Probability and Stochastic Processes II - Lecture 5c

Michael Evans
University of Toronto
https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

- the following result is concerned with stopping times for random walks

Proposition V. 11 (Wald's Theorem) Suppose $X_{n}=\sum_{i=0}^{n} Z_{i}$ where $Z_{0}=a$ and Z_{1}, Z_{2}, \ldots are i.i.d. with finite mean m. Let T be a stopping time for $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ with $E(T)<\infty$. Then $E\left(X_{T}\right)=a+m E(T)$.

Proof: Note that $P(T<\infty)=1$, otherwise $E(T)=\infty$. Also, $\{T=t\}=\left(X_{0}, \ldots, X_{t}\right)^{-1} B_{t}$ for some $B_{t} \in \mathcal{B}^{t+1}$ and so $\{T=t\}=\left(Z_{0}, \ldots, Z_{t}\right)^{-1} B_{t}^{\prime}$ for some $B_{t}^{\prime} \in \mathcal{B}^{t+1}$.

Now supposing $E\left(X_{T}-a\right)$ exists then

$$
E\left(X_{T}-a\right)=E\left(\sum_{i=1}^{T} Z_{i}\right)=E\left(\sum_{i=1}^{\infty} Z_{i} I_{T \geq i}\right)=E\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} Z_{i} I_{T \geq i}\right)
$$

We have

$$
\left|\sum_{i=1}^{n} Z_{i} I_{T \geq i}\right| \leq \sum_{i=1}^{n}\left|Z_{i}\right| I_{T \geq i} \leq \sum_{i=1}^{\infty}\left|Z_{i}\right| I_{T \geq i}
$$

and so

$$
\begin{aligned}
& E\left(\sum_{i=1}^{\infty}\left|Z_{i}\right| I_{T \geq i}\right)=\sum_{i=1}^{\infty} E\left(\left|Z_{i}\right| I_{T \geq i}\right)=\sum_{i=1}^{\infty} E\left(\left|Z_{i}\right|\right) P(T \geq i) \\
= & E\left(\left|Z_{1}\right|\right) \sum_{i=1}^{\infty} P(T \geq i)=E\left(\left|Z_{1}\right|\right) E(T)<\infty
\end{aligned}
$$

since $\{T \geq i\}=\{T \leq i-1\}^{c} \in \mathcal{A}_{Z_{0}, \ldots, Z_{i-1}}$ and $\left|Z_{i}\right|$ and $I_{T \geq i}$ are statistically independent so

$$
E\left(\left|Z_{i}\right| I_{T \geq i}\right)=E\left(\left|Z_{i}\right|\right) E\left(I_{T \geq i}\right)=E\left(\left|Z_{i}\right|\right) P(T \geq i)
$$

Therefore by DCT

$$
\begin{aligned}
& E\left(X_{T}-a\right)=E\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} Z_{i} I_{T \geq i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} E\left(Z_{i} I_{T \geq i}\right) \\
= & \sum_{i=1}^{\infty} E\left(Z_{i} I_{T \geq i}\right)=\sum_{i=1}^{\infty} E\left(Z_{i}\right) E\left(I_{T \geq i}\right)=m E(T) .
\end{aligned}
$$

This implies that $E\left(X_{T}-a\right)$ exist finitely which implies $E\left(X_{T}\right)$ is finite and so $E\left(X_{T}\right)=a+m E(T)$ as required.

