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IV.5 Random walks on graphs

Definition IV.4 A weighted graph is given by (V, w) where V is the
vertex set and the weight function w : V x V — [0, 00) satisfies

w(u,v) =w(v,u).

- note - if w(u, v) € {0,1} for all u, v, then this is an unweighted graph
and (u, v)is an edge of the graph when w(u, v) = 1 and since this implies
w(v,u) =1 it is an undirected graph which will be assumed hereafter

Definition IV.5 For graph (V,w) and u € V the degree of u is
d(u) =Y w(uv).
veV

- assume hereafter that d(u) > 0 for all u € V

Definition IV.6 For graph (V, w) define a simple random walk by the
MC with state space S = V and transition probabilities
w(u, v)
pUV - d(u)
- for the unweighted graph the walk moves from u to one of the vertices
connected to u with uniform probability 1/d(u)
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- put Z =Y, ,ev w(u, v) which in the unweighted case is 2 times the
number of edges with different vertices plus the number of self-edges

Example IV.11 Simple symmetric random walk on Z.
-V =Z and w(u,v) =1 when |u—v| =1 and is 0 otherwise

- #(V) =o00,d(u) =2forall u,p,y, =1/2 when [u—v|=1andis0
otherwise and Z = oo B

Example IV.11 Random walk on Z,, = {0, ..., m — 1} (Ring graph)
-vV=2Z, and

w(u,v) = 1 (ux1l)=vmodm
Y'Y= 0 otherwise

- then d(u) = 2 for all u, p,, =1/2 when (u+1) = vmod m and is 0
otherwise and Z =2m
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Proposition 1V.4.14 (Graph stationary distribution) For graph (W, w)
with finite Z, then 7T, = %“) is a stationary distribution.

Proof: We have
du) w(u,v) w(uv) w(v,u)

TTyPuv = 7 d(U) = 7 = 7 = TTyPvu

and so the MC is time reversible wrt to 7t which implies 7T is a stationary
distribution. W

Definition IV.6 A graph (V, w) is connected if for any u,v € V there
exist up, u1, ..., Uy € V with ugp = u, u, = v and w(u;, uj+1) > 0.

- for a connected graph the simple random walk is irreducible

- the period of the simple random walk on a connected graph is 1 or 2 and
is 1 whenever there is a self-edge w(u, u) >0

- simple random walk on Z,, has period 2
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Definition IV.7 A graph (V, w) is a bipartite graph whenever
V=ViUVowith VinVo=¢ and w(u,v) >0iffuec Vi,ve Vsor
conversely.

- a srw on a connected bipartite graph has period 2 and if the graph is not

bipartite it has period 1 since {n: pl(,z) > 0} contains 2 and an odd
number for some u € V (Kénig's Theorem: a graph is bipartitite iff all its
cycles are even)

Proposition 1V.4.15 (Graph convergence theorem) For a srw on a
connected, nonbipartite graph (i) lim,_co p,gﬁ) = 7, and (ii)
limp—eo P(Xp = v) = m1,.

Proof: MCCT. H

- there is a corresponding version for the periodic case
Exercises

IV.8 Text 2.7.10

IV.9 Text 2.7.11
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IV.6 Mean Recurrence Times

Definition IV.8 For MC {X, : n € Ny} define the mean return time of
state i by m; = E;(inf{n > 1: X, = i}). A recurrent state is called null
recurrent if m; = co and positive recurrent if m; < oo.

