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IV.5 Random walks on graphs

De�nition IV.4 A weighted graph is given by (V ,w) where V is the
vertex set and the weight function w : V � V ! [0,∞) satis�es
w(u, v) = w(v , u).

- note - if w(u, v) 2 f0, 1g for all u, v , then this is an unweighted graph
and (u, v) is an edge of the graph when w(u, v) = 1 and since this implies
w(v , u) = 1 it is an undirected graph which will be assumed hereafter

De�nition IV.5 For graph (V ,w) and u 2 V the degree of u is

d(u) = ∑
v2V

w(u, v).

- assume hereafter that d(u) > 0 for all u 2 V
De�nition IV.6 For graph (V ,w) de�ne a simple random walk by the
MC with state space S = V and transition probabilities

puv =
w(u, v)
d(u)

.

- for the unweighted graph the walk moves from u to one of the vertices
connected to u with uniform probability 1/d(u)
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- put Z = ∑u,v2V w(u, v) which in the unweighted case is 2 times the
number of edges with di¤erent vertices plus the number of self-edges

Example IV.11 Simple symmetric random walk on Z

- V = Z and w(u, v) = 1 when ju � v j = 1 and is 0 otherwise
- #(V ) = ∞, d(u) = 2 for all u, puv = 1/2 when ju � v j = 1 and is 0
otherwise and Z = ∞ �
Example IV.11 Random walk on Zm = f0, . . . ,m� 1g (Ring graph)
- V = Zm and

w(u, v) =
�
1 (u � 1) � v modm
0 otherwise

- then d(u) = 2 for all u, puv = 1/2 when (u � 1) � v modm and is 0
otherwise and Z = 2m �
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Proposition IV.4.14 (Graph stationary distribution) For graph (W ,w)
with �nite Z , then πu =

d (u)
Z is a stationary distribution.

Proof: We have

πupuv =
d(u)
Z

w(u, v)
d(u)

=
w(u, v)
Z

=
w(v , u)
Z

= πvpvu

and so the MC is time reversible wrt to π which implies π is a stationary
distribution. �
De�nition IV.6 A graph (V ,w) is connected if for any u, v 2 V there
exist u0, u1, . . . , un 2 V with u0 = u, un = v and w(ui , ui+1) > 0.

- for a connected graph the simple random walk is irreducible

- the period of the simple random walk on a connected graph is 1 or 2 and
is 1 whenever there is a self-edge w(u, u) > 0

- simple random walk on Zm has period 2
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De�nition IV.7 A graph (V ,w) is a bipartite graph whenever
V = V1 [ V2 with V1 \ V2 = φ and w(u, v) > 0 i¤ u 2 V1, v 2 V2 or
conversely.

- a srw on a connected bipartite graph has period 2 and if the graph is not
bipartite it has period 1 since fn : p(n)uu > 0g contains 2 and an odd
number for some u 2 V (K½onig�s Theorem: a graph is bipartitite i¤ all its
cycles are even)

Proposition IV.4.15 (Graph convergence theorem) For a srw on a
connected, nonbipartite graph (i) limn!∞ p

(n)
uv = πv and (ii)

limn!∞ P(Xn = v) = πv .

Proof: MCCT. �
- there is a corresponding version for the periodic case

Exercises

IV.8 Text 2.7.10

IV.9 Text 2.7.11
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IV.6 Mean Recurrence Times

De�nition IV.8 For MC fXn : n 2 N0g de�ne the mean return time of
state i by mi = Ei (inffn � 1 : Xn = ig). A recurrent state is called null
recurrent if mi = ∞ and positive recurrent if mi < ∞.