Example V. 8 Random walks

- $X_{n}=\sum_{i=0}^{n} Z_{i}$ where $Z_{0}=a$ and Z_{1}, Z_{2}, \ldots are i.i.d. with mean 0 , then X_{n} is a martingale
- Wald's theorem establishes that $E\left(X_{T}\right)=E\left(X_{0}\right)$ and these are different conditions than the various optional stopping results that were proved required

Example V. 9

- let Z_{1}, Z_{2}, \ldots be the outcomes from independent rolls of a fair die so
$Z_{i} \in\{1,2,3,4,5,6\}$ and $E\left(Z_{i}\right)=3.5$
- let $X_{n}=\sum_{i=1}^{n} Z_{i}$
- let $R=\inf \left\{n \geq 1: Z_{n}=5\right\}$ so

$$
\begin{aligned}
& E(R)=\sum_{i=1}^{\infty} P(R \geq i)=\sum_{i=1}^{\infty} P(R \geq i)=\sum_{i=1}^{\infty}\left(\frac{5}{6}\right)^{i-1} \\
= & 1 /(1-5 / 6)=6<\infty
\end{aligned}
$$

and R is a stopping time with finite expectation for the process $\left\{Z_{n}: n \geq 1\right\}$ and thus for the process $\left\{X_{n}: n \geq 1\right\}$ as well

- so with $X_{0}=0$ by Wald's Theorem $E\left(X_{R}\right)=(3.5) 6=21$
- also $S=\inf \left\{n \geq 1: Z_{n}=3\right\}$ is a stopping time for this process with expectation 6 so $E\left(X_{S}\right)=21$
- now consider $E\left(X_{R-1}\right)$ and note
$\{R-1=n\}=\{R=n+1\} \notin \mathcal{A}_{X_{0}, \ldots, X_{n}}$ so $R-1$ is not a stopping time for the process $\left\{X_{n}: n \geq 1\right\}$
- but $X_{R-1}=X_{R}-5$ and so
$E\left(X_{R-1}\right)=E\left(X_{R}\right)-5=21-5=16<21-3=E\left(X_{S-1}\right)$
- recall Gambler's Ruin where we showed if $T_{i}=1$ st time $X_{n}=i$ we showed (Lecture 3c)

$$
\begin{aligned}
& s(a)=P_{a}\left(T_{0}>T_{c}\right)=\text { prob. gambler acquires full fortune } \\
= & \begin{cases}\frac{1-\left(\frac{1-p}{p}\right)^{a}}{1-\left(\frac{1-p}{p}\right)^{c}} & p \neq 1 / 2 \\
a / c & p=1 / 2\end{cases} \\
= & \left\{(a)=P_{a}\left(T_{0}<T_{c}\right)=\right.\text { prob. gambler is ruined } \\
= & \begin{cases}\frac{1-\left(\frac{p}{1--}\right)^{c-a}}{1-\left(\frac{p}{1-p}\right)^{c}} & p \neq 1 / 2 \\
(c-a) / c & p=1 / 2\end{cases}
\end{aligned}
$$

and put $T=\min \left(T_{0}, T_{c}\right)=$ stopping time of the gambling
Proposition V. 12 (Expected stopping time for Gambler's ruin) If $\left\{X_{n}: n \geq 0\right\}$ is the random walk with $X_{0}=a>0$ and $Z_{1}, Z_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim} 2 \operatorname{Bernoulli}(p)-1$ with $p \neq 1 / 2$, then with $T=\min \left(T_{0}, T_{c}\right)$

$$
E(T)=\frac{\operatorname{cs}(a)-a}{2 p-1}
$$

Proof: We have $E\left(Z_{i}\right)=2 p-1$. Let $T_{n}=\min (T, n)$ so $T_{n} \uparrow T$ and MCT gives $E\left(T_{n}\right) \rightarrow E(T)$. So by Wald's Theorem

$$
E\left(X_{T_{n}}\right)=a+(2 p-1) E\left(T_{n}\right)
$$

Now $X_{T_{n}} \xrightarrow{\text { wp } 1} X_{T}$ and since $X_{T_{n}} \in\{0,1, \ldots, c\}$ then $\left|X_{T_{n}}\right| \leq c$ and so the DCT implies $E\left(X_{T_{n}}\right) \rightarrow E\left(X_{T}\right)$. Together these imply

$$
E\left(X_{T}\right)=\lim _{n \rightarrow \infty} E\left(X_{T_{n}}\right)=a+(2 p-1) \lim _{n \rightarrow \infty} E\left(T_{n}\right)=a+(2 p-1) E(T)
$$