- so m; = is the average amount of time it takes the chain to return to
state i having started in state /

- if state / is transient then f; < 1 so there is a positive probability the
chain never returns which implies m; = oo

- note even with a recurrent state where f; = 1, so we are certain to
return, but still could have m; = oo which indicates that the distribution of

the return time has a long tail

- let Tjr be the time of the r-th visit to state j then
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which implies that from distribution P; then le, Tj2 — le are statistically
independent with the same distribution and similarly

1 72 1 r—1 . : (T — .
Tj , TJ - TJ ..... Tj’ - TJ are i.i.d. with mean EJ(TJ ) =mj

- also if we start from state i, then TJ-2 — le, e T = Tjr_1 are i.i.d. with
mean m;

- define ri(n) = #{/: X, =j,1 <1 < n} = number of visits to j in first n
steps and put

Gn(i,j) = Ei(r;(n)) = E; </_Zl ’{j}(X/)> = I_ilpf(jl)

Lemma 1V.16 If MC is irreducible, recurrent, lim,_.co G,(i,j)/n=1/m;.
Proof: Now sz — le ..... Tj’ — Tj’*1 are i.i.d. with mean m; and

r_ 71 2 1 r r—1 Tl _
T/ =T; —I—(TJ —TJ)—i——l—(TJ —Tj ).Also P,(Tj < o0) =150
le/r wel 0.This together with the SLLN implies, as r — oo
Tr Tl — r w

+ r-t 1 Z(Tjk— Tjk_l) Ly mj.

k=2

r r r—1
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. 1 . .
Since j is recurrent then r;(n) “% oo and since n < the time of the
(rj(n) 4 1)-st visit,

which implies

. n ) n
m; <liminf —— <limsup —— < m;

ri(n) ri(n) —

and so limp_.e n/rj(n) = m;. Now G,(i,j) = Ej(rj(n)) which implies

)
i, 1) _ g, (502)

n—oo n n—oo n

= E <nllnoo rj(nn)> by DCT since 0 < rj(n)/n <1
= 1/m;.

|

-notethat 0 <1/m; <1
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note - if x, — x then for € > 0 there exists n¢ s.t. |x, — x| < € for
n> ne and

n

Iy e = 2 Y =0 < 2 Y e —x
nkzlk n,4 k n k

k=1
ng—l ne—l n
Z]xk—x]—k 2\xk—x\<—2\xk—x\+(l—f)e—>e
k Ne k=1

. . . 1 n .
which implies Y ¢_; xx — x (Cesaro summation)

(k)

- so by MCCT since pg-”) — 71j, then 1Y% 1 Pjj

the periodic case (average blocks)

— 71; and similarly for
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Proposition IV.17 If MC is irreducible and each state i is positive
recurrent, then the MC has a unique stationary distribution 7t with

T = l/m,-.

Proof: Suppose ) ; a;p;j = «; for all i, j for some distribution a. As before

this implies ) ; oc,'p,g.") = a; for all i,/ for all n. Therefore, applied to the
periodic and aperiodic cases,

1 n
wj = nlew; Z sz,pu th,- nImeE Z pfjk) by DCT and Cesaro
k=1 i i k=1
1
= E(x, (by Lemma IV.16) =
mj

and so, if a stationary distribution exists, it is unique.
Now

C—Z*—Z,,'mgo,,ip, S,,';moonZZPu (1)

where the inequality follows since, if
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1= 0im 1YY <y L
n—eon = Y mj

J
then there exist / states ji,...,J, s.t.
18 1
Iimoof Z Zp,-(jk) < Z — but
N el M
N K .1 & K
n||—>moo; 2 ZP,S ) 2 nII—>mooE Z Z p’(j )
k=1 j k:].je{jl,...,j/}
1 1
= Y dm-Y =Y = bylemmalV.6

= m
=1 €y Y

which is a contradiction.
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Next for any state /, (and using the same argument for the inequality (1) )
by Lemma V.16

10t ipgm) ~ im L pr“)pk-
m;j n—eon =Y n—een 5 A

1 & (o o Py
> Y lim =Y py | p=) "2
k \"T N K

my

and so

ZHJ ;EP@ DCTEZPkJ ;rik

which implies
1 _yp
mj— 5 Mk

which in turn implies 77; = 1/cm; is the unique stationary distribution.

