Probability and Stochastic Processes II - Lecture 4d

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

2024 1 / 20

IV.5 Random walks on graphs

Definition IV.4 A *weighted graph* is given by (V, w) where V is the *vertex set* and the *weight function* $w : V \times V \rightarrow [0, \infty)$ satisfies w(u, v) = w(v, u).

- note - if $w(u, v) \in \{0, 1\}$ for all u, v, then this is an *unweighted graph* and (u, v) is an *edge* of the graph when w(u, v) = 1 and since this implies w(v, u) = 1 it is an *undirected graph* which will be assumed hereafter

Definition IV.5 For graph (V, w) and $u \in V$ the *degree* of u is

$$d(u) = \sum_{v \in V} w(u, v).$$

- assume hereafter that d(u) > 0 for all $u \in V$

Definition IV.6 For graph (V, w) define a *simple random walk* by the MC with state space S = V and transition probabilities

$$p_{uv}=\frac{w(u,v)}{d(u)}.$$

- for the unweighted graph the walk moves from u to one of the vertices connected to u with uniform probability 1/d(u) and the set of $u \in \mathbb{R}$ and $u \in \mathbb{R}$.

- put $Z = \sum_{u,v \in V} w(u, v)$ which in the unweighted case is 2 times the number of edges with different vertices plus the number of self-edges

Example IV.11 Simple symmetric random walk on \mathbb{Z}

-
$$V=\mathbb{Z}$$
 and $w(u,v)=1$ when $|u-v|=1$ and is 0 otherwise

- $\#(V) = \infty$, d(u) = 2 for all u, $p_{uv} = 1/2$ when |u - v| = 1 and is 0 otherwise and $Z = \infty$

Example IV.11 Random walk on $\mathbb{Z}_m = \{0, \dots, m-1\}$ (Ring graph) - $V = \mathbb{Z}_m$ and

$$w(u, v) = \begin{cases} 1 & (u \pm 1) \equiv v \mod m \\ 0 & \text{otherwise} \end{cases}$$

- then d(u) = 2 for all $u, p_{uv} = 1/2$ when $(u \pm 1) \equiv v \mod m$ and is 0 otherwise and Z = 2m

くぼう くほう くほう

Proposition IV.4.14 (*Graph stationary distribution*) For graph (W, w) with *finite* Z, then $\pi_u = \frac{d(u)}{Z}$ is a stationary distribution. Proof: We have

$$\pi_{u}p_{uv} = \frac{d(u)}{Z}\frac{w(u,v)}{d(u)} = \frac{w(u,v)}{Z} = \frac{w(v,u)}{Z} = \pi_{v}p_{vu}$$

and so the MC is time reversible wrt to π which implies π is a stationary distribution.

Definition IV.6 A graph (V, w) is *connected* if for any $u, v \in V$ there exist $u_0, u_1, \ldots, u_n \in V$ with $u_0 = u, u_n = v$ and $w(u_i, u_{i+1}) > 0$.

- for a connected graph the simple random walk is irreducible

- the period of the simple random walk on a connected graph is 1 or 2 and is 1 whenever there is a self-edge w(u, u) > 0

- simple random walk on \mathbb{Z}_m has period 2

Definition IV.7 A graph (V, w) is a *bipartite graph whenever* $V = V_1 \cup V_2$ with $V_1 \cap V_2 = \phi$ and w(u, v) > 0 iff $u \in V_1, v \in V_2$ or conversely.

- a srw on a connected bipartite graph has period 2 and if the graph is not bipartite it has period 1 since $\{n : p_{uu}^{(n)} > 0\}$ contains 2 and an odd number for some $u \in V$ (König's Theorem: a graph is bipartitite iff all its cycles are even)

Proposition IV.4.15 (*Graph convergence theorem*) For a srw on a connected, nonbipartite graph (i) $\lim_{n\to\infty} p_{uv}^{(n)} = \pi_v$ and (ii) $\lim_{n\to\infty} P(X_n = v) = \pi_v$.

Proof: MCCT.

