Probability and Stochastic Processes II - Lecture 4b

Michael Evans
University of Toronto
https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

- when a stationary distribution π exists, do we have $\lim _{n \rightarrow \infty} P\left(X_{n}=j\right)=\pi_{j}$?

Example IV. 5

- suppose $\mathcal{S}=\{1,2\}$ and $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then $\pi=(1 / 2,1 / 2)$ is stationary but

$$
P\left(X_{n}=1\right)= \begin{cases}1 & \text { if } X_{0}=1 \\ 0 & \text { if } X_{0}=2\end{cases}
$$

so $\lim _{n \rightarrow \infty} P\left(X_{n}=j\right) \neq \pi_{j}$

- note that the chain is reducible \square
- another concern is periodicity

IV. 2 Periodicity

Definition IV. 3 The period of state i is $\operatorname{gcd} T(i)$ where

$$
T(i)=\left\{n \geq 1: p_{i i}^{(n)}>0\right\}
$$

A chain where all states have period 1 is called aperiodic.

- so determine the set $\left\{n \geq 1: p_{i i}^{(n)}>0\right\}$ and then find the largest $m \in \mathbb{N}$
s.t. m divides evenly into every n in this set

Example IV. 6 - suppose

$$
P=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

- then $p_{11}^{(2)}>0, p_{11}^{(3)}>0$ so period of state 1 must be 1 because that is the largest integer dividing 1 and 2
- note that we didn't need to determine all the elements of
$T(1)=\left\{n \geq 1: p_{11}^{(n)}>0\right\}$ to determine the period
- by the same argument the states 2 and 3 also have period 1 so the chain is aperiodic
- in general if $p_{i i}^{(n)}>0, p_{i i}^{(n+1)}>0$ for some n, then the period of i is 1

Proposition IV. 5 If $i \leftrightarrow j$, then i and j have the same period.
Proof: There exist r, s s.t. $p_{i j}^{(r)}>0$ and $p_{j i}^{(s)}>0$. Now
$p_{i i}^{(r+n+s)} \geq p_{i j}^{(r)} p_{j j}^{(n)} p_{j i}^{(s)}$, so if $p_{j j}^{(n)}>0$, then $p_{i i}^{(r+n+s)}>0$ which implies that the $\operatorname{period}(i)$ must divide $r+n+s$. Since $p_{i i}^{(r+s)} \geq p_{i j}^{(r)} p_{j i}^{(s)}>0$, then period(i) must divide $r+s$ and so it must divide n as well. Therefore period (i) divides every element of $T(j)$ which implies period $(i) \leq$ period (j). Reversing the argument establishes that period $(i) \geq \operatorname{period}(j)$ and so they are equal.

Corollary IV. 6 If the MC is irreducible, then all states have the same period and if $p_{i i}>0$ for some i, then the chain is aperiodic.

IV. 3 The Convergence Theorem

Proposition IV. 6 If an irreducible chain has a stationary distribution then it is recurrent.

Proof: Recall Corollary IV. 4 that a transient chain cannot have a stationary distribution.

Proposition IV. 7 If state i has $f_{i i}>0$ and is aperiodic, then there exists $n_{0}(i)$ s.t. $p_{i i}^{(n)}>0$ for all $n \geq n_{0}(i)$.
Proof: Suppose m, n satisfy $p_{i i}^{(m)}>0, p_{i i}^{(n)}>0$. Therefore $p_{i i}^{(m+n)} \geq p_{i i}^{(m)} p_{i i}^{(n)}>0$ (Chapman-Kolmogorov) which implies $T(i)=\left\{n \geq 1: p_{i i}^{(n)}>0\right\}$ is additive, namely if $m, n \in T(i)$, then $m+n \in T(i)$.
Note that we need only show that there exists k s.t. $k, k+1 \in T(i)$ since
$p_{i i}^{(2 k)} \geq p_{i i}^{(k)} p_{i i}^{(k)}>0, p_{i i}^{(2 k+1)} \geq p_{i i}^{(k)} p_{i i}^{(k+1)}>0, p_{i i}^{(2 k+2)} \geq p_{i i}^{(k+1)} p_{i i}^{(k+1)}>0$ implies $2 k, 2 k+1,2 k+2 \in T(i)$ and similarly $j k, j k+1, \ldots, j k+j \in T(i)$ for any j. As soon as $j \geq k-1$ the blocks overlap and this implies the result.

