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Martingales

V.1 Review of Conditional Expectation and Probability

- recall for probability model (Ω,A,P) and A,C 2 A with P(C ) > 0

P(A jC ) = P(A\ C )
P(C )

- for random vector X we want to calculate things like

P(X 2 B jY = y) and E (X jY = y)

where Y = T (X) for some "smooth" T : Rk ! R l

- this requires de�ning conditional probability and expectation when
P(Y = y) = 0, at least in the absolutely continuous case

- also see Lectures 12 and 20 from STAC62
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- this can typically be done via limits as in de�ning the conditional pdf of
X at x given Y = y by, when x 2T�1fyg,

fX jY(x j y) = lim
δ1#0,δ2#0

�
PX(Bδ1(x) \ T�1Bδ2(y))
Vol(Bδ1(x) \ T�1Bδ2(y))

/
PY(Bδ2(y))
Vol(Bδ2(y))

�
fact
=
fX(x)JT (x)
fY(y)

for x 2 T�1fyg where (now allowing T to be many to one)

JT (x) =

��������det
0BB@

∂T1(x)
∂x1

. . . ∂T1(x)
∂xk

...
...

∂Tl (x)
∂x1

. . . ∂Tl (x)
∂xk

1CCA
0BB@

∂T1(x)
∂x1

. . . ∂T1(x)
∂xk

...
...

∂Tl (x)
∂x1

. . . ∂Tl (x)
∂xk

1CCA
0��������
�1/2

- in the discrete case JT (x) � 1, fX(x) = P(X = x) and
fY(y) = P(Y = y) = P(T�1fyg) so fX jY(x j y) = fX(x)/fY(y)
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Example V.1 Projections

- if T (x1, . . . , xk ) = (x1, x2) then l = 2

JT (x) =

��������det
 

∂T1(x)
∂x1

. . . ∂T1(x)
∂xk

∂T2(x)
∂x1

. . . ∂T 2(x)
∂xk

!0BB@
∂T1(x)

∂x1
∂T2(x)

∂x1
...

...
∂T1(x)

∂xk
∂T2(x)

∂xk

1CCA
��������
�1/2

=

���������det
�
1 0 . . . 0
0 1 . . . 0

�0BBB@
1 0
0 1
...
...

0 0

1CCCA
���������
�1/2

=

����det� 1 0
0 1

������1/2

= 1

- also f(X1,X2)(x1, x2) =
R ∞
�∞ � � �

R ∞
�∞ f(X1,...,Xk )(x1, . . . , xk ) dx3 � � � dxk so

f(X3,...,Xk ) j (X1,X2)(x3, . . . , xk j x1, x2) =
f(X1,...,Xk )(x1, . . . , xk )
f(X1,X2)(x1, x2)

�
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Example V.2 Projection conditionals of the Nk (µ,Σ)

- suppose X �Nk (µ,Σ) and X1 = T (X) =(X1, . . . ,Xl )t for l � k
- partition µ and Σ as

µ=

�
µ1
µ2

�
where µ1 2 R l , µ2 2 Rk�l

Σ =
�

Σ11 Σ12
Σt12 Σ22

�
where

Σ11 2 R l�l , Σ12 2 R l�(k�l),
Σ22 2 R (k�l)�(k�l)

X2 jX1 = x1 � Nk�l (µ2 + Σ012Σ
�1
11 (x1 � µ1),Σ22 � Σ012Σ

�1
11 Σ12)

E (X2 jX1)(x1) = µ2 + Σ012Σ
�1
11 (x1 � µ1)

�
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- in general, for r.v. Y where E (jY j) < ∞ and random vector X

EpY jX(Y jX)(x) = ∑
y
ypY jX(y j x) discrete case

EfY jX(Y jX)(x) =
Z ∞

�∞
yfY jX(y j x) dx absolutely continuous case

- note

∑
y
jy jpY jX(y j x) = ∑

y
jy j
p(X,Y )(x, y)
pX(x)