- so mi = is the average amount of time it takes the chain to return to
state i having started in state i

- if state i is transient then fii < 1 so there is a positive probability the
chain never returns which implies mi = ∞

- note even with a recurrent state where fii = 1, so we are certain to
return, but still could have mi = ∞ which indicates that the distribution of
the return time has a long tail

- let T rj be the time of the r -th visit to state j then
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Pj (T 1j = k) = Pj (X1 6= j , . . . ,Xk�1 6= j ,Xk = j)
= ∑

i1,...,ik�12Snfjg
Pj (X1 = i1, . . . ,Xk�1 = ik�1,Xk = j)

= ∑
i1,...,ik�12Snfjg

pji1 � � � pik�1 j

Pj (T 1j = k,T
2
j � T 1j = l)

= Pj

�
X1 6= j , . . . ,Xk�1 6= j ,Xk = j ,
Xk+1 6= j , . . . ,Xk+l�1 6= j ,Xk+l = j

�

= ∑
i1,...,ik�1,ik+1,...,ik+l�12Snfjg

Pj

0@ X1 = i1, . . . ,Xk�1 = ik�1,Xk = j ,
Xk+1 = ik+1, . . . ,Xk+l�1 = ik+l�1,
Xk+l = j

1A
= ∑

i1,...,ik�1,ik+1,...,ik+l�12Snfjg
pji1 � � � pik�1jpjik+1 � � � pik+l�1 j

= ∑
i1,...,ik�12Snfjg

pji1 � � � pik�1 j ∑
ik+1,...,ik+l�12Snfjg

pjik+1 � � � pik+l�1 j

= Pj (T 1j = k)Pj (T
2
j � T 1j = l)
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which implies that from distribution Pj then T 1j ,T
2
j � T 1j are statistically

independent with the same distribution and similarly
T 1j ,T

2
j � T 1j , . . . ,T rj � T r�1j are i.i.d. with mean Ej (T 1j ) = mj

- also if we start from state i , then T 2j �T 1j , . . . ,T rj �T r�1j are i.i.d. with
mean mj

- de�ne rj (n) = #fl : Xl = j , 1 � l � ng = number of visits to j in �rst n
steps and put

Gn(i , j) = Ei (rj (n)) = Ei

 
n

∑
l=1

Ifjg(Xl )

!
=

n

∑
l=1

p(l)ij

Lemma IV.16 If MC is irreducible, recurrent, limn!∞ Gn(i , j)/n = 1/mj .

Proof: Now T 2j � T 1j , . . . ,T rj � T r�1j are i.i.d. with mean mj and
T rj = T

1
j + (T

2
j � T 1j ) + � � �+ (T rj � T r�1j ).Also Pi (T 1j < ∞) = 1 so

T 1j /r
wp1! 0.This together with the SLLN implies, as r ! ∞

T rj
r
=
T 1j
r
+
r � 1
r

1
r � 1

r

∑
k=2

(T kj � T k�1j )
wp1! mj .
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Since j is recurrent then rj (n)
wp1! ∞ and since n � the time of the

(rj (n) + 1)-st visit,

T rj (n)j

rj (n)
� n
rj (n)

�
T rj (n)+1j

rj (n)

which implies

mj � lim inf
n

rj (n)
� lim sup n

rj (n)
� mj

and so limn!∞ n/rj (n) = mj . Now Gn(i , j) = Ei (rj (n)) which implies

lim
n!∞

Gn(i , j)
n

= lim
n!∞

Ei

�
rj (n)
n

�
= Ei

�
lim
n!∞

rj (n)
n

�
by DCT since 0 � rj (n)/n � 1

= 1/mj .

�
- note that 0 � 1/mj � 1
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note - if xn ! x then for ε > 0 there exists nε s.t. jxn � x j < ε for
n � nε and�����1n n

∑
k=1

xk � x
����� =

�����1n n

∑
k=1

(xk � x)
����� � 1

n

n

∑
k=1

jxk � x j

=
1
n

nε�1
∑
k=1

jxk � x j+
1
n

n

∑
k=nε

jxk � x j �
1
n

nε�1
∑
k=1

jxk � x j+ (1�
nε

n
)ε ! ε

which implies 1n ∑n
k=1 xk ! x (Cesaro summation)

- so by MCCT since p(n)ij ! πj , then 1
n ∑n

k=1 p
(k )
ij ! πj and similarly for

the periodic case (average blocks)
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Proposition IV.17 If MC is irreducible and each state i is positive
recurrent, then the MC has a unique stationary distribution π with
πi = 1/mi .