A result from number theory (Niven and Zuckerman (1972) An Introduction to the Theory of Numbers, Thm 1.5) : if the gcd of a set T is g, then there exist distinct $n_{1}, \ldots, n_{k} \in T$ and integers x_{i} s.t. $g=\sum_{i=1}^{k} x_{i} n_{i}$. In this case $g=1$. Now write $x_{i}=x_{i}^{+}-x_{i}^{-}$where

$$
x_{i}^{+}=\left\{\begin{array}{ll}
x_{i} & \text { if } x_{i} \geq 0 \\
0 & \text { otherwise }
\end{array} \quad x_{i}^{-}= \begin{cases}-x_{i} & \text { if } x_{i}<0 \\
0 & \text { otherwise }\end{cases}\right.
$$

Therefore

$$
1=\sum_{i=1}^{k} x_{i} n_{i}=\sum_{x_{i}^{+}>0} x_{i}^{+} n_{i}-\sum_{x_{i}^{-}>0} x_{i}^{-} n_{i}
$$

where $\sum_{x_{i}^{+}>0} x_{i}^{+} n_{i}>0, \sum_{x_{i}^{-}>0} x_{i}^{-} n_{i}>0$. Therefore

$$
\sum_{x_{i}^{+}>0} x_{i}^{+} n_{i}=\left(\sum_{x_{i}^{-}>0} x_{i}^{-} n_{i}\right)+1
$$

and since $n_{1}, \ldots, n_{k} \in T(i)$, and $T(i)$ is additive then $\sum_{x_{i}^{+}>0} x_{i}^{+} n_{i} \in T(i), \sum_{x_{i}^{-}>0} x_{i}^{-} n_{i} \in T(i)$ and so it has been shown that there are consecutive elements of $T(i)$.

Corollary IV. 8 If a chain is irreducible and aperiodic then for any $i, j \in \mathcal{S}$ there is $n_{0}(i, j) \in \mathbb{N}$ s.t. $p_{i j}^{(n)}>0$ for all $n \geq n_{0}(i, j)$.
Proof: Let $n_{0}(i)$ be as in the proposition, m be s.t. $p_{i j}^{(m)}>0$ and put $n_{0}(i, j)=n_{0}(i)+m$. When $n \geq n_{0}(i, j)$ then $n-m \geq n_{0}(i)$ so
$p_{i i}^{(n-m)}>0$ which implies $p_{i j}^{(n)} \geq p_{i i}^{(n-m)} p_{i j}^{(m)}>0$. \square

- the following result shows that, under conditions, the initial distribution of the chain has no long term effect, also the proof introduces the important technique of coupling

Proposition IV. 8 If a MC $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ is irreducible and aperiodic with stationary distribution π then for all $i, j, k \in \mathcal{S}$

$$
\lim _{n \rightarrow \infty}\left|p_{i k}^{(n)}-p_{j k}^{(n)}\right|=0 .
$$

Proof: Define a new chain $\left\{\left(X_{n}, Y_{n}\right): n \in \mathbb{N}_{0}\right\}$ where $\left\{Y_{n}: n \in \mathbb{N}_{0}\right\}$ is an independent copy of $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$. So the state space of the new chain is $\mathcal{S} \times \mathcal{S}$ with transition probabilities $p_{(i, j)(k, l)}=p_{i k} p_{j /}$. This new chain has stationary distribution $\pi_{(i, j)}^{*}=\pi_{i} \pi_{j}$ since

$$
\sum_{(i, j) \in \mathcal{S} \times \mathcal{S}} \pi_{(i, j)}^{*} p_{(i, j)(k, l)}=\sum_{i \in \mathcal{S}} \pi_{i} p_{i k} \sum_{k \in \mathcal{S}} \pi_{j} p_{j l}=\pi_{k} \pi_{l}=\pi_{(k, l)}^{*} .
$$

The new chain is irreducible, since $p_{(i, j)(k, l)}^{(n)}=p_{i k}^{(n)} p_{j l}^{(n)}>0$ whenever $n \geq \max \left\{n_{0}(i, j), n_{0}(k, l)\right\}$. Also the new chain is aperiodic since $p_{(i, j)(i, j)}^{(n)}=p_{i i}^{(n)} p_{j j}^{(n)}>0$ iff $p_{i i}^{(n)}>0$ and $p_{j j}^{(n)}>0$ which is true whenever $n \geq \max \left\{n_{0}(i), n_{0}(j)\right\}$. By Prop. IV. 6 the new chain is recurrent.

