
E (Zi IT�i )

=
∞

∑
i=1
E (Zi IT�i ) =

∞

∑
i=1
E (Zi )E (IT�i ) = mE (T ).

This implies that E (XT � a) exist �nitely which implies E (XT ) is �nite
and so E (XT ) = a+mE (T ) as required. �
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Example V.8 Random walks

- Xn = ∑n
i=0 Zi where Z0 = a and Z1,Z2, . . . are i .i .d . with mean 0, then

Xn is a martingale

- Wald�s theorem establishes that E (XT ) = E (X0) and these are di¤erent
conditions than the various optional stopping results that were proved
required �
Example V.9

- let Z1,Z2, . . . be the outcomes from independent rolls of a fair die so
Zi 2 f1, 2, 3, 4, 5, 6g and E (Zi ) = 3.5
- let Xn = ∑n

i=1 Zi

- let R = inffn � 1 : Zn = 5g so

E (R) =
∞

∑
i=1
P(R � i) =

∞

∑
i=1
P(R � i) =

∞

∑
i=1

�
5
6

�i�1
= 1/(1� 5/6) = 6 < ∞

and R is a stopping time with �nite expectation for the process
fZn : n � 1g and thus for the process fXn : n � 1g as well
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- so with X0 = 0 by Wald�s Theorem E (XR ) = (3.5) 6 = 21

- also S = inffn � 1 : Zn = 3g is a stopping time for this process with
expectation 6 so E (XS ) = 21

- now consider E (XR�1) and note
fR � 1 = ng = fR = n+ 1g /2 AX0,...,Xn so R � 1 is not a stopping time
for the processfXn : n � 1g
- but XR�1 = XR � 5 and so
E (XR�1) = E (XR )� 5 = 21� 5 = 16 < 21� 3 = E (XS�1)
�
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- recall Gambler�s Ruin where we showed if Ti = 1st time Xn = i we
showed (Lecture 3c)

s(a) = Pa(T0 > Tc ) = prob. gambler acquires full fortune

=

8<:
1�( 1�pp )

a

1�( 1�pp )
c p 6= 1/2

a/c p = 1/2

r(a) = Pa(T0 < Tc ) = prob. gambler is ruined

=

8<:
1�( p

1�p )
c�a

1�( p
1�p )

c p 6= 1/2

(c � a)/c p = 1/2

and put T = min(T0,Tc ) = stopping time of the gambling

Proposition V.12 (Expected stopping time for Gambler�s ruin) If
fXn : n � 0g is the random walk with X0 = a > 0 and

Z1,Z2, . . . i .i .d .� 2Bernoulli(p)� 1 with p 6= 1/2, then with
T = min(T0,Tc )

E (T ) =
cs(a)� a
2p � 1 .
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Proof: We have E (Zi ) = 2p � 1. Let Tn = min(T , n) so Tn " T and
MCT gives E (Tn)! E (T ). So by Wald�s Theorem

E (XTn ) = a+ (2p � 1)E (Tn).

Now XTn
wp1! XT and since XTn 2 f0, 1, . . . , cg then jXTn j � c and so the

DCT implies E (XTn )! E (XT ). Together these imply

E (XT ) = lim
n!∞

E (XTn ) = a+ (2p � 1) limn!∞
E (Tn) = a+ (2p � 1)E (T )

But also E (XT ) = cs(a) + 0r(a) = cs(a) so a+ (2p � 1)E (T ) = cs(a)
which implies

E (T ) =
cs(a)� a
2p � 1 .

�
- note a corollary of this is that E (T ) < ∞ (a simpler proof as opposed to
Prop. 1.7.6 in the text)
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- consider now the gambler�s ruin problem with p = 1/2 so fXn : n � 0g
is a ssrw and a martingale as in this case 2p � 1 = 0
- we need a few more results about martingales

Proposition V.12 Let fXn : n � 0g be a random walk with Xn = ∑n
i=0 Zi

where Z0 = a and Z1,Z2, . . . are i .i .d . with mean 0 and variance v < ∞.
The the process fYn : n � 0g, where
Yn = (Xn � a)2 � nv = (∑n

i=1 Zi )
2 � nv , is a martingale.