=
1

pX(x)
∑

y :p(X,Y )(x,y )>0
jy jp(X,Y )(x, y)

� 1
pX(x)

∑
(z,y )

jy jp(X,Y )(z, y) =
1

pX(x)
E (jY j) < ∞

and similarly for a.c. case so conditional expectation is de�ned and �nite
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- recall that expectations for random vectors are de�ned coordinate-wise
and probabilities can be obtained via expectations of indicator functions
P(A) = E (IA)

- what about conditional probability and expectations in general (not
con�ned to being purely discrete or purely absolutely continuous or for
in�nite dimensional objects like some stochastic processes)?

- it is customary to give the general de�nition of conditional expectation
based on providing its characterizing properties and we do this for random
variables while conditional expectations of random vectors are obtained
coordinate-wise
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- think of EpY jX(Y jX) : (Rk ,Bk )! (R1,B1) (fact) and then de�ne
E (Y jX) : Ω ! R1 by

E (Y jX)(ω) = EPY jX(Y jX)(X(ω))

- now recall AX = fA 2 A : A = X�1B for some B 2 Bkg which is a
σ-algebra called the σ-algebra on Ω generated by X

Proposition V.1 E (Y jX) : (Ω,AX)! (R1,B1).
Proof: For B 2 B1 we have
(E (Y jX))�1 B =

�
EPY jX(Y jX) �X

��1
B = X�1

�
EPY jX(Y jX)

��1
B

and
�
EPY jX(Y jX)

��1
B 2 Bk and since X :(Ω,A)! (Rk ,Bk ) this

gives the result. �

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes II - Lecture 5a 2024 8 / 26



De�nition V.1 For random variable Y with E (jY j) < ∞ and random
vector X, then E (Y jX) is de�ned as the unique function satisfying

(i) E (Y jX) : (Ω,AX)! (R1,B1),
(ii) E (Yh(X)) = E (h(X)E (Y jX)) for every h : (Rk ,Bk )! (R1,B1)

s.t. E (jYh(X)j) < ∞.

- there is the need to prove that in general there exists a r.v. satisfying
De�nition V.1 but we will assume this is the case and then prove it is
unique wp1 (both follow from the Radon-Nikodym Theorem which
requires more measure theory)
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- note we proved for the discrete case (Proposition III.8.1 in STAC62)

If h : (Rk ,Bk )! (R1,B1) is s.t. E (jYh(X)j) < ∞, then
E (Yh(X)) = E (h(X)E (Y jX)).
Proof:

E (Yh(X)) = ∑
(x,y )

yh(x)p(X,Y )(x, y) = ∑
(x,y )

yh(x)pX(x)
p(X,Y )(x, y)
pX(x)

= ∑
(x,y )

yh(x)pX(x)pY jX(y j x) = ∑
x
h(x)

 
∑
y
ypY jX(y j x)

!
pX(x)

= ∑
x
h(x)EpY jX(Y jX)(x)pX(x) = E (h(X)E (Y jX)). �

Exercise V.1 Establish the above result for the absolutely continuous case.
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Proposition V.2 If f and g satisfy De�nition V.1 then
P(fω : f (ω) 6= g(ω)g) = 0 or f wp1= g .

- in other words f : (Ω,AX)! (R1,B1) and E (Yh(X)) = E (h(X)f ) for
every h : (Rk ,Bk )! (R1,B1) s.t. E (jYh(X)j) < ∞ implies

f
wp1
= E (Y jX)

Proof: Since f , g : (Ω,AX)! (R1,B1) then

A+ = fω : f (ω)� g(ω) > 0g 2 AX
A� = fω : f (ω)� g(ω) < 0g 2 AX.