Now choose $i_{0} \in \mathcal{S}$ and let $\tau=\inf \left\{n:\left(X_{n}, Y_{n}\right)=\left(i_{0}, i_{0}\right)\right\}$. By the recurrence of the new chain we have $f_{(i, j)\left(i_{0}, i_{0}\right)}=1$ for all (i, j) which implies $P_{(i, j)}(\tau<\infty)=1$ for all (i, j). We have

$$
\begin{aligned}
p_{i k}^{(n)} & =P_{i}\left(X_{n}=k\right)=\frac{P\left(X_{0}=i, X_{n}=k\right) P\left(Y_{0}=j\right)}{P\left(X_{0}=i\right) P\left(Y_{0}=j\right)} \\
& =\frac{P\left(X_{0}=i, X_{n}=k, Y_{0}=j\right)}{P\left(X_{0}=i, Y_{0}=j\right)} \text { by independence } \\
& =P_{(i, j)}\left(X_{n}=k\right) \\
& =\sum_{m=1}^{\infty} P_{(i, j)}\left(X_{n}=k, \tau=m\right) \\
& =\left\{\sum_{m=1}^{n} P_{(i, j)}\left(X_{n}=k, \tau=m\right)+P_{(i, j)}\left(X_{n}=k, \tau>n\right)\right\} \\
p_{j k}^{(n)} & =\left\{\sum_{m=1}^{n} P_{(i, j)}\left(Y_{n}=k, \tau=m\right)+P_{(i, j)}\left(Y_{n}=k, \tau>n\right)\right\}
\end{aligned}
$$

For $n \geq m$

$$
\begin{aligned}
& P_{(i, j)}\left(X_{n}=k, \tau=m\right)=P_{(i, j)}(\tau=m) P_{(i, j)}\left(X_{n}=k \mid \tau=m\right) \\
= & P_{(i, j)}(\tau=m) P_{(i, j)}\left(X_{n}=k \mid X_{m}=Y_{m}=i_{0}\right. \text { and coupling } \\
& \quad \text { doesn't happen before time m }) \\
= & P_{(i, j)}(\tau=m) P_{(i, j)}\left(X_{n}=k \mid X_{m}=Y_{m}=i_{0}\right) \text { by MP } \\
= & P_{(i, j)}(\tau=m) P_{i}\left(X_{n}=k \mid X_{m}=i_{0}\right) \text { by independence of the chains } \\
= & P_{(i, j)}(\tau=m) p_{i_{0} k}^{(n-m)} \text { by } \mathrm{TH} \text { and } \\
& P_{(i, j)}\left(Y_{n}=k, \tau=m\right)=P_{(i, j)}(\tau=m) p_{i_{0} k}^{(n-m)} \text { by the same argument. }
\end{aligned}
$$

This has proved that

$$
P_{(i, j)}\left(X_{n}=k, \tau=m\right)=P_{(i, j)}\left(Y_{n}=k, \tau=m\right)
$$

Now we have

$$
\begin{aligned}
& \left|p_{i k}^{(n)}-p_{j k}^{(n)}\right| \\
= & \mid \sum_{m=1}^{n} P_{(i, j)}\left(X_{n}=k, \tau=m\right)-\sum_{m=1}^{n} P_{(i, j)}\left(Y_{n}=k, \tau=m\right)+ \\
= & \left|P_{(i, j)}\left(X_{n}=k, \tau>n\right)-P_{(i, j)}\left(Y_{n}=k, \tau>n\right)\right| \\
\leq & \left(P_{(i, j)}\left(X_{n}=k, \tau>n\right)+P_{(i, j)}\left(Y_{n}=k, \tau>n\right)\right) \\
\leq & \left(P_{(i, j)}(\tau>n)+P_{(i, j)}(\tau>n)\right)=2 P_{(i, j)}(\tau>n) .
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left|p_{i k}^{(n)}-p_{j k}^{(n)}\right| \leq 2 \lim _{n \rightarrow \infty} P_{(i, j)}(\tau>n)=2 P_{(i, j)}(\tau=\infty)=0 .
$$

Proposition IV. 9 (Markov Chain Convergence Theorem - MCCT) If a MC is irreducible, aperiodic and has stationary distribution π, then
(i) $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\pi_{j}$ for every $i, j \in \mathcal{S}$,
(ii) $\lim _{n \rightarrow \infty} P\left(X_{n}=j\right)=\pi_{j}$ for any initial distribution v.