Proof: We have

E jYn j � E

0@ n

∑
i=1
Zi

!21A+ nv = nv + nv = 2nv
so the process fYn : n � 0g has �nite mean. Then, since Zn+1 is
independent of Z0,Z1, . . . ,Zn and so independent of Y0,Y1, . . . ,Yn,
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E (Yn+1 jY0, . . . ,Yn)

= E

0@ n

∑
i=1
Zi + Zn+1

!2
� (n+ 1)v jY0, . . . ,Yn

1A
= E

0@ n

∑
i=1
Zi

!2
� nv + 2

 
n

∑
i=1
Zi

!
Zn+1 + Z 2n+1 � v jY0, . . . ,Yn

1A
= Yn + 2E (Zn+1)E

  
n

∑
i=1
Zi

!
jY0, . . . ,Yn

!
+ E (Z 2n+1)� v

= Yn + 0+ v � v = Yn.

�
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Proposition V.13 For the gambler�s ruin process fXn : n � 0g with
p = 1/2, then E (T ) = Var(XT ) = a(c � a).
Proof: Note �rst that
Var(Zi ) = p12 + (�1)2(1� p)� (2p � 1)2 = 1� (2p � 1)2 = 1 when
p = 1/2. By Prop. V.12 Yn = (Xn � a)2 � n is a martingale. For a
constant m > 0 then Sm = min(T ,m) is a bounded stopping time for
fXn : n � 0g and thus YSm = (XSm � a)2 � n is a r.v.
By the Optional Stopping Lemma (Prop. V.8 slightly extended so if T is a
stopping time wrt fXn : n � 0g and fYn : n � 0g is a martingale where
Yn = f (Xn) then E (YT ) = E (Y0))

E (YSm ) = E (Y0) = (a� a)2 � 0 = 0

and since YSm = (XSm � a)2 � Sm this implies

E (Sm) = E ((XSm � a)2).

Also, Sm " T as m �! ∞ by MCT E (Sm) " E (T ).
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Now since XSm 2 f0, 1, . . . , cg then (XSm � a)2 � maxfa2, (c � a)2g and
(XSm � a)2

wp1! (XT � a)2 the DCT implies that

E (T ) = lim
m!∞

E (Sm) = lim
m!∞

E ((XSm � a)2)! E ((XT � a)2) = Var(XT )

since, see Example V.7, E (XT ) = a. Finally

Var(XT ) =
a
c
(c � a)2 + c � a

c
a2 =

a(c � a)
c

(c � a+ a) = a(c � a).

�
Exercise V.8 Text 3.4.2

Exercise V.9 Suppose X1, . . . ,Xn are i .i .d . with E (Xi ) = 1. Prove
Yn = X0X1X2 � � �Xn is a martingale where X0 is a constant. Such a
process is used to model stock prices where X0 is the initial price and
Xi = the rate of return on the stock in period i .
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Exercise V.10 A process fYn : n � 0g with E (Yn) �nite for all n, is a
supermartingale (submartingale) if E (Yn+1 jY0, . . . ,Yn) � (�)Yn. Prove
that if fYn : n � 0g is a martingale and g is a convex function such that
E (g(Yn)) �nite for all n, then fg(Yn) : n � 0g is a submartingale.
Exercise V.11 If fXn : n � 0g is a martingale and E (X 2n ) < ∞ for all n
then E ((Xn+1 � Xn)2 jX0, . . . ,Xn) = E (X 2n+1 jX0, . . . ,Xn)� X 2n .
Exercise V.12 If fXn : n � 0g is a martingale and E (X 2n ) < ∞ for all n
and 0 � i � i � k < n then

E ((Xn � Xk )Xj ) = 0,

E ((Xn � Xk )(Xj � Xi )) = 0.

The last property is referred to as orthogonal increments. Recall that
< X ,Y >= E (XY ) is an inner product on L2(Ω,A,P) = the set of all
random variables de�ned on the probability space with �nite second
moment. Deduce from this that

E ((Xn � X0)2) =
n

∑
k=1

E ((Xk � Xk�1)2).
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