Probability and Stochastic Processes II - Lecture 4d

Michael Evans
University of Toronto
https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

IV. 5 Random walks on graphs

Definition IV. 4 A weighted graph is given by (V, w) where V is the vertex set and the weight function $w: V \times V \rightarrow[0, \infty)$ satisfies $w(u, v)=w(v, u)$.

- note - if $w(u, v) \in\{0,1\}$ for all u, v, then this is an unweighted graph and (u, v) is an edge of the graph when $w(u, v)=1$ and since this implies $w(v, u)=1$ it is an undirected graph which will be assumed hereafter
Definition IV. 5 For graph (V, w) and $u \in V$ the degree of u is

$$
d(u)=\sum_{v \in V} w(u, v)
$$

- assume hereafter that $d(u)>0$ for all $u \in V$

Definition IV. 6 For graph (V, w) define a simple random walk by the MC with state space $\mathcal{S}=V$ and transition probabilities

$$
p_{u v}=\frac{w(u, v)}{d(u)}
$$

- for the unweighted graph the walk moves from u to one of the vertices connected to u with uniform probability $1 / d(u)$
- put $Z=\sum_{u, v \in V} w(u, v)$ which in the unweighted case is 2 times the number of edges with different vertices plus the number of self-edges

Example IV. 11 Simple symmetric random walk on \mathbb{Z}

- $V=\mathbb{Z}$ and $w(u, v)=1$ when $|u-v|=1$ and is 0 otherwise
- \#(V) $=\infty, d(u)=2$ for all $u, p_{u v}=1 / 2$ when $|u-v|=1$ and is 0 otherwise and $Z=\infty \square$

Example IV. 11 Random walk on $\mathbb{Z}_{m}=\{0, \ldots, m-1\}$ (Ring graph)

- $V=\mathbb{Z}_{m}$ and

$$
w(u, v)= \begin{cases}1 & (u \pm 1) \equiv v \bmod m \\ 0 & \text { otherwise }\end{cases}
$$

- then $d(u)=2$ for all $u, p_{u v}=1 / 2$ when $(u \pm 1) \equiv v \bmod m$ and is 0 otherwise and $Z=2 m \square$

Proposition IV.4.14 (Graph stationary distribution) For graph (W,w) with finite Z, then $\pi_{u}=\frac{d(u)}{Z}$ is a stationary distribution.

Proof: We have

$$
\pi_{u} p_{u v}=\frac{d(u)}{Z} \frac{w(u, v)}{d(u)}=\frac{w(u, v)}{Z}=\frac{w(v, u)}{Z}=\pi_{v} p_{v u}
$$

and so the MC is time reversible wrt to π which implies π is a stationary distribution.

Definition IV. 6 A graph (V, w) is connected if for any $u, v \in V$ there exist $u_{0}, u_{1}, \ldots, u_{n} \in V$ with $u_{0}=u, u_{n}=v$ and $w\left(u_{i}, u_{i+1}\right)>0$.

- for a connected graph the simple random walk is irreducible
- the period of the simple random walk on a connected graph is 1 or 2 and is 1 whenever there is a self-edge $w(u, u)>0$
- simple random walk on \mathbb{Z}_{m} has period 2

Definition IV. 7 A graph (V, w) is a bipartite graph whenever $V=V_{1} \cup V_{2}$ with $V_{1} \cap V_{2}=\phi$ and $w(u, v)>0$ iff $u \in V_{1}, v \in V_{2}$ or conversely.

- a srw on a connected bipartite graph has period 2 and if the graph is not bipartite it has period 1 since $\left\{n: p_{u u}^{(n)}>0\right\}$ contains 2 and an odd number for some $u \in V$ (Kőnig's Theorem: a graph is bipartitite iff all its cycles are even)

Proposition IV.4.15 (Graph convergence theorem) For a srw on a connected, nonbipartite graph (i) $\lim _{n \rightarrow \infty} p_{u v}^{(n)}=\pi_{v}$ and (ii) $\lim _{n \rightarrow \infty} P\left(X_{n}=v\right)=\pi_{v}$.

Proof: MCCT. ■

- there is a corresponding version for the periodic case

Exercises

IV. 8 Text 2.7.10
IV. 9 Text 2.7.11

IV. 6 Mean Recurrence Times

Definition IV. 8 For MC $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ define the mean return time of state i by $m_{i}=E_{i}\left(\inf \left\{n \geq 1: X_{n}=i\right\}\right)$. A recurrent state is called null recurrent if $m_{i}=\infty$ and positive recurrent if $m_{i}<\infty$.

- so $m_{i}=$ is the average amount of time it takes the chain to return to state i having started in state i
- if state i is transient then $f_{i i}<1$ so there is a positive probability the chain never returns which implies $m_{i}=\infty$
- note even with a recurrent state where $f_{i j}=1$, so we are certain to return, but still could have $m_{i}=\infty$ which indicates that the distribution of the return time has a long tail
- let T_{j}^{r} be the time of the r-th visit to state j then

$$
\begin{aligned}
& P_{j}\left(T_{j}^{1}=k\right)=P_{j}\left(X_{1} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j\right) \\
& =\sum_{i_{1}, \ldots, i_{k-1} \in \mathcal{S} \backslash\{j\}} P_{j}\left(X_{1}=i_{1}, \ldots, X_{k-1}=i_{k-1}, X_{k}=j\right) \\
& =\sum_{i_{1}, \ldots, i_{k-1} \in \mathcal{S} \backslash\{j\}} p_{j i_{1}} \cdots p_{i_{k-1} j} \\
& P_{j}\left(T_{j}^{1}=k, T_{j}^{2}-T_{j}^{1}=I\right) \\
& =P_{j}\binom{X_{1} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j,}{X_{k+1} \neq j, \ldots, X_{k+I-1} \neq j, X_{k+l}=j} \\
& =\sum_{i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{k+l-1} \in \mathcal{S} \backslash\{j\}} P_{j}\left(\begin{array}{l}
X_{1}=i_{1}, \ldots, X_{k-1}=i_{k-1}, X_{k}=j, \\
X_{k+1}=i_{k+1}, \ldots, X_{k+l-1}=i_{k+l-1}, \\
X_{k+1}=j
\end{array}\right) \\
& =\sum_{i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{k+1-1} \in \mathcal{S} \backslash\{j\}} p_{j i_{1}} \cdots p_{i_{k-1} j} p_{j i_{k+1}} \cdots p_{i_{k+1-1} j} \\
& =\sum_{i_{1}, \ldots, i_{k-1} \in \mathcal{S} \backslash\{j\}} p_{j i_{1}} \cdots p_{i_{k-1} j} \sum_{i_{k+1}, \ldots, i_{k+1-1} \in \mathcal{S} \backslash\{j\}} p_{j i_{k+1}} \cdots p_{i_{k+1-1} j} \\
& =P_{j}\left(T_{j}^{1}=k\right) P_{j}\left(T_{j}^{2}-T_{j}^{1}=I\right)
\end{aligned}
$$

which implies that from distribution P_{j} then $T_{j}^{1}, T_{j}^{2}-T_{j}^{1}$ are statistically independent with the same distribution and similarly $T_{j}^{1}, T_{j}^{2}-T_{j}^{1}, \ldots, T_{j}^{r}-T_{j}^{r-1}$ are i.i.d. with mean $E_{j}\left(T_{j}^{1}\right)=m_{j}$

- also if we start from state i, then $T_{j}^{2}-T_{j}^{1}, \ldots, T_{j}^{r}-T_{j}^{r-1}$ are i.i.d. with mean m_{j}
- define $r_{j}(n)=\#\left\{I: X_{I}=j, 1 \leq I \leq n\right\}=$ number of visits to j in first n steps and put

$$
G_{n}(i, j)=E_{i}\left(r_{j}(n)\right)=E_{i}\left(\sum_{l=1}^{n} I_{\{j\}}\left(X_{l}\right)\right)=\sum_{l=1}^{n} p_{i j}^{(l)}
$$

Lemma IV. 16 If MC is irreducible, recurrent, $\lim _{n \rightarrow \infty} G_{n}(i, j) / n=1 / m_{j}$. Proof: Now $T_{j}^{2}-T_{j}^{1}, \ldots, T_{j}^{r}-T_{j}^{r-1}$ are i.i.d. with mean m_{j} and $T_{j}^{r}=T_{j}^{1}+\left(T_{j}^{2}-T_{j}^{1}\right)+\cdots+\left(T_{j}^{r}-T_{j}^{r-1}\right)$.Also $P_{i}\left(T_{j}^{1}<\infty\right)=1$ so
$T_{j}^{1} / r \xrightarrow{w p 1} 0$. This together with the SLLN implies, as $r \rightarrow \infty$

$$
\frac{T_{j}^{r}}{r}=\frac{T_{j}^{1}}{r}+\frac{r-1}{r} \frac{1}{r-1} \sum_{k=2}^{r}\left(T_{j}^{k}-T_{j}^{k-1}\right) \xrightarrow{w p 1} m_{j} .
$$