Proof: Suppose ∑i αipij = αj for all i , j for some distribution α. As before

this implies ∑i αip
(n)
ij = αj for all i , j for all n. Therefore, applied to the

periodic and aperiodic cases,

αj = lim
n!∞

1
n

n

∑
k=1

∑
i

αip
(k )
ij = ∑

i
αi lim
n!∞

1
n

n

∑
k=1

p(k )ij by DCT and Cesaro

= ∑
i

αi
1
mj

(by Lemma IV.16) =
1
mj

and so, if a stationary distribution exists, it is unique.
Now

c = ∑
j

1
mj
= ∑

j
lim
n!∞

1
n

n

∑
k=1

p(k )ij � lim
n!∞

1
n

n

∑
k=1

∑
j
p(k )ij = 1 (1)

where the inequality follows since, if
Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes II - Lecture 4d 2024 11 / 20



1 = lim
n!∞

1
n

n

∑
k=1

∑
j
p(k )ij < ∑

j

1
mj

then there exist l states j1, . . . , jl , s.t.

lim
n!∞

1
n

n

∑
k=1

∑
j
p(k )ij < ∑

j2fj1,...,jlg

1
mj

but

lim
n!∞

1
n

n

∑
k=1

∑
j
p(k )ij � lim

n!∞

1
n

n

∑
k=1

∑
j2fj1,...,jlg

p(k )ij

= ∑
j2fj1,...,jlg

lim
n!∞

1
n

n

∑
k=1

p(k )ij = ∑
j2fj1,...,jlg

1
mj

by Lemma IV.16

which is a contradiction.
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Next for any state i , (and using the same argument for the inequality (1) )
by Lemma IV.16

1
mj

= lim
n!∞

1
n

n

∑
t=1
p(t+1)ij = lim

n!∞

1
n

n

∑
t=1

∑
k

p(t)ik pkj

� ∑
k

 
lim
n!∞

1
n

n

∑
t=1
p(t)ik

!
pkj = ∑

k

pkj
mk

and so

∑
j

1
mj
� ∑

j
∑
k

pkj
mk

DCT
= ∑

k
∑
j

pkj
mk

= ∑
k

1
mk

which implies
1
mj
= ∑

k

pkj
mk

which in turn implies πj = 1/cmj is the unique stationary distribution.
Since always 1n ∑n

l=1 p
(l)
ij ! πj , then Lemma IV.16 implies c = 1. �
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Proposition IV.18 If a MC has a stationary distribution π and state j is
not positive recurrent then πj = 0.
Proof: We have

πj = ∑
i

πip
(n)
ij for every n

=
1
n

n

∑
t=1

∑
i

πip
(t)
ij = ∑

i
πi
1
n

n

∑
t=1
p(t)ij

= lim
n!∞ ∑

i
πi
1
n

n

∑
t=1
p(t)ij = ∑

i
πi lim

n!∞

1
n

n

∑
t=1
p(t)ij by DCT

= ∑
i

πi
1
mj
= ∑

i
πi0 = 0 since mj = ∞.

�
Corollary IV.19 A MC with no positive recurrent states does not have a
stationary distribution.
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Proposition IV.20 If states i and j mutually communicate then if one is
positive recurrent so is the other.