Since always %27:1 p(-l)

i = T then Lemma IV.16 impliessc=1. &
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Proposition 1V.18 If a MC has a stationary distribution 77 and state j is
not positive recurrent then 77; = 0.
Proof: We have

;= Zn,p, for every n
(t) LRI
= = Zznip,-j =Y =) py
N3 AR |
1 n
= nImeZﬂ;; Z;pfjt Zn, I|m - Zpu by DCT
/ t=
= Emi = EH;O = 0 since m; = 0.
M f
|

Corollary 1V.19 A MC with no positive recurrent states does not have a
stationary distribution.
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Proposition 1V.20 If states i and j mutually communicate then if one is
positive recurrent so is the other.

(r)

Proof: There exist r,s > 0s.t. pjj > 0, pji > 0. Therefore, using Lemma

IV.16 for recurrent states and the result for transient states

1 _
— = lim = Ep > lim — Z pjS (t=s r)pl-(jr) by Chapman-Kolmog

1 II

(s)

n—oo N

mj nh—oon t=s-+r
o pon—s—r 1 D (t—s—r) | (n)
= P | Jim n_s_rt:;rpﬁ Pij
1 0
= Pi Py

and so 1/m; > 0 when 1/m; > 0 so mj is finite whenever m; is finite and
conversely.

Corollary 1V.21 An irreducible MC either has all states positive recurrent
or no states positive recurrent.

- so an irreducible chain has a stationary distribution given by 77; iff it is a
positive recurrent chain
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Proposition 1V.22 An irreducible MC with a finite state space is positive
recurrent and so has a stationary distribution.

Proof: We have
nILmoo Pi(X; = j forsome ,1 <[ <n)=f;>0
for every i and j. Since S is finite, then there exists ¢ € (0, 1) and m s.t.
Pi(X; =j forsome [,1 <[ <m)>9}
for every i and j. Therefore,
Pi(X;#jforall [1</<m)<1l-9¢

for every i and j.
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Now consider

Pi(X; #ifor,1 <1<2m)
= Y PXj#ifori#£m1<1<2m Xy =)

jesS\{i}
Pi(X) #ifor 1 <I<m—1,Xp=j)X ) -
— Z . i using MP and T
jesTi ( Pi(X; # i for,1 <1< m)
< (1 Z P,-(X,;éiforlglgm—l,Xm:j)> (1-9)
eS\{i}

= Pi(X;#ifor,1<1<m)(1—-20)<(1-046)>

and similarly
Pi(X) # i for 1 << km) < (1—08)k.
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Then for n satisfying km < n < (k +1)m, we have ...

Pi(X; #ifor,1 <1<n)
< Pi(Xp#ifor 1,1 <1< km)<(1—8)K=(1-4l/m

This implies
m = E(TH) =Y P(T!>n)=)Y P(X #iforl,1<1<n)
n=0 n=0
< Y(a-ol/m = Zml— =m/§ < oo
n=0

which proves the result. Bl

Michael Evans University of Toronto https:/ Probability and Stochastic Processes Il - Lect



IV.7 Markov chains of higher order

- suppose stochastic process { X, : n € Ny} satisfies

a MC of order 2

- note a full description of the s.p. requires an intial distribution on
(Xo, X1) then, for example,

P(Xo, X1, ..., Xn) = P(X2, X3,..., X | Xo, X1)P(Xo, X1)

= P(Xs,..., X | Xo, X1, X2) P(Xa | Xo, X1)P(Xo, X1)
= P(X3 ..... Xn|X1,X2)P(X2|X0,X1)P(X0,X1) etc.
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- define a s.p. by {Y,:n€ N} by Y, = (Xp, Xy11), then

P(Yn ’ Yo, ..., Yn—l)

= P((Xn Xns1) | (X0, X1), ., (Xn-1, Xn))
(
(

P((Xn, Xos1) | Xou Xt e s Xoo1, Xn)
P((Xn, Xn+1) | Xa—1, X)) by MP of order 2
P(Yy|Yn-1)

and so {Y,:n € Ny} is a 2-dimensional MC with these transition
probabilities and initial distribution specified by Yy = (Xp, X1)

- so all the results for MC's apply here and clearly this can be generalized
to MC's of order r where

P(Xp| X, Xn-1) = P(Xo | Xo—r ., Xn_1)
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