- there is a corresponding version for the periodic case

Exercises

IV.8 Text 2.7.10

IV.9 Text 2.7.11

IV.6 Mean Recurrence Times

Definition IV.8 For MC $\{X_n : n \in \mathbb{N}_0\}$ define the *mean return time* of state *i* by $m_i = E_i(\inf\{n \ge 1 : X_n = i\})$. A recurrent state is called *null recurrent* if $m_i = \infty$ and *positive recurrent* if $m_i < \infty$.

- so m_i = is the average amount of time it takes the chain to return to state *i* having started in state *i*

- if state *i* is transient then $f_{ii} < 1$ so there is a positive probability the chain never returns which implies $m_i = \infty$

- note even with a recurrent state where $f_{ii} = 1$, so we are certain to return, but still could have $m_i = \infty$ which indicates that the distribution of the return time has a long tail

- let T_i^r be the time of the *r*-th visit to state *j* then

$$\begin{split} & P_{j}(T_{j}^{1}=k) = P_{j}(X_{1} \neq j, \dots, X_{k-1} \neq j, X_{k}=j) \\ &= \sum_{i_{1},\dots,i_{k-1} \in \mathcal{S} \setminus \{j\}} P_{j}(X_{1}=i_{1},\dots, X_{k-1}=i_{k-1}, X_{k}=j) \\ &= \sum_{i_{1},\dots,i_{k-1} \in \mathcal{S} \setminus \{j\}} P_{ji_{1}} \cdots P_{i_{k-1}j} \\ & P_{j}(T_{j}^{1}=k, T_{j}^{2} - T_{j}^{1}=l) \\ &= P_{j}\left(\begin{array}{c} X_{1} \neq j, \dots, X_{k-1} \neq j, X_{k}=j, \\ X_{k+1} \neq j, \dots, X_{k+l-1} \neq j, X_{k+l}=j \end{array} \right) \\ &= \sum_{i_{1},\dots,i_{k-1},i_{k+1},\dots,i_{k+l-1} \in \mathcal{S} \setminus \{j\}} P_{j}\left(\begin{array}{c} X_{1}=i_{1},\dots, X_{k-1}=i_{k-1}, X_{k}=j, \\ X_{k+1}=i_{k+1},\dots, X_{k+l-1}=i_{k+l-1}, \\ X_{k+l}=j \end{array} \right) \\ &= \sum_{i_{1},\dots,i_{k-1},i_{k+1},\dots,i_{k+l-1} \in \mathcal{S} \setminus \{j\}} P_{ji_{1}} \cdots P_{i_{k-1j}} P_{ji_{k+1}} \cdots P_{i_{k+l-1}j} \\ &= \sum_{i_{1},\dots,i_{k-1} \in \mathcal{S} \setminus \{j\}} P_{ji_{1}} \cdots P_{i_{k-1j}} \sum_{i_{k+1},\dots,i_{k+l-1} \in \mathcal{S} \setminus \{j\}} P_{ji_{k+1}} \cdots P_{i_{k+l-1}j} \\ &= P_{j}(T_{j}^{1}=k) P_{j}(T_{j}^{2}-T_{j}^{1}=l) \end{split}$$

which implies that from distribution P_j then T_j^1 , $T_j^2 - T_j^1$ are statistically independent with the same distribution and similarly T_j^1 , $T_j^2 - T_j^1$, ..., $T_j^r - T_j^{r-1}$ are i.i.d. with mean $E_j(T_j^1) = m_j$ - also if we start from state *i*, then $T_j^2 - T_j^1$, ..., $T_j^r - T_j^{r-1}$ are i.i.d. with mean m_i

- define $r_j(n) = \#\{I : X_I = j, 1 \le I \le n\} =$ number of visits to j in first n steps and put

$$G_n(i,j) = E_i(r_j(n)) = E_i\left(\sum_{l=1}^n I_{\{j\}}(X_l)\right) = \sum_{l=1}^n p_{ij}^{(l)}$$