Proof: We have

$$
\left|p_{i j}^{(n)}-\pi_{j}\right|=\left|\sum_{k \in \mathcal{S}} \pi_{k}\left(p_{i j}^{(n)}-p_{k j}^{(n)}\right)\right| \leq \sum_{k \in \mathcal{S}} \pi_{k}\left|p_{i j}^{(n)}-p_{k j}^{(n)}\right|
$$

so

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|p_{i j}^{(n)}-\pi_{j}\right| \leq \lim _{n \rightarrow \infty} \sum_{k \in \mathcal{S}} \pi_{k}\left|p_{i j}^{(n)}-p_{k j}^{(n)}\right| \\
= & \sum_{k \in \mathcal{S}} \pi_{k} \lim _{n \rightarrow \infty}\left|p_{i j}^{(n)}-p_{k j}^{(n)}\right| \text { by DCT since }\left|p_{i j}^{(n)}-p_{k j}^{(n)}\right| \leq p_{i j}^{(n)}+p_{k j}^{(n)} \leq 2 \\
= & 0 \text { by Prop. IV. } 8
\end{aligned}
$$

and this proves (i).

Now

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left(X_{n}=j\right)=\lim _{n \rightarrow \infty} \sum_{i \in \mathcal{S}} v_{i} P_{i}\left(X_{n}=j\right)=\lim _{n \rightarrow \infty} \sum_{i \in \mathcal{S}} v_{i} p_{i j}^{(n)} \\
= & \sum_{i \in \mathcal{S}} v_{i} \lim _{n \rightarrow \infty} p_{i j}^{(n)} \text { by DCT since } p_{i j}^{(n)} \leq 1 \\
= & \sum_{i \in \mathcal{S}} v_{i} \pi_{j} \text { by part (i) } \\
= & \pi_{j}
\end{aligned}
$$

and this proves (ii).

Example IV. 7 (Example III. 2 continued)

- recall

$$
\begin{aligned}
\mathcal{S} & =\{1,2,3,4\}, v=(1 / 4,1 / 2,1 / 8,1 / 8), \\
P & =\left(\begin{array}{cccc}
0 & 1 / 3 & 1 / 2 & 1 / 6 \\
1 / 3 & 0 & 1 / 2 & 1 / 6 \\
1 / 6 & 1 / 6 & 0 & 2 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
\end{aligned}
$$

- chain is irreducible, recurrent and aperiodic $\left\{n: p_{11}^{(n)}>0\right\}=\{2,3 \ldots\}$
- as we saw, and now by the Markov Chain Convergence Thm,

$$
P^{n}=\left(p_{i j}^{(n)}\right) \rightarrow\left(\begin{array}{cccc}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4}
\end{array}\right)
$$

and $P\left(X_{n}=j\right) \rightarrow \pi_{j}$ where

$$
\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)=(0.2121212,0.2121212,0.3030303,0.2727273)
$$

Corollary IV. 10 If a MC is irreducible and aperiodic then it has at most one stationary distribution.

Proof: If the chain has a stationary distribution then by the MCCT $\lim _{n \rightarrow \infty} P\left(X_{n}=j\right)=\pi_{j}$.

Example IV. 8 (Simple Random Walk)

- the chain is irreducible but has period 2 so MCCT doesn't apply and no stationary distribution exists anyway
- recall $P\left(X_{n}=j\right)=P\left(\sum_{i=1}^{n} Z_{i}=j\right)$ where the Z_{i} are i.i.d. with $P\left(Z_{i}=1\right)=p, P\left(Z_{i}=-1\right)=1-p$ so

$$
\begin{aligned}
E\left(Z_{i}\right) & =p-(1-p)=2 p-1 \\
\operatorname{Var}\left(Z_{i}\right) & =1-(2 p-1)^{2}=4 p(1-p)
\end{aligned}
$$

- therefore by SLLN

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} Z_{i} \xrightarrow{w p 1} 2 p-1 \tag{1}
\end{equation*}
$$

