Probability and Stochastic Processes II - Lecture 5b

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

2024 1 / 9

- Proposition V.8 required that the stopping time T be bounded wp1 but more general versions are required as most stopping times aren't bounded as in $T = \inf\{n : a \le X_n \le b\}$ when $P(a \le X_n \le b) < 1$ for every n

Proposition V.9 (Optional Stopping Theorem) If $\{X_n : n \in \mathbb{N}_0\}$ is a martingale with stopping time T satisfying $P(T < \infty) = 1$, such that $E|X_T| < \infty$ and $\lim_{n\to\infty} E(X_n I_{\{T>n\}}) = 0$, then $E(X_T) = E(X_0)$.

Proof: For $m \in \mathbb{N}_0$ put $S_m = \inf\{T, m\}$. Then S_m is a stopping time and it is bounded since $P(S_m \le m) = 1$. So Prop. V.8 implies $E(X_{S_m}) = E(X_0)$. Now

$$X_{S_m} = X_T I_{T \le m} + X_m I_{T > m} = X_T (1 - I_{T > m}) + X_m I_{T > m}$$

= $X_T - X_T I_{T > m} + X_m I_{T > m}$ or
 $X_T = X_{S_m} + X_T I_{T > m} - X_m I_{T > m}$

which implies

$$E(X_T) = E(X_0) + E(X_T I_{T>m}) - E(X_m I_{T>m})$$

and letting $m \to \infty$ implies

$$E(X_T) = E(X_0) + \lim_{m \to \infty} (E(X_T I_{T>m}) - E(X_m I_{T>m}))$$

= $E(X_0) + \lim_{m \to \infty} E(X_T I_{T>m})$ by hypothesis and

since $|X_T I_{T>m}| \leq |X_T|, E|X_T| < \infty$ and $\lim_{m\to\infty} |X_T I_{T>m}| \stackrel{wp1}{=} 0$ since $X_{T(\omega)}(\omega) I_{T(\omega)>m}(\omega) \to 0$ for any fixed ω . Therefore, by the DCT we have $\lim_{m\to\infty} E(X_T I_{T>m}) = 0$ and the result is proved.

Proposition V.10 (Optional Stopping Corollary) If $\{X_n : n \in \mathbb{N}_0\}$ is a martingale with stopping time T satisfying $P(T < \infty) = 1$, and is also bounded up to time T (there is m s.t. $P(|X_n|I_{n \le T} \le m) = 1$ for every n), then $E(X_T) = E(X_0)$.

Proof: We have

$$P(|X_T| > m) = \sum_n P(T = n, |X_n| > m)$$

= $\sum_n P(T = n, |X_n| |I_{n \le T} > m)$
 $\le \sum_n P(|X_n| |I_{n \le T} > m) = 0.$

Therefore, $E|X_T| \leq m$ and

$$\begin{aligned} |E(X_n I_{n < T})| &\leq E(|X_n| I_{n < T}) = E((|X_n| I_{n \le T}) I_{n < T}) \\ &\leq mE(I_{n < T}) = mP(T > n) \to 0 \end{aligned}$$

with *n* as $\{T > n\} \downarrow \{T = \infty\}$ and $P(T = \infty) = 0$ so $P(T > n) \downarrow 0$ by cty of *P*. The hypotheses of Prop. V.9 then apply and the result follows.

Example V.7 Gambler's ruin

- recall a gambler, starting with fortune *a*, wins 1 unit with probability *p* and the house has capital c - a and X_n is the fortune of the gamber at time *n* and $X_n = a + \sum_{i=1}^n Z_i$ where the Z_i are iid 2Bernoulli(p) - 1

- $\{X_n:n\in\mathbb{N}_0\}$ is a srw and a ssrw when p=1/2 and so is a martingale

- if $T_i = 1$ st time $X_n = i$ we showed (Lecture 3c)

$$\begin{split} s(a) &= P_a(T_c < T_0) = \text{prob. gambler acquires full fortune} \\ &= \begin{cases} \frac{1 - \left(\frac{1-p}{p}\right)^a}{1 - \left(\frac{1-p}{p}\right)^c} & p \neq 1/2 \\ a/c & p = 1/2 \end{cases} \\ r(a) &= P_a(T_0 < T_c) = \text{prob. gambler is ruined} \\ &= \begin{cases} \frac{1 - \left(\frac{p}{1-p}\right)^{c-a}}{1 - \left(\frac{1-p}{1-p}\right)^c} & p \neq 1/2 \\ (c-a)/c & p = 1/2 \end{cases} \end{split}$$

Exercise V.4 Show T_i is a stopping time for each $i \in \{0, 1, ..., c\}$.

Exercise V.5 Prove that, if T_1 , T_2 are stopping times, then min (T_1, T_2) is a stopping time. What about max (T_1, T_2) , T_1T_2 and $T_1 + T_2$?

- therefore

$$T = \inf\{n : X_n = 0 \text{ or } X_n = c\} = \min(T_0, T_c)$$

is a a stopping time and (check the algebra)

$$P_a(T < \infty) = P_a(T_c < T_0 \text{ or } T_0 < T_c)$$

= $P_a(T_c < T_0) + P_a(T_0 < T_c) = s(a) + r(a) = 1$

- also, since $X_n \in \{0,\ldots,c\}$ then $P(|X_n|I_{n \leq T} \leq c) = 1$ for every n

- recall $\{X_n:n\in\mathbb{N}_0\}$ is a martingale iff p=1/2 so in that case we have $E(X_T)=E(X_0)=a$

- when $p \neq 1/2$ consider the new process

$$Y_n = \left(\frac{1-p}{p}\right)^{X_n}$$

- since $X_n = \frac{p}{1-p} \log(Y_n)$ and $X_{n+1} = X_n + Z_{n+1}$

$$E(Y_{n+1} | Y_0, \dots, Y_n) = E\left(\left(\frac{1-p}{p}\right)^{X_{n+1}} | X_0, \dots, X_n\right)$$
$$= \left(\frac{1-p}{p}\right)^{X_n} E\left(\left(\frac{1-p}{p}\right)^{Z_{n+1}}\right)$$
$$= \left(\frac{1-p}{p}\right)^{X_n} \left[(1-p)\left(\frac{1-p}{p}\right)^{-1} + p\left(\frac{1-p}{p}\right)^{1}\right]$$
$$= \left(\frac{1-p}{p}\right)^{X_n} = Y_n$$

and so $\{Y_n : n \in \mathbb{N}_0\}$ is a martingale

- also
$$\mathcal{A}_{X_0,...,X_n} = \mathcal{A}_{Y_0,...,Y_n}$$
 we have that T is a stopping time for $\{Y_n: n \in \mathbb{N}_0\}$ with $P(T < \infty) = 1$

- finally, with $m = \max\left\{1, \left(\frac{1-p}{p}\right)^c\right\}$

$$P(|Y_n|I_{n\leq T}\leq m)=P\left(\left(\frac{1-p}{p}\right)^{X_n}I_{n\leq T}\leq m\right)=1$$

because

$$\left(\frac{1-p}{p}\right)^{X_n} I_{n \le T} \le m = \left(\frac{1-p}{p}\right)^c \text{ when } p < 1/2$$
$$\left(\frac{1-p}{p}\right)^{X_n} I_{n \le T} \le m = 1 \text{ when } p > 1/2$$

- therefore by Prop. V.10

$$E(Y_T) = E(Y_0) = \left(\frac{1-p}{p}\right)^a$$

Exercise V.6 Text 3.2.10 Exercise V.7 Text 3.2.11

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >