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Martingales
V.1 Review of Conditional Expectation and Probability
- recall for probability model (Q, A, P) and A, C € A with P(C) >0

P(ANC)

PAIC) =5

- for random vector X we want to calculate things like
P(Xe B|Y =y)and E(X|Y =Yy)

where Y = T(X) for some "smooth" T : R — R/

- this requires defining conditional probability and expectation when
P(Y =y) =0, at least in the absolutely continuous case

- also see Lectures 12 and 20 from STAC62
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- this can typically be done via limits as in defining the conditional pdf of
X at x given Y =y by, when x € T~ 1{y},

[ Px(By(x)N T 1By(y)) , Py(By(y))
v (xly) = 511'57?2lo{v§/<51<xmT—léfsz(y»/ v3/<812<y>>}
fact fx(x)J7 (x)
fr(y)

for x € T~{y} where (now allowing T to be many to one)

AT (x) AT (%) AT (x) AT \ /|72
aX1 Tt an aX1 e an
Jr(x) = |det : ; : :
aT;(x) aT;(x) dT(x) 9T(x)
dx1 e X ox1 e X

- in the discrete case Jr(x) = 1, ix(x) = P(X = x) and
ly) = P(Y =y) = P(TH{y}) so fx|v(x]y) = & (x)/  (y)
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Example V.1 Projections

-if T(x, ..., xx) = (x1,x2) then [ =2
ATi(x) oTh(x) \ |"1/2
d T1 (X) J T1 (X) &)xl 8x1
Jr (X) = |det ( Bf':ﬁx) B7§)2<‘Ex) )
ox1 e X 0T, (X) a7, (X)
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Example V.2 Projection conditionals of the Ny (pu,X)
- suppose X ~Nj(p,X) and X; = T(X) =(Xq, ..., X))t for I < k
- partition p and X as
—( ™M h / k—1
p= u where u; € R p, € R
2

s _ Y11 X2 where Y1 € RX %, € RIXUED,
- 252 200 Yoo € R(k*/)x(k*/)

Xo | Xy = xg ~ Ny (py + Z800 (%1 — pay), o2 — £, %807 10)

E(X2 | X1)(x1) = My + Z’lzZﬁl (x1 —py)
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- in general, for r.v. Y where E(|Y|) < oo and random vector X

Epy\x(y | X)(x) = Zypy\x(y | x) discrete case
y
Efy\x(y 1 X)(x) = [m yfy | x(y | x) dx absolutely continuous case
- note

Zly\pwxylx Zlyl XY() )

1
= Z ’)/|p(X,Y)(XvY)
Px(x) yip(x,y)(x.y)>0
1 1
< — v|p z,y)= E(lY]) < o0
PX(X) (g)‘ ’ (X,Y)( ) PX(X) (| D

and similarly for a.c. case so conditional expectation is defined and finite
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- recall that expectations for random vectors are defined coordinate-wise
and probabilities can be obtained via expectations of indicator functions
P(A) = E(la)

- what about conditional probability and expectations in general (not
confined to being purely discrete or purely absolutely continuous or for
infinite dimensional objects like some stochastic processes)?

- it is customary to give the general definition of conditional expectation
based on providing its characterizing properties and we do this for random
variables while conditional expectations of random vectors are obtained
coordinate-wise
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- think of By, (Y[ X) : (R¥, BX) — (R", B') (fact) and then define
E(Y|X):Q— R by

E(Y[X)(w) = Ep, (Y| X)(X(w))
- now recall Ax = {A€ A: A= X"1B for some B € BX} which is a
o-algebra called the o-algebra on () generated by X
Proposition V.1 £(Y | X): (Q, Ax) — (R, BY).
Proof: For B € B! we have
(ECV1X) B = (Ep, (Y [X)oX) B=X"(Ep,,(Y|X)) B

~1
and <EpY‘X(Y | X)) B € B¥ and since X :(Q), A) — (R*, BX) this
gives the result. B
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Definition V.1 For random variable Y with E(|Y|) < oo and random
vector X, then E(Y | X) is defined as the unique function satisfying

(i)  E(Y[X):(QAx) — (R, BY),
(i) E(Yh(X)) = E(h(X)E(Y|X)) for every h: (R*, B¥) — (R, BY)
s.t. E(|Yh(X)]) < oo.