Since j is recurrent then $r_{j}(n) \xrightarrow{w p 1} \infty$ and since $n \leq$ the time of the $\left(r_{j}(n)+1\right)$-st visit,

$$
\frac{T_{j}^{r_{j}(n)}}{r_{j}(n)} \leq \frac{n}{r_{j}(n)} \leq \frac{T_{j}^{r_{j}(n)+1}}{r_{j}(n)}
$$

which implies

$$
m_{j} \leq \liminf \frac{n}{r_{j}(n)} \leq \limsup \frac{n}{r_{j}(n)} \leq m_{j}
$$

and so $\lim _{n \rightarrow \infty} n / r_{j}(n)=m_{j}$. Now $G_{n}(i, j)=E_{i}\left(r_{j}(n)\right)$ which implies

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{G_{n}(i, j)}{n}=\lim _{n \rightarrow \infty} E_{i}\left(\frac{r_{j}(n)}{n}\right) \\
= & E_{i}\left(\lim _{n \rightarrow \infty} \frac{r_{j}(n)}{n}\right) \text { by DCT since } 0 \leq r_{j}(n) / n \leq 1 \\
= & 1 / m_{j} .
\end{aligned}
$$

- note that $0 \leq 1 / m_{j} \leq 1$
note - if $x_{n} \rightarrow x$ then for $\epsilon>0$ there exists n_{ϵ} s.t. $\left|x_{n}-x\right|<\epsilon$ for $n \geq n_{\epsilon}$ and

$$
\begin{aligned}
& \left|\frac{1}{n} \sum_{k=1}^{n} x_{k}-x\right|=\left|\frac{1}{n} \sum_{k=1}^{n}\left(x_{k}-x\right)\right| \leq \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}-x\right| \\
= & \frac{1}{n} \sum_{k=1}^{n_{\varepsilon}-1}\left|x_{k}-x\right|+\frac{1}{n} \sum_{k=n_{\epsilon}}^{n}\left|x_{k}-x\right| \leq \frac{1}{n} \sum_{k=1}^{n_{\epsilon}-1}\left|x_{k}-x\right|+\left(1-\frac{n_{\epsilon}}{n}\right) \epsilon \rightarrow \epsilon
\end{aligned}
$$

which implies $\frac{1}{n} \sum_{k=1}^{n} x_{k} \rightarrow x$ (Cesaro summation)

- so by MCCT since $p_{i j}^{(n)} \rightarrow \pi_{j}$, then $\frac{1}{n} \sum_{k=1}^{n} p_{i j}^{(k)} \rightarrow \pi_{j}$ and similarly for the periodic case (average blocks)

Proposition IV. 17 If MC is irreducible and each state i is positive recurrent, then the MC has a unique stationary distribution π with $\pi_{i}=1 / m_{i}$.

Proof: Suppose $\sum_{i} \alpha_{i} p_{i j}=\alpha_{j}$ for all i, j for some distribution α. As before this implies $\sum_{i} \alpha_{i} p_{i j}^{(n)}=\alpha_{j}$ for all i, j for all n. Therefore, applied to the periodic and aperiodic cases,

$$
\begin{aligned}
\alpha_{j} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{i} \alpha_{i} p_{i j}^{(k)}=\sum_{i} \alpha_{i} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{i j}^{(k)} \text { by DCT and Cesaro } \\
& =\sum_{i} \alpha_{i} \frac{1}{m_{j}}\left(\text { by Lemma IV.16) }=\frac{1}{m_{j}}\right.
\end{aligned}
$$

and so, if a stationary distribution exists, it is unique.
Now

$$
\begin{equation*}
c=\sum_{j} \frac{1}{m_{j}}=\sum_{j} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{i j}^{(k)} \leq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j} p_{i j}^{(k)}=1 \tag{1}
\end{equation*}
$$

where the inequality follows since, if

$$
1=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j} p_{i j}^{(k)}<\sum_{j} \frac{1}{m_{j}}
$$

then there exist / states $j_{1}, \ldots, j /$, s.t.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j} p_{i j}^{(k)}<\sum_{j \in\left\{j_{1}, \ldots, j_{j}\right\}} \frac{1}{m_{j}} \text { but } \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j} p_{i j}^{(k)} \geq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j \in\left\{j_{1}, \ldots, j_{i}\right\}} p_{i j}^{(k)} \\
= & \sum_{j \in\left\{j_{1}, \ldots, j_{l}\right\}} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{i j}^{(k)}=\sum_{j \in\left\{j_{1}, \ldots, j_{l}\right\}} \frac{1}{m_{j}} \text { by Lemma IV. } 16
\end{aligned}
$$

which is a contradiction.