Lemma IV.16 If MC is irreducible, recurrent, $\lim_{n\to\infty} G_n(i,j)/n = 1/m_j$. Proof: Now $T_j^2 - T_j^1, \ldots, T_j^r - T_j^{r-1}$ are i.i.d. with mean m_j and $T_j^r = T_j^1 + (T_j^2 - T_j^1) + \cdots + (T_j^r - T_j^{r-1})$. Also $P_i(T_j^1 < \infty) = 1$ so $T_j^1/r \xrightarrow{wp1} 0$. This together with the SLLN implies, as $r \to \infty$

$$\frac{T_j^r}{r} = \frac{T_j^1}{r} + \frac{r-1}{r} \frac{1}{r-1} \sum_{k=2}^r (T_j^k - T_j^{k-1}) \xrightarrow{wp1}{\to} m_j.$$

Since j is recurrent then $r_j(n) \xrightarrow{wp1} \infty$ and since $n \leq$ the time of the $(r_j(n)+1)\text{-st visit,}$

$$\frac{T_j^{r_j(n)}}{r_j(n)} \leq \frac{n}{r_j(n)} \leq \frac{T_j^{r_j(n)+1}}{r_j(n)}$$

which implies

$$m_j \leq \liminf \frac{n}{r_j(n)} \leq \limsup \frac{n}{r_j(n)} \leq m_j$$

and so $\lim_{n\to\infty} n/r_j(n) = m_j$. Now $G_n(i,j) = E_i(r_j(n))$ which implies

$$\lim_{n \to \infty} \frac{G_n(i,j)}{n} = \lim_{n \to \infty} E_i\left(\frac{r_j(n)}{n}\right)$$
$$= E_i\left(\lim_{n \to \infty} \frac{r_j(n)}{n}\right) \text{ by DCT since } 0 \le r_j(n)/n \le 1$$
$$= 1/m_j.$$

- note that $0 \leq 1/m_j \leq 1$

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

note - if $x_n \to x$ then for $\epsilon > 0$ there exists n_{ϵ} s.t. $|x_n - x| < \epsilon$ for $n \ge n_{\epsilon}$ and

$$\begin{vmatrix} \frac{1}{n} \sum_{k=1}^{n} x_k - x \end{vmatrix} = \begin{vmatrix} \frac{1}{n} \sum_{k=1}^{n} (x_k - x) \end{vmatrix} \le \frac{1}{n} \sum_{k=1}^{n} |x_k - x| \\ = \frac{1}{n} \sum_{k=1}^{n_{\varepsilon}-1} |x_k - x| + \frac{1}{n} \sum_{k=n_{\varepsilon}}^{n} |x_k - x| \le \frac{1}{n} \sum_{k=1}^{n_{\varepsilon}-1} |x_k - x| + (1 - \frac{n_{\varepsilon}}{n}) \epsilon \to \epsilon \end{vmatrix}$$

which implies $\frac{1}{n}\sum_{k=1}^{n} x_k \rightarrow x$ (Cesaro summation)

- so by MCCT since $p_{ij}^{(n)} \to \pi_j$, then $\frac{1}{n} \sum_{k=1}^n p_{ij}^{(k)} \to \pi_j$ and similarly for the periodic case (average blocks)

Proposition IV.17 If MC is irreducible and each state *i* is positive recurrent, then the MC has a unique stationary distribution π with $\pi_i = 1/m_i$.

Proof: Suppose $\sum_i \alpha_i p_{ij} = \alpha_j$ for all *i*, *j* for some distribution α . As before this implies $\sum_i \alpha_i p_{ij}^{(n)} = \alpha_j$ for all *i*, *j* for all *n*. Therefore, applied to the periodic and aperiodic cases,

$$\begin{aligned} \alpha_j &= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \sum_i \alpha_i \rho_{ij}^{(k)} = \sum_i \alpha_i \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \rho_{ij}^{(k)} \text{ by DCT and Cesaro} \\ &= \sum_i \alpha_i \frac{1}{m_j} \text{ (by Lemma IV.16)} = \frac{1}{m_j} \end{aligned}$$

and so, if a stationary distribution exists, it is unique. Now

$$c = \sum_{j} \frac{1}{m_{j}} = \sum_{j} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)} \le \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j} p_{ij}^{(k)} = 1$$
(1)

where the inequality follows since, if

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

$$1 = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j} p_{ij}^{(k)} < \sum_{j} \frac{1}{m_j}$$

then there exist i states j_1, \ldots, j_l , s.t.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j} p_{ij}^{(k)} < \sum_{j \in \{j_1, \dots, j_l\}} \frac{1}{m_j} \text{ but}$$
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j} p_{ij}^{(k)} \ge \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j \in \{j_1, \dots, j_l\}} p_{ij}^{(k)}$$
$$= \sum_{j \in \{j_1, \dots, j_l\}} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)} = \sum_{j \in \{j_1, \dots, j_l\}} \frac{1}{m_j} \text{ by Lemma IV.16}$$

which is a contradiction.