Proof: There exist r , s > 0 s.t. p(r )ij > 0, p(s)ji > 0. Therefore, using Lemma
IV.16 for recurrent states and the result for transient states

1
mj

= lim
n!∞

1
n

n

∑
t=1
p(t)jj � lim

n!∞

1
n

n

∑
t=s+r

p(s)ji p
(t�s�r )
ii p(r )ij by Chapman-Kolmogorov inequality

= p(s)ji

 
lim
n!∞

n� s � r
n

1
n� s � r

n

∑
t=s+r

p(t�s�r )ii

!
p(r )ij

= p(s)ji
1
mi
p(r )ij

and so 1/mj > 0 when 1/mi > 0 so mj is �nite whenever mi is �nite and
conversely. �
Corollary IV.21 An irreducible MC either has all states positive recurrent
or no states positive recurrent.

- so an irreducible chain has a stationary distribution given by πi i¤ it is a
positive recurrent chain
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Proposition IV.22 An irreducible MC with a �nite state space is positive
recurrent and so has a stationary distribution.

Proof: We have

lim
n!∞

Pi (Xl = j for some l , 1 � l � n) = fij > 0

for every i and j . Since S is �nite, then there exists δ 2 (0, 1) and m s.t.

Pi (Xl = j for some l , 1 � l � m) > δ

for every i and j . Therefore,

Pi (Xl 6= j for all l , 1 � l � m) < 1� δ

for every i and j .
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Now consider

Pi (Xl 6= i for l , 1 � l � 2m)
= ∑

j2Snfig
Pi (Xl 6= i for l 6= m, 1 � l � 2m,Xm = j)

= ∑
j2Snfig

�
Pi (Xl 6= i for 1 � l � m� 1,Xm = j)�
Pj (Xl 6= i for, 1 � l � m)

�
using MP and TH

�
 

∑
j2Snfig

Pi (Xl 6= i for 1 � l � m� 1,Xm = j)
!
(1� δ)

= Pi (Xl 6= i for l , 1 � l � m)(1� δ) � (1� δ)2

and similarly
Pi (Xl 6= i for 1 � l � km) � (1� δ)k .
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Then for n satisfying km � n < (k + 1)m, we have . . .

Pi (Xl 6= i for l , 1 � l � n)
� Pi (Xl 6= i for l , 1 � l � km) � (1� δ)k = (1� δ)bn/mc.

This implies

mi = Ei (T 1i ) =
∞

∑
n=0

P(T 1i > n) =
∞

∑
n=0

Pi (Xl 6= i for l , 1 � l � n)

�
∞

∑
n=0
(1� δ)bn/mc =

∞

∑
k=0

m(1� δ)k = m/δ < ∞

which proves the result. �
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IV.7 Markov chains of higher order

- suppose stochastic process fXn : n 2 N0g satis�es

P(Xn jX0, . . . ,Xn�1) = P(Xn jXn�2,Xn�1),

a MC of order 2

- note a full description of the s.p. requires an intial distribution on
(X0,X1) then, for example,

P(X0,X1, . . . ,Xn) = P(X2,X3, . . . ,Xn jX0,X1)P(X0,X1)
= P(X3, . . . ,Xn jX0,X1,X2)P(X2 jX0,X1)P(X0,X1)
= P(X3, . . . ,Xn jX1,X2)P(X2 jX0,X1)P(X0,X1) etc.
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- de�ne a s.p. by fYn : n 2 N0g by Yn = (Xn,Xn+1), then

P(Yn jY0, . . . ,Yn�1)
= P((Xn,Xn+1) j (X0,X1), . . . , (Xn�1,Xn))
= P((Xn,Xn+1) jX0,X1, . . . ,Xn�1,Xn)
= P((Xn,Xn+1) jXn�1,Xn) by MP of order 2
= P(Yn jYn�1)

and so fYn : n 2 N0g is a 2-dimensional MC with these transition
probabilities and initial distribution speci�ed by Y0 = (X0,X1)

- so all the results for MC�s apply here and clearly this can be generalized
to MC�s of order r where

P(Xn jX0, . . . ,Xn�1) = P(Xn jXn�r , . . . ,Xn�1)
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