Since A+ 2 AX there exists B+ 2 Bk s.t. A+ = X�1B+.Therefore, if
h(X) = IB+(X), then

E (Yh(X)) = E (h(X)f ) = E (h(X)g)

which implies so 0 = E (IB+(X)(f � g)) which implies P(A+) = 0 since
IB+(X(ω))(f (ω)� g(ω)) � 0 and this is strict when ω 2 A+. Similarly,
P(A�) = 0 which gives the result. �
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Corollary V.3 E (Yh(X) jX) wp1= h(X)E (Y jX) for every
h : (Rk ,Bk )! (R1,B1) s.t. E (jYh(X)j) < ∞.

Proof: Immediate since h(X)E (Y jX) satis�es De�nition V.1.
note - E (Y jX) has all the properties of E as it is an expectation such as
being linear and the TTE holds, namely

Corollary V.4 (Theorem of Total Expectation) For random vector (X,Y )
such that E (jY j) < ∞,E (Y ) = E (E (Y jX)).
Proof: Put h(x) � 1. �
- de�ne conditional probability by P(A jX) = E (IA jX) for A 2 A
Corollary V.5 (Theorem of Total Probability) If A 2 A, then
P(A) = E (P(A jX)).
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- somerimes E (Y jX) is denoted E (Y j AX) and this leads to a general
de�nition of the conditional expecation of a random variable given a sub
σ-algebra C � A
De�nition V.2 For random variable Y with E (jY j) < ∞ and sub
σ-algebra C � A, then E (Y j C) is de�ned as the unique function
satisfying

(i) E (Y j C) : (Ω, C)! (R1,B1),
(ii) E (YH) = E (HE (Y j C)) for every H : (Ω, C)! (R1,B1)

s.t. E (jHY j) < ∞.

- in De�nition V.1 put H(ω) = h(X (ω)) and C = AX
- this can be applied to de�ne E (Y j fXt : t 2 Tg) the conditional
expectation of Y given the process fXt : t 2 Tg by putting

C = AfXt :t2T g

the σ-algebra generated by the stochastic process
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V.2 Martingales

De�nition V.3 A stochastic process fXn : n 2 N0g, where E jXn j < ∞
and E (Xn+1 jX0, . . . ,Xn) = Xn for every n 2 N0, is a martingale.

Proposition V.6 If fXn : n 2 N0g is a martingale and m � n, then
E (Xn+1 jX0, . . . ,Xm) = Xm and so E (Xn) = E (X0) for all n.

Proof: We have for every measureable h

E (h(X0, . . . ,Xn�1)Xn+1)
= E (h(X0, . . . ,Xn�1)E (Xn+1 jX0, . . . ,Xn�1)) and

E (h(X0, . . . ,Xn�1)Xn+1) = E (h(X0, . . . ,Xn�1)E (Xn+1 jX0, . . . ,Xn))
= E (h(X0, . . . ,Xn�1)Xn) = E (h(X0, . . . ,Xn�1)E (Xn jX0, . . . ,Xn�1))

so E (Xn+1 jX0, . . . ,Xn�1) = E (Xn jX0, . . . ,Xn�1) = Xn�1 which
establishes the result. �
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- note - the de�nition can can also be written as follows: a stochastic
process fXn : n 2 N0g, where E jXn j < ∞ and E (Xn+1 j AX0,...,Xn ) = Xn
for every n 2 N0, is a martingale

- we have that AX0,...,Xn � AX0,...,Xn+1 � A, so each AX0,...,Xn is a sub
σ-algebra of A
- generally a set fAt ; t 2 Tg of sub σ-algebras of A, with T totally
ordered, is a �ltration when As � At when s � t
- then a stochastic process fXt ; t 2 Tg where Xt : (Ω,At )! (R,B1),
E jXt j < ∞ and E (Xt j As ) = Xs for every s � t, is a martingale with
respect to the �ltration fAt ; t 2 Tg
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Example V.3 When is a Markov chain a martingale?