< 🗇 🕨

- * E > * E

Next for any state i, (and using the same argument for the inequality (1)) by Lemma IV.16

$$\frac{1}{m_j} = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n p_{ij}^{(t+1)} = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \sum_k p_{ik}^{(t)} p_{kj}$$
$$\geq \sum_k \left(\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n p_{ik}^{(t)} \right) p_{kj} = \sum_k \frac{p_{kj}}{m_k}$$

and so

$$\sum_{j} \frac{1}{m_j} \ge \sum_{j} \sum_{k} \frac{p_{kj}}{m_k} \stackrel{DCT}{=} \sum_{k} \sum_{j} \frac{p_{kj}}{m_k} = \sum_{k} \frac{1}{m_k}$$

which implies

$$\frac{1}{m_j} = \sum_k \frac{p_{kj}}{m_k}$$

which in turn implies $\pi_j = 1/cm_j$ is the unique stationary distribution. Since always $\frac{1}{n} \sum_{l=1}^{n} p_{ij}^{(l)} \to \pi_j$, then Lemma IV.16 implies c = 1. **Proposition IV.18** If a MC has a stationary distribution π and state j is not positive recurrent then $\pi_j = 0$. Proof: We have

$$\pi_{j} = \sum_{i} \pi_{i} p_{ij}^{(n)} \text{ for every } n$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{i} \pi_{i} p_{ij}^{(t)} = \sum_{i} \pi_{i} \frac{1}{n} \sum_{t=1}^{n} p_{ij}^{(t)}$$

$$= \lim_{n \to \infty} \sum_{i} \pi_{i} \frac{1}{n} \sum_{t=1}^{n} p_{ij}^{(t)} = \sum_{i} \pi_{i} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} p_{ij}^{(t)} \text{ by DCT}$$

$$= \sum_{i} \pi_{i} \frac{1}{m_{j}} = \sum_{i} \pi_{i} 0 = 0 \text{ since } m_{j} = \infty.$$

Corollary IV.19 A MC with no positive recurrent states does not have a stationary distribution.

2024 14 / 20

Proposition IV.20 If states *i* and *j* mutually communicate then if one is positive recurrent so is the other.

Proof: There exist r, s > 0 s.t. $p_{ij}^{(r)} > 0, p_{ji}^{(s)} > 0$. Therefore, using Lemma IV.16 for recurrent states and the result for transient states

$$\frac{1}{m_{j}} = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} p_{jj}^{(t)} \ge \lim_{n \to \infty} \frac{1}{n} \sum_{t=s+r}^{n} p_{ji}^{(s)} p_{ii}^{(t-s-r)} p_{ij}^{(r)} \text{ by Chapman-Kolmog}$$

$$= p_{ji}^{(s)} \left(\lim_{n \to \infty} \frac{n-s-r}{n} \frac{1}{n-s-r} \sum_{t=s+r}^{n} p_{ji}^{(t-s-r)} \right) p_{ij}^{(r)}$$

$$= p_{ji}^{(s)} \frac{1}{m_{i}} p_{ij}^{(r)}$$

and so $1/m_j > 0$ when $1/m_i > 0$ so m_j is finite whenever m_i is finite and conversely.

Corollary IV.21 An irreducible MC either has all states positive recurrent or no states positive recurrent.

- so an irreducible chain has a stationary distribution given by π_i iff it is a positive recurrent chain

Proposition IV.22 An irreducible MC with a finite state space is positive recurrent and so has a stationary distribution.