But also $E\left(X_{T}\right)=c s(a)+0 r(a)=c s(a)$ so $a+(2 p-1) E(T)=c s(a)$ which implies

$$
E(T)=\frac{\operatorname{cs}(a)-a}{2 p-1}
$$

- note a corollary of this is that $E(T)<\infty$ (a simpler proof as opposed to Prop. 1.7.6 in the text)
- consider now the gambler's ruin problem with $p=1 / 2$ so $\left\{X_{n}: n \geq 0\right\}$ is a ssrw and a martingale as in this case $2 p-1=0$
- we need a few more results about martingales

Proposition V. 12 Let $\left\{X_{n}: n \geq 0\right\}$ be a random walk with $X_{n}=\sum_{i=0}^{n} Z_{i}$ where $Z_{0}=a$ and Z_{1}, Z_{2}, \ldots are i.i.d. with mean 0 and variance $v<\infty$.
The the process $\left\{Y_{n}: n \geq 0\right\}$, where
$Y_{n}=\left(X_{n}-a\right)^{2}-n v=\left(\sum_{i=1}^{n} Z_{i}\right)^{2}-n v$, is a martingale.
Proof: We have

$$
E\left|Y_{n}\right| \leq E\left(\left(\sum_{i=1}^{n} Z_{i}\right)^{2}\right)+n v=n v+n v=2 n v
$$

so the process $\left\{Y_{n}: n \geq 0\right\}$ has finite mean. Then, since Z_{n+1} is independent of $Z_{0}, Z_{1}, \ldots, Z_{n}$ and so independent of $Y_{0}, Y_{1}, \ldots, Y_{n}$,

$$
\begin{aligned}
& E\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right) \\
= & E\left(\left(\sum_{i=1}^{n} Z_{i}+Z_{n+1}\right)^{2}-(n+1) v \mid Y_{0}, \ldots, Y_{n}\right) \\
= & E\left(\left(\sum_{i=1}^{n} Z_{i}\right)^{2}-n v+2\left(\sum_{i=1}^{n} Z_{i}\right) Z_{n+1}+Z_{n+1}^{2}-v \mid Y_{0}, \ldots, Y_{n}\right) \\
= & Y_{n}+2 E\left(Z_{n+1}\right) E\left(\left(\sum_{i=1}^{n} Z_{i}\right) \mid Y_{0}, \ldots, Y_{n}\right)+E\left(Z_{n+1}^{2}\right)-v \\
= & Y_{n}+0+v-v=Y_{n} .
\end{aligned}
$$

Proposition V. 13 For the gambler's ruin process $\left\{X_{n}: n \geq 0\right\}$ with $p=1 / 2$, then $E(T)=\operatorname{Var}\left(X_{T}\right)=a(c-a)$.

Proof: Note first that
$\operatorname{Var}\left(Z_{i}\right)=p 1^{2}+(-1)^{2}(1-p)-(2 p-1)^{2}=1-(2 p-1)^{2}=1$ when $p=1 / 2$. By Prop. V. $12 Y_{n}=\left(X_{n}-a\right)^{2}-n$ is a martingale. For a constant $m>0$ then $S_{m}=\min (T, m)$ is a bounded stopping time for $\left\{X_{n}: n \geq 0\right\}$ and thus $Y_{S_{m}}=\left(X_{S_{m}}-a\right)^{2}-n$ is a r.v.