- if fXn : n 2 N0g is also a MC with S � Z and the distribution of the
state at time n has �nite expectation for every n, then to be a martingale
we must have

E (Xn+1 jX0, . . . ,Xn)(i0, . . . , in) = E (Xn+1 jXn)(in)
= ∑

j
jP(Xn+1 = j jXn)(in) = in

with time homogeneity this becomes

E (X1 jX0)(i) = ∑
i
iP(X1 jX0)(j) = ∑

j
jpij = i
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- for example, a srw has Xn = ∑n
i=0 Zi with Z0 = 0 and

Z1,Z2, . . . i .i .d .� 2Bernoulli(p)� 1

E (X1 jX0)(i) = (i � 1)(1� p) + (i + 1)p = i + 2p � 1

and so is a martingale only when p = 1/2, namely, it is a ssrw �
Exercise V.2 Text 3.1.6 shows converse to Proposition V.6 is false.

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes II - Lecture 5a 2024 17 / 26



Example The martingale gambling strategy

- consider a game of coin tossing where a gambler bets on H which occurs
with probability 1/2, and if the gambler bets $x the payo¤ is $2x so the
expected gain on a toss is 0.5(2x � x)� 0.5x = 0
- the gambler adopts the following strategy: they bet $1 on the �rst toss,
if they lose this bet they bet $2 on the next toss, if they lose this bet they
bet $4 on the next toss and generally if they lose the �rst n bets they bet
$2n on the next bet and they stop as soon as they win which happens with
probability 1

- if the �rst H occurs at time n then gain is
2n � (1+ 2+ � � �+ 2n�1) = 2n � 2n + 1 = 1 so this guarantees a pro�t
- but note that expected loss just before win is

∞

∑
n=1

�
1
2

�n
(2n � 1) = ∞

so you need a big bank account if you want to use this strategy

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes II - Lecture 5a 2024 18 / 26



- let Xn denote the gambler�s gain (loss) at toss n

- so

Xn+1 =

8<:
Xn if stopped by toss n
Xn + 2n if H at toss n
Xn � 2n if T at toss n

- then

E (Xn+1 jX1, . . . ,Xn)(x1, . . . , xn) = xn and so

E (Xn+1 jX1, . . . ,Xn) = Xn

and fXn : n = 1, 2, ...g is a martingale
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- stopping times (rules)

- an important aspect of probability theory is the concept of a stopping
time

- for example, a stopping time is an important aspect of many clinical
trials which proceed sequentially until some desirable (e.g. cures) or
undesirable (e.g. deaths) outcomes have occurred

De�nition V.4 An extended r.v. T concentrated on N0 [ f∞g is a
stopping time for stochastic process fXn : n 2 N0g if
fω : T (ω) = ng 2 AX0,...,Xn for every n.
- the idea here is that we are observing a stochastic process X0,X1, . . .
developing in time and at each time n a decision is made whether or not to
stop observing the process based on the observed values of X0,X1, . . . ,Xn
- the requirement fω : T (ω) = ng 2 AX0,...,Xn is simply saying that the
decision is made based upon the present and past and does not involve the
future (which of course hasn�t been observed)

- so fω : T (ω) = ng = (X0,X1, . . . ,Xn)�1B for some B 2 Bn+1 for some
condition, as represented by B, on the observed values of X0,X1, . . . ,Xn

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes II - Lecture 5a 2024 20 / 26



- also AX0,...,Xn � AX0,...,Xn+1 implies

fω : T (ω) � ng = [nk=0fω : T (ω) = kg 2 AX0,...,Xn

Example V.4

- T � k for some �xed k 2 N0 so

fω : T (ω) = ng =
�

φ n 6= k
Ω n = k

=

�
(X0,X1, . . . ,Xn)�1φ n 6= k
(X0,X1, . . . ,Xn)�1Rn+1 n = k

2 AX0,...,Xn

since φ,Rn+1 2 Bn+1 so T is a stopping rule

- T = inffn : Xn � xg then

fω : T (ω) = ng =
�
\n�1i=0 X

�1
i (x ,∞)

	
\ X�1n (�∞, x ] 2 AX0,...,Xn

since X�1i (x ,∞),X�1i (�∞, x ] 2 AXi for all i so T is a stopping rule
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- T = inffn : Xn+1 � xg, then

fω : T (ω) = ng =
�
\ni=0X�1i (x ,∞)

	
\ X�1n+1(�∞, x ]

and this may not be in AX0,...,Xn since we cannot guarantee that
X�1n+1(�∞, x ] 2 AX0,...,Xn for every n unless the process was degenerate
and so T is not a valid stopping time because for T = n to occur we have
to look into the future �
Example V.5 A valid stopping time T can have T = ∞ with positive
probability

- T = ∞ means we never stop the process

- we have that T = inffn : Xn = xg is a valid stopping time but if
P(Xn = x) = 0 for all n then P(T = ∞) = 1 �
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- we restrict attention hereafter to stopping times that are �nite, namely,
P(T = ∞) = 0 because we want to consider the stopped time variable
XT which isn�t de�ned when T = ∞

- this means we remove from Ω all those ω such that T = ∞ and note
ΩnfT = ∞g = [∞

n=0fT = ng 2 A
Proposition V.7 When P(T = ∞) = 0 then XT is a random variable.

Proof: After deleting all ω such that T = ∞,

X�1T (�∞, c) = [∞
n=0fT = n,Xn < cg = [∞

n=0fT = ng \ fXn < cg 2 A.

�
- so concern is with the distribution of the stopped value XT of the
stochastic process
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Proposition V.8 (Optional stopping lemma) If fXn : n 2 N0g is a
martingale and T is a bounded stopping time then E (XT ) = E (X0).

Proof: So there is a constant m 2 N0 s.t. P(T � m) = 1. We have

E (XT � X0) = E
 

T

∑
k=1

(Xk � Xk�1)
!

= E

 
m

∑
k=1

(Xk � Xk�1)Ifk�T g

!
=

m

∑
k=1

E ((Xk � Xk�1) Ifk�T g)

=
m

∑
k=1

E ((Xk � Xk�1) IfT�k�1gc ) =
m

∑
k=1

E ((Xk � Xk�1) (1� IfT�k�1g))

=
m

∑
k=1

E (E ((Xk � Xk�1) (1� IfT�k�1g) jX0, . . . ,Xk�1))

=
m

∑
k=1

E ((1� IfT�k�1g)E ((Xk � Xk�1) jX0, . . . ,Xk�1))

since (1� IfT�k�1g) depends on X0, . . . ,Xk�1 and using the
de�nition of conditional expectation
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and since E (Xk jX0, . . . ,Xk�1) = Xk�1 then

E (XT � X0)

=
m

∑
k=1

E ((1� IfT�k�1g)(E (Xk jX0, . . . ,Xk�1)� Xk�1))

=
m

∑
k=1

E ((1� IfT�k�1g)(Xk�1 � Xk�1)) = 0.

Now E (X0) < ∞ and E (XT � X0) < ∞ so
E (XT ) = E (X0) + E (XT � X0) < ∞ which implies
0 = E (XT � X0) = E (XT )� E (X0) which gives the result. �
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Example V.6

- a ssrw is a martingale and de�ne stopping time

T = min(1012, inffn � 0 : Xn = �5g)

Exercise V.3 Show T is a valid stopping time.

- T is bounded so Proposition V.8 applies which says E (XT ) = E (X0) = 0

- but the chain is recurrent so we will hit �5 with probability 1 and almost
certainly within the �rst 1012 steps starting from state 0 and so we are
virtually certain (very high probability q � 1) XT = �5
- so how can we have E (XT ) = 0?

0 = E (XT ) = qE (XT jT 6= 1012) + (1� q)E (XT jT = 1012)
= q(�5) + (1� q)E (XT jT = 1012) so

E (XT jT = 1012) =
5q
1� q

- this means that with a very small probability XT is huge
�
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