Proof: We have

$$\lim_{n\to\infty} P_i(X_l = j \text{ for some } l, 1 \le l \le n) = f_{ij} > 0$$

for every *i* and *j*. Since S is finite, then there exists $\delta \in (0, 1)$ and *m* s.t.

$$P_i(X_l = j \text{ for some } l, 1 \le l \le m) > \delta$$

for every *i* and *j*. Therefore,

$$P_i(X_l \neq j \text{ for all } l, 1 \leq l \leq m) < 1 - \delta$$

for every *i* and *j*.

Now consider

$$P_{i}(X_{l} \neq i \text{ for } l, 1 \leq l \leq 2m)$$

$$= \sum_{j \in S \setminus \{i\}} P_{i}(X_{l} \neq i \text{ for } l \neq m, 1 \leq l \leq 2m, X_{m} = j)$$

$$= \sum_{j \in S \setminus \{i\}} \left(\begin{array}{c} P_{i}(X_{l} \neq i \text{ for } 1 \leq l \leq m-1, X_{m} = j) \times \\ P_{j}(X_{l} \neq i \text{ for } 1 \leq l \leq m) \end{array} \right) \text{ using MP and } T$$

$$\leq \left(\sum_{j \in S \setminus \{i\}} P_{i}(X_{l} \neq i \text{ for } 1 \leq l \leq m-1, X_{m} = j) \right) (1 - \delta)$$

$$= P_{i}(X_{l} \neq i \text{ for } l, 1 \leq l \leq m) (1 - \delta) \leq (1 - \delta)^{2}$$

and similarly

$$P_i(X_l \neq i \text{ for } 1 \leq l \leq km) \leq (1-\delta)^k.$$

æ

イロト イ団ト イヨト イヨト

Then for *n* satisfying $km \leq n < (k+1)m$, we have ...

$$P_i(X_l \neq i \text{ for } l, 1 \leq l \leq n)$$

$$\leq P_i(X_l \neq i \text{ for } l, 1 \leq l \leq km) \leq (1-\delta)^k = (1-\delta)^{\lfloor n/m \rfloor}.$$

This implies

$$m_i = E_i(T_i^1) = \sum_{n=0}^{\infty} P(T_i^1 > n) = \sum_{n=0}^{\infty} P_i(X_l \neq i \text{ for } l, 1 \le l \le n)$$
$$\leq \sum_{n=0}^{\infty} (1-\delta)^{\lfloor n/m \rfloor} = \sum_{k=0}^{\infty} m(1-\delta)^k = m/\delta < \infty$$

which proves the result. \blacksquare

< ∃ >

IV.7 Markov chains of higher order

- suppose stochastic process $\{X_n : n \in \mathbb{N}_0\}$ satisfies

$$P(X_n | X_0, \ldots, X_{n-1}) = P(X_n | X_{n-2}, X_{n-1}),$$

a MC of order 2

- note a full description of the s.p. requires an initial distribution on (X_0, X_1) then, for example,

$$P(X_0, X_1, \dots, X_n) = P(X_2, X_3, \dots, X_n | X_0, X_1) P(X_0, X_1)$$

= $P(X_3, \dots, X_n | X_0, X_1, X_2) P(X_2 | X_0, X_1) P(X_0, X_1)$
= $P(X_3, \dots, X_n | X_1, X_2) P(X_2 | X_0, X_1) P(X_0, X_1)$ etc.

- define a s.p. by $\{Y_n:n\in\mathbb{N}_0\}$ by $Y_n=(X_n,X_{n+1})$, then

$$P(Y_n | Y_0, ..., Y_{n-1})$$

$$= P((X_n, X_{n+1}) | (X_0, X_1), ..., (X_{n-1}, X_n))$$

$$= P((X_n, X_{n+1}) | X_0, X_1, ..., X_{n-1}, X_n)$$

$$= P((X_n, X_{n+1}) | X_{n-1}, X_n) \text{ by MP of order } 2$$

$$= P(Y_n | Y_{n-1})$$

and so $\{Y_n : n \in \mathbb{N}_0\}$ is a 2-dimensional MC with these transition probabilities and initial distribution specified by $Y_0 = (X_0, X_1)$

- so all the results for MC's apply here and clearly this can be generalized to MC's of order r where

$$P(X_n | X_0, ..., X_{n-1}) = P(X_n | X_{n-r}, ..., X_{n-1})$$