By the Optional Stopping Lemma (Prop. V. 8 slightly extended so if T is a stopping time wrt $\left\{X_{n}: n \geq 0\right\}$ and $\left\{Y_{n}: n \geq 0\right\}$ is a martingale where $Y_{n}=f\left(X_{n}\right)$ then $\left.E\left(Y_{T}\right)=E\left(Y_{0}\right)\right)$

$$
E\left(Y_{S_{m}}\right)=E\left(Y_{0}\right)=(a-a)^{2}-0=0
$$

and since $Y_{S_{m}}=\left(X_{S_{m}}-a\right)^{2}-S_{m}$ this implies

$$
E\left(S_{m}\right)=E\left(\left(X_{S_{m}}-a\right)^{2}\right)
$$

Also, $S_{m} \uparrow T$ as $m \longrightarrow \infty$ by MCT $E\left(S_{m}\right) \uparrow E(T)$.

Now since $X_{S_{m}} \in\{0,1, \ldots, c\}$ then $\left(X_{S_{m}}-a\right)^{2} \leq \max \left\{a^{2},(c-a)^{2}\right\}$ and $\left(X_{S_{m}}-a\right)^{2} \xrightarrow{\text { wp } 1}\left(X_{T}-a\right)^{2}$ the DCT implies that
$E(T)=\lim _{m \rightarrow \infty} E\left(S_{m}\right)=\lim _{m \rightarrow \infty} E\left(\left(X_{S_{m}}-a\right)^{2}\right) \rightarrow E\left(\left(X_{T}-a\right)^{2}\right)=\operatorname{Var}\left(X_{T}\right)$
since, see Example V.7, $E\left(X_{T}\right)=a$. Finally

$$
\operatorname{Var}\left(X_{T}\right)=\frac{a}{c}(c-a)^{2}+\frac{c-a}{c} a^{2}=\frac{a(c-a)}{c}(c-a+a)=a(c-a) .
$$

Exercise V. 8 Text 3.4.2

Exercise V. 9 Suppose X_{1}, \ldots, X_{n} are i.i.d. with $E\left(X_{i}\right)=1$. Prove $Y_{n}=X_{0} X_{1} X_{2} \cdots X_{n}$ is a martingale where X_{0} is a constant. Such a process is used to model stock prices where X_{0} is the initial price and $X_{i}=$ the rate of return on the stock in period i.

Exercise V. 10 A process $\left\{Y_{n}: n \geq 0\right\}$ with $E\left(Y_{n}\right)$ finite for all n, is a supermartingale (submartingale) if $E\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right) \leq(\geq) Y_{n}$. Prove that if $\left\{Y_{n}: n \geq 0\right\}$ is a martingale and g is a convex function such that $E\left(g\left(Y_{n}\right)\right)$ finite for all n, then $\left\{g\left(Y_{n}\right): n \geq 0\right\}$ is a submartingale.
Exercise V. 11 If $\left\{X_{n}: n \geq 0\right\}$ is a martingale and $E\left(X_{n}^{2}\right)<\infty$ for all n then $E\left(\left(X_{n+1}-X_{n}\right)^{2} \mid X_{0}, \ldots, X_{n}\right)=E\left(X_{n+1}^{2} \mid X_{0}, \ldots, X_{n}\right)-X_{n}^{2}$.
Exercise V. 12 If $\left\{X_{n}: n \geq 0\right\}$ is a martingale and $E\left(X_{n}^{2}\right)<\infty$ for all n and $0 \leq i \leq i \leq k<n$ then

$$
\begin{aligned}
E\left(\left(X_{n}-X_{k}\right) X_{j}\right) & =0 \\
E\left(\left(X_{n}-X_{k}\right)\left(X_{j}-X_{i}\right)\right) & =0
\end{aligned}
$$

The last property is referred to as orthogonal increments. Recall that $<X, Y>=E(X Y)$ is an inner product on $L^{2}(\Omega, \mathcal{A}, P)=$ the set of all random variables defined on the probability space with finite second moment. Deduce from this that

$$
E\left(\left(X_{n}-X_{0}\right)^{2}\right)=\sum_{k=1}^{n} E\left(\left(X_{k}-X_{k-1}\right)^{2}\right)
$$