- there is the need to prove that in general there exists a r.v. satisfying
Definition V.1 but we will assume this is the case and then prove it is
unique wpl (both follow from the Radon-Nikodym Theorem which
requires more measure theory)
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- note we proved for the discrete case (Proposition 111.8.1 in STAC62)

If h: (R¥,B¥) — (R, B!) is s.t. E(]Yh(X)|) < o, then
E(Yh(X)) = E(h(X)E(Y | X)).

Proof:

px(x)

(x,y)
= ¥ vh(¥)px.v) Z yh(x)px (x) X7
(x.y)

= 2 yh(x)px (x)py |x (v [ X) 2’7 (}:ypyx(yIX)> px(x)
= Zh Epy (Y [ X)(x)px(x) = E(h(X)E(Y | X)). ®

Exercise V.1 Establish the above result for the absolutely continuous case.
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Proposition V.2 If f and g satisfy Definition V.1 then
P{w: f(w) #g(w)}) =0or f "2 g.
- in other words f : (Q), Ax) — (R, B) and E(Yh(X)) = E(h(X)f) for
every h: (R*, B¥) — (RY, B') s.t. E(|Yh(X)|) < oo implies
wpl

£ 2 E(y | X)
Proof: Since f,g: (Q), Ax) — (R, B!) then

A = {w:f(w)—g(w) >0} e Ax
A. = {w:f(w)—g(w) <0} € Ax.
Since A, € Ay there exists B, € BX s.t. A, = X~1B, .Therefore, if
h(X) = Ig, (X), then
E(Yh(X)) = E(h(X)f) = E(h(X)g)

which implies so 0 = E(/g, (X)(f — g)) which implies P(A;) = 0 since
Ig. (X(w))(f(w) — g(w)) > 0 and this is strict when w € A;. Similarly,
P(A_) = 0 which gives the result. B
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Corollary V.3 £(Yh(X) | X) "2" h(X)E(Y | X) for every
h: (R% B¥) — (RY, BY) st. E(|Yh(X)|) < oo.
Proof: Immediate since h(X)E(Y | X) satisfies Definition V.1.

note - E(Y | X) has all the properties of E as it is an expectation such as
being linear and the TTE holds, namely

Corollary V.4 (Theorem of Total Expectation) For random vector (X, Y)
such that E(|Y]) < o0, E(Y) = E(E(Y | X)).

Proof: Put h(x) =1. W
- define conditional probability by P(A|X) = E(Ia | X) for Ac A

Corollary V.5 (Theorem of Total Probability) If A € A, then
P(A) = E(P(A[X)).
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- somerimes E(Y | X) is denoted E(Y | Ax) and this leads to a general
definition of the conditional expecation of a random variable given a sub
o-algebra C C A

Definition V.2 For random variable Y with E(|Y|) < oo and sub
o-algebra C C A, then E(Y |C) is defined as the unique function
satisfying

()  E(Y|C):(0Q,C) — (R, BY,

(i)  E(YH) = E(HE(Y|C)) for every H: (),C) — (R', BY)

st. E(JHY|) < oo.
- in Definition V.1 put H(w) = h(X(w)) and C = Ax
- this can be applied to define E(Y | {X; : t € T}) the conditional
expectation of Y given the process {X; : t € T} by putting
C= A{Xt:tET}

the o-algebra generated by the stochastic process
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V.2 Martingales

Definition V.3 A stochastic process {X, : n € Ng}, where E|X,| < c0
and E(Xp41 | Xo, - - -, X,) = X, for every n € Ny, is a martingale.

Proposition V.6 If {X,: n € Ny} is a martingale and m < n, then
E(Xp+1| X0, - -, Xm) = Xm and so E(X,) = E(Xp) for all n.