- when $p \neq 1 / 2$ the chain is transient
- when $p>1 / 2$ there is $\epsilon>0$ s.t. $2 p-1-\epsilon>0$ so

$$
1=P\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} Z_{i}>2 p-1-\epsilon\right)
$$

so for $c>0$ and ω s.t. (1) holds there is an $n(\omega, c)$ s.t. $\sum_{i=1}^{n} Z_{i}(\omega)>c$ for all $n \geq n(\omega, c)$ which implies $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} Z_{i}(\omega)=\infty$ which implies

$$
1=P\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} Z_{i}=\infty\right)=P\left(\lim _{n \rightarrow \infty} X_{n}=\infty\right)
$$

- similarly when $p<1 / 2$

$$
1=P\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} Z_{i}=-\infty\right)=P\left(\lim _{n \rightarrow \infty} X_{n}=-\infty\right)
$$

- what about when $p=1 / 2$? since it is a recurrent chain in this case we have $f_{i j}=1$ for all i, j which implies

$$
f_{i_{1} i_{2}} f_{i_{2} i_{3}} \cdots f_{i_{m-1} i_{m}}=1
$$

for any sequence of distinct states $i_{1}, i_{2}, \ldots, i_{m}$ (and there are infinitely many such sequences) so the chain never settles down

- but note in all cases the CLT gives

$$
\frac{X_{n} / n-(2 p-1)}{\sqrt{4 p(1-p) / n}} \xrightarrow{d} Z \sim N(0,1)
$$

SO

$$
\begin{aligned}
& P\left(X_{n}=j\right)=P\left(j-1 / 2 \leq X_{n} \leq j+1 / 2\right) \\
\approx & P\left(\frac{(j-1 / 2) / n-(2 p-1)}{\sqrt{4 p(1-p) / n}} \leq Z \leq \frac{(j+1 / 2) / n-(2 p-1)}{\sqrt{4 p(1-p) / n}}\right) \\
= & \Phi\left(\frac{(j+1 / 2) / n-(2 p-1)}{\sqrt{4 p(1-p) / n}}\right)-\Phi\left(\frac{(j-1 / 2) / n-(2 p-1)}{\sqrt{4 p(1-p) / n}}\right)
\end{aligned}
$$

- e.g. $p=3 / 4, n=100, j=40$, then

$$
P\left(X_{n}=j\right) \approx \Phi(-1.0970)-\Phi(-1.2124)=0.0236
$$

Proposition IV. 11 (Periodic Convergence Theorem) If a MC is irreducible with period $b \geq 2$ and stationary distribution π, then for all $i, j \in \mathcal{S}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{b} \sum_{k=0}^{b-1} p_{i j}^{(n+k)}=\pi_{j} \\
& \lim _{n \rightarrow \infty} \frac{1}{b} \sum_{k=0}^{b-1} P\left(X_{n+k}=j\right)=\pi_{j} \\
& \lim _{n \rightarrow \infty} \frac{1}{b} P\left(\cup_{k=0}^{b-1}\left\{X_{n+k}=j\right\}\right)=\pi_{j}
\end{aligned}
$$

Proof: See book.

- again this implies that, if a stationary distribution exists for an irreducible MC , then it is unique

Example IV. 9 Ehrenfest's Urn

- recall $\mathcal{S}=\{0,1,2, \ldots, d\}$ and

$$
P=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
1 / d & 0 & (d-1) / d & 0 & & \\
0 & 2 / d & 0 & (d-2) / d & & \\
& & & (d-1) / d & 0 & 1 / d \\
0 & & & & 1 & 0
\end{array}\right)
$$

- the chain is irreducible, recurrent with stationary distribution $\pi_{i}=\binom{d}{i} 2^{-d}$
- so $T(1)=\left\{n: p_{11}^{(n)}>0\right\}=\{2,4, \ldots\}$ and period $(1)=2$ which is the period of all the states but we can't apply the MCCT
- but

$$
\frac{1}{2} \sum_{k=0}^{1} p_{i j}^{(n+k)}=\frac{1}{2}\left(p_{i j}^{(n)}+p_{i j}^{(n+1)}\right) \rightarrow \pi_{j}=\binom{d}{j} 2^{-d} \text { as } n \rightarrow \infty
$$

Exercises

IV. 1 Text 2.1.3
IV. 2 Text 2.2.4
IV. 3 Text 2.3.5
IV. 4 Text 2.4.18
IV. 5 Text 2.5.4