Next for any state i, (and using the same argument for the inequality (1)) by Lemma IV. 16

$$
\begin{aligned}
\frac{1}{m_{j}} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} p_{i j}^{(t+1)}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \sum_{k} p_{i k}^{(t)} p_{k j} \\
& \geq \sum_{k}\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} p_{i k}^{(t)}\right) p_{k j}=\sum_{k} \frac{p_{k j}}{m_{k}}
\end{aligned}
$$

and so

$$
\sum_{j} \frac{1}{m_{j}} \geq \sum_{j} \sum_{k} \frac{p_{k j}}{m_{k}} \stackrel{D C T}{=} \sum_{k} \sum_{j} \frac{p_{k j}}{m_{k}}=\sum_{k} \frac{1}{m_{k}}
$$

which implies

$$
\frac{1}{m_{j}}=\sum_{k} \frac{p_{k j}}{m_{k}}
$$

which in turn implies $\pi_{j}=1 / \mathrm{cm}_{j}$ is the unique stationary distribution.
Since always $\frac{1}{n} \sum_{l=1}^{n} p_{i j}^{(I)} \rightarrow \pi_{j}$, then Lemma IV. 16 implies $c=1$.

Proposition IV. 18 If a MC has a stationary distribution π and state j is not positive recurrent then $\pi_{j}=0$.
Proof: We have

$$
\begin{aligned}
& \pi_{j}=\sum_{i} \pi_{i} p_{i j}^{(n)} \text { for every } n \\
= & \frac{1}{n} \sum_{t=1}^{n} \sum_{i} \pi_{i} p_{i j}^{(t)}=\sum_{i} \pi_{i} \frac{1}{n} \sum_{t=1}^{n} p_{i j}^{(t)} \\
= & \lim _{n \rightarrow \infty} \sum_{i} \pi_{i} \frac{1}{n} \sum_{t=1}^{n} p_{i j}^{(t)}=\sum_{i} \pi_{i} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} p_{i j}^{(t)} \text { by DCT } \\
= & \sum_{i} \pi_{i} \frac{1}{m_{j}}=\sum_{i} \pi_{i} 0=0 \text { since } m_{j}=\infty .
\end{aligned}
$$

Corollary IV.19 A MC with no positive recurrent states does not have a stationary distribution.

Proposition IV. 20 If states i and j mutually communicate then if one is positive recurrent so is the other.
Proof: There exist $r, s>0$ s.t. $p_{i j}^{(r)}>0, p_{j i}^{(s)}>0$. Therefore, using Lemma IV. 16 for recurrent states and the result for transient states

$$
\begin{aligned}
\frac{1}{m_{j}} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} p_{j j}^{(t)} \geq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=s+r}^{n} p_{j i}^{(s)} p_{i i}^{(t-s-r)} p_{i j}^{(r)} \text { by Chapman-Kolmos } \\
& =p_{j i}^{(s)}\left(\lim _{n \rightarrow \infty} \frac{n-s-r}{n} \frac{1}{n-s-r} \sum_{t=s+r}^{n} p_{i i}^{(t-s-r)}\right) p_{i j}^{(r)} \\
& =p_{j i}^{(s)} \frac{1}{m_{i}} p_{i j}^{(r)}
\end{aligned}
$$

and so $1 / m_{j}>0$ when $1 / m_{i}>0$ so m_{j} is finite whenever m_{i} is finite and conversely.

Corollary IV.21 An irreducible MC either has all states positive recurrent or no states positive recurrent.

- so an irreducible chain has a stationary distribution given by π_{i} iff it is a positive recurrent chain

Proposition IV. 22 An irreducible MC with a finite state space is positive recurrent and so has a stationary distribution.

Proof: We have

$$
\lim _{n \rightarrow \infty} P_{i}\left(X_{I}=j \text { for some } I, 1 \leq I \leq n\right)=f_{i j}>0
$$

for every i and j. Since \mathcal{S} is finite, then there exists $\delta \in(0,1)$ and m s.t.

$$
P_{i}\left(X_{I}=j \text { for some } I, 1 \leq I \leq m\right)>\delta
$$

for every i and j. Therefore,

$$
P_{i}\left(X_{I} \neq j \text { for all } I, 1 \leq I \leq m\right)<1-\delta
$$

for every i and j.