Proof: We have for every measureable h

h(Xo, ..., Xn ) Xni1)

(h(
= E(h(XO ..... ) ( n+1|X0 ..... Xn—l)) and

E(h(Xo, ..., X,, 1)Xn+1) = E(h(Xo, - .., Xn—1)E(Xp+1 | X0, -+, X))
= E(h(Xor..., Xo-1)Xn) = E(h(Xo, -, Xo—1)E(X | Xor -+, Xo_1))

SO E(Xn+1 |X() ..... Xn—l) = E(Xn |X0 ..... Xn—l) = Xn—l which
establishes the result.
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- note - the definition can can also be written as follows: a stochastic
process {X, : n € INg}, where E|X,| < 0o and E(Xp41 | Ax,,..x,) = Xn
for every n € INg, is a martingale

- we have that A,
o-algebra of A

X1 C A, soeach Ay, . x, is a sub

- generally a set {A;;t € T} of sub o-algebras of A, with T totally
ordered, is a filtration when A; C A; when s < t

- then a stochastic process {X;;t € T} where X; : (Q, 4;) — (R, BY),
E|X:| < o0 and E(X; | As) = Xs for every s < t, is a martingale with
respect to the filtration {A;;t € T}
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Example V.3 When is a Markov chain a martingale?

-if {X, :n € Ny} is also a MC with S C Z and the distribution of the
state at time n has finite expectation for every n, then to be a martingale
we must have

E(Xnt1 | Xo, -, Xa) (o, - -+ v in) = E(Xns1 | Xa) (in)
= Y JP(Xnp1 =] Xa)(i )—ln

with time homogeneity this becomes

E(X1| Xo0)( ZIP X1 | X0)(j ij,j_l
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- for example, a srw has X, = Y[y Z; with Zp = 0 and
71, 2, ... "5 2Bernoulli(p) — 1

EXi | X)(i)=(—-1)(1—-p)+(i+)p=i+2p—1

and so is a martingale only when p = 1/2, namely, it is a ssrw W

Exercise V.2 Text 3.1.6 shows converse to Proposition V.6 is false.
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Example The martingale gambling strategy

- consider a game of coin tossing where a gambler bets on H which occurs
with probability 1/2, and if the gambler bets $x the payoff is $2x so the
expected gain on a toss is 0.5(2x — x) — 0.5x =0

- the gambler adopts the following strategy: they bet $1 on the first toss,

if they lose this bet they bet $2 on the next toss, if they lose this bet they
bet $4 on the next toss and generally if they lose the first n bets they bet

$2" on the next bet and they stop as soon as they win which happens with
probability 1

- if the first H occurs at time n then gain is

2" — (1 42+ ---42""1) =271 — 2" 4 1 =1 so this guarantees a profit

- but note that expected loss just before win is
o0 1) n
Y (2] @"-1)=00
n=1 <2

so you need a big bank account if you want to use this strategy
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- let X, denote the gambler's gain (loss) at toss n

- so
Xn if stopped by toss n
Xnt1 = X,+2" if H at toss n
X,—2" if T attoss n
- then

E(Xp+1 | X1,.... Xn)(X1, .-, Xa) = X, and so
E(Xpi1| Xtroo 0 Xo) = X,

and {X, :n=1,2,..} is a martingale
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- stopping times (rules)

- an important aspect of probability theory is the concept of a stopping
time

- for example, a stopping time is an important aspect of many clinical
trials which proceed sequentially until some desirable (e.g. cures) or
undesirable (e.g. deaths) outcomes have occurred

Definition V.4 An extended r.v. T concentrated on INg U {oo} is a
stopping time for stochastic process { X, : n € Ng} if

{w: T(w)=n} € Ax, . x, for every n.

- the idea here is that we are observing a stochastic process Xp, Xi, ...
developing in time and at each time n a decision is made whether or not to
stop observing the process based on the observed values of Xy, X1,..., X,

- the requirement {w : T(w) = n} € Ax,,.. x, is simply saying that the
decision is made based upon the present and past and does not involve the
future (which of course hasn't been observed)

-so {w: T(w) =n}= (X, Xi,...,X,) 1B for some B € B"*! for some
condition, as represented by B, on the observed values of Xy, X1,..., X,
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- also Ax,

X, C Axp,... X+, implies
{w: T(w) <n} =Uj_g{w: T(w) =k} € Ax,.. x,
Example V.4

- T = k for some fixed k € INg so
{w: T(w):n}:{ 9 n#k

_ (Xo, X1, .., Xn) "1 n# k
- (Xo,Xl,...,Xn)_l]R”'H n=k

since ¢, R € B"1 so T is a stopping rule
- T =inf{n: X, < x} then
{CU.T(CU):H}:{O?:_OIX’ XOO }mX 1( OOX]EAXO ’’’’’ X,

since X, 1(x, ), X }(—o0, x] € Ay, for all i so T is a stopping rule
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- T =inf{n: X,41 < x}, then
{w: T(w) =n} = {NeX (x,00) } N X} (=00, X]

and this may not be in Ay, x, since we cannot guarantee that
X:_ll(—oo,x] € Ax,...x, for every n unless the process was degenerate
and so T is not a valid stopping time because for T = n to occur we have
to look into the future M

Example V.5 A valid stopping time T can have T = co with positive
probability

- T = 0o means we never stop the process

- we have that T = inf{n: X, = x} is a valid stopping time but if
P(X, =x)=0for all n then P(T =c0) =11
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- we restrict attention hereafter to stopping times that are finite, namely,
P(T = oc0) = 0 because we want to consider the stopped time variable
X7 which isn't defined when T = oo

- this means we remove from Q) all those w such that T = co and note
O\{T=0} =02 {T=n}tecA

Proposition V.7 When P(T = o0) = 0 then X7 is a random variable.
Proof: After deleting all w such that T = oo,

X7 (=00, c) = U o{T =nX, < c} =Uo{T=n}n{X, < c} € A
|

- so concern is with the distribution of the stopped value Xt of the
stochastic process
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Proposition V.8 (Optional stopping lemma) If {X, :n € Ny} is a
martingale and T is a bounded stopping time then E(X7) = E(Xp).

Proof: So there is a constant m € Ny s.t. P(T < m) = 1. We have

E(Xr —Xo) = E (i(xk - Xk1)>

k=1

k=1

= E<Z<Xk Xk—1 l{k<T}) ZE (Xk = Xi—1) ljk<1y)

= Y E((Xk = Xio1) Ir<ie1ye) = Y E((Xk = Xe1) (1= ly7<k-1}))

==
—_

i (X = Xe—1) (1 = Iir<pe1y) [ Xoo ooy Xi—1))
i (1= lr<h—1p) E((Xk = Xk—1) [ X, -+, Xi-1))

since (1 — l7<4_1}) depends on Xo, ..., Xk—1 and using the

definition of conditional expectation
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and since E(Xy | Xo, ..., Xk—1) = Xk_1 then
E(XT — Xo)

E((1 = lrap—1)) (E(Xk [ Xo, - -+ Xk—1) — Xk—1))

I
1=

>
Il
-

I
NgE

E((1 = lir<1y) (Xk—1 = Xi—1)) = 0.

x
Il
—

Now E(Xp) < o0 and E(X7 — Xp) < o0 so
E(X7) = E(Xo) + E(X7 — Xo) < co which implies
0= E(XT — Xo) = E(X7) — E(Xp) which gives the result. B
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Example V.6

- a ssrw is a martingale and define stopping time
T = min(10*,inf{n > 0: X, = —5})
Exercise V.3 Show T is a valid stopping time.

- T is bounded so Proposition V.8 applies which says E(X7) = E(Xp) =0

- but the chain is recurrent so we will hit —5 with probability 1 and almost
certainly within the first 10'? steps starting from state 0 and so we are
virtually certain (very high probability g ~ 1) X7 = —5
- so how can we have E(X7) = 0?
0=E(Xr)=qE(X7|T #10")+ (1—q)E(X7 | T = 10")
=  q(=5)+(1-q)E(X7| T =10"?) so
29
1—

- this means that with a very small probability X7 is huge
|

E(Xr| T =10") =
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