Now consider

$$
\begin{aligned}
& P_{i}\left(X_{l} \neq i \text { for } I, 1 \leq I \leq 2 m\right) \\
= & \sum_{j \in \mathcal{S} \backslash i\}} P_{i}\left(X_{l} \neq i \text { for } I \neq m, 1 \leq I \leq 2 m, X_{m}=j\right) \\
= & \sum_{j \in \mathcal{S} \backslash\{i\}}\binom{P_{i}\left(X_{l} \neq i \text { for } 1 \leq I \leq m-1, X_{m}=j\right) \times}{ P_{j}\left(X_{l} \neq i \text { for }, 1 \leq I \leq m\right)} \text { using MP and T } \\
\leq & \left(\sum_{i \in \mathcal{S} \backslash\{i\}} P_{i}\left(X_{I} \neq i \text { for } 1 \leq I \leq m-1, X_{m}=j\right)\right)(1-\delta) \\
= & P_{i}\left(X_{l} \neq i \text { for } I, 1 \leq I \leq m\right)(1-\delta) \leq(1-\delta)^{2}
\end{aligned}
$$

and similarly

$$
P_{i}\left(X_{I} \neq i \text { for } 1 \leq I \leq k m\right) \leq(1-\delta)^{k} .
$$

Then for n satisfying $k m \leq n<(k+1) m$, we have \ldots

$$
\begin{aligned}
& P_{i}\left(X_{I} \neq i \text { for } I, 1 \leq I \leq n\right) \\
\leq & P_{i}\left(X_{I} \neq i \text { for } I, 1 \leq I \leq k m\right) \leq(1-\delta)^{k}=(1-\delta)^{\lfloor n / m\rfloor} .
\end{aligned}
$$

This implies

$$
\begin{aligned}
m_{i} & =E_{i}\left(T_{i}^{1}\right)=\sum_{n=0}^{\infty} P\left(T_{i}^{1}>n\right)=\sum_{n=0}^{\infty} P_{i}\left(X_{I} \neq i \text { for } I, 1 \leq I \leq n\right) \\
& \leq \sum_{n=0}^{\infty}(1-\delta)^{\lfloor n / m\rfloor}=\sum_{k=0}^{\infty} m(1-\delta)^{k}=m / \delta<\infty
\end{aligned}
$$

which proves the result.

IV. 7 Markov chains of higher order

- suppose stochastic process $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ satisfies

$$
P\left(X_{n} \mid X_{0}, \ldots, X_{n-1}\right)=P\left(X_{n} \mid X_{n-2}, X_{n-1}\right)
$$

a MC of order 2

- note a full description of the s.p. requires an intial distribution on (X_{0}, X_{1}) then, for example,

$$
\begin{aligned}
& P\left(X_{0}, X_{1}, \ldots, X_{n}\right)=P\left(X_{2}, X_{3}, \ldots, X_{n} \mid X_{0}, X_{1}\right) P\left(X_{0}, X_{1}\right) \\
= & P\left(X_{3}, \ldots, X_{n} \mid X_{0}, X_{1}, X_{2}\right) P\left(X_{2} \mid X_{0}, X_{1}\right) P\left(X_{0}, X_{1}\right) \\
= & P\left(X_{3}, \ldots, X_{n} \mid X_{1}, X_{2}\right) P\left(X_{2} \mid X_{0}, X_{1}\right) P\left(X_{0}, X_{1}\right) \text { etc. }
\end{aligned}
$$

- define a s.p. by $\left\{Y_{n}: n \in \mathbb{N}_{0}\right\}$ by $Y_{n}=\left(X_{n}, X_{n+1}\right)$, then

$$
\begin{aligned}
& P\left(Y_{n} \mid Y_{0}, \ldots, Y_{n-1}\right) \\
= & P\left(\left(X_{n}, X_{n+1}\right) \mid\left(X_{0}, X_{1}\right), \ldots,\left(X_{n-1}, X_{n}\right)\right) \\
= & P\left(\left(X_{n}, X_{n+1}\right) \mid X_{0}, X_{1}, \ldots, X_{n-1}, X_{n}\right) \\
= & P\left(\left(X_{n}, X_{n+1}\right) \mid X_{n-1}, X_{n}\right) \text { by MP of order } 2 \\
= & P\left(Y_{n} \mid Y_{n-1}\right)
\end{aligned}
$$

and so $\left\{Y_{n}: n \in \mathbb{N}_{0}\right\}$ is a 2-dimensional MC with these transition probabilities and initial distribution specified by $Y_{0}=\left(X_{0}, X_{1}\right)$

- so all the results for MC's apply here and clearly this can be generalized to MC's of order r where

$$
P\left(X_{n} \mid X_{0}, \ldots, X_{n-1}\right)=P\left(X_{n} \mid X_{n-r}, \ldots, X_{n-1}\right)
$$

