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- when a stationary distribution π exists, do we have
limn!∞ P(Xn = j) = πj ?

Example IV.5

- suppose S = f1, 2g and P =
�
1 0
0 1

�
, then π = (1/2, 1/2) is

stationary but

P(Xn = 1) =
�
1 if X0 = 1
0 if X0 = 2

so limn!∞ P(Xn = j) 6= πj

- note that the chain is reducible �
- another concern is periodicity
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IV.2 Periodicity

De�nition IV.3 The period of state i is gcdT (i) where

T (i) = fn � 1 : p(n)ii > 0g.
A chain where all states have period 1 is called aperiodic.

- so determine the set fn � 1 : p(n)ii > 0g and then �nd the largest m 2 N

s.t. m divides evenly into every n in this set

Example IV.6 - suppose

P =

0@ 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

1A
- then p(2)11 > 0, p

(3)
11 > 0 so period of state 1 must be 1 because that is

the largest integer dividing 1 and 2

- note that we didn�t need to determine all the elements of
T (1) = fn � 1 : p(n)11 > 0g to determine the period
- by the same argument the states 2 and 3 also have period 1 so the chain
is aperiodic �
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- in general if p(n)ii > 0, p(n+1)ii > 0 for some n, then the period of i is 1

Proposition IV.5 If i $ j , then i and j have the same period.

Proof: There exist r , s s.t. p(r )ij > 0 and p(s)ji > 0. Now

p(r+n+s)ii � p(r )ij p
(n)
jj p

(s)
ji , so if p

(n)
jj > 0, then p(r+n+s)ii > 0 which implies

that the period(i) must divide r + n+ s. Since p(r+s)ii � p(r )ij p
(s)
ji > 0,

then period(i) must divide r + s and so it must divide n as well. Therefore
period(i) divides every element of T (j) which implies period(i) �
period(j). Reversing the argument establishes that period(i) � period(j)
and so they are equal. �
Corollary IV.6 If the MC is irreducible, then all states have the same
period and if pii > 0 for some i , then the chain is aperiodic.
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IV.3 The Convergence Theorem

Proposition IV.6 If an irreducible chain has a stationary distribution then
it is recurrent.

Proof: Recall Corollary IV.4 that a transient chain cannot have a
stationary distribution. �
Proposition IV.7 If state i has fii > 0 and is aperiodic, then there exists
n0(i) s.t. p

(n)
ii > 0 for all n � n0(i).

Proof: Suppose m, n satisfy p(m)ii > 0, p(n)ii > 0. Therefore

p(m+n)ii � p(m)ii p(n)ii > 0 (Chapman-Kolmogorov) which implies

T (i) = fn � 1 : p(n)ii > 0g is additive, namely if m, n 2 T (i), then
m+ n 2 T (i).
Note that we need only show that there exists k s.t. k, k + 1 2 T (i) since

p(2k )ii � p(k )ii p
(k )
ii > 0, p(2k+1)ii � p(k )ii p

(k+1)
ii > 0, p(2k+2)ii � p(k+1)ii p(k+1)ii > 0

implies 2k, 2k + 1, 2k + 2 2 T (i) and similarly
jk, jk + 1, . . . , jk + j 2 T (i) for any j . As soon as j � k � 1 the blocks
overlap and this implies the result.

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes II - Lecture 4b 2024 5 / 21



A result from number theory (Niven and Zuckerman (1972) An
Introduction to the Theory of Numbers, Thm 1.5) : if the gcd of a set T
is g , then there exist distinct n1, . . . , nk 2 T and integers xi s.t.
g = ∑k

i=1 xini . In this case g = 1. Now write xi = x
+
i � x

_
i where

x+i =
�
xi if xi � 0
0 otherwise

x_i =
�
�xi if xi < 0
0 otherwise.

Therefore

1 =
k

∑
i=1
xini = ∑

x+i >0

x+i ni � ∑
x_i >0

x_i ni

where ∑x+i >0
x+i ni > 0,∑x_i >0

x_i ni > 0. Therefore

∑
x+i >0

x+i ni =

 
∑
x_i >0

x_i ni

!
+ 1

and since n1, . . . , nk 2 T (i), and T (i) is additive then
∑x+i >0

x+i ni 2 T (i), ∑x_i >0
x_i ni 2 T (i) and so it has been shown that

there are consecutive elements of T (i). �
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Corollary IV.8 If a chain is irreducible and aperiodic then for any i , j 2 S
there is n0(i , j) 2 N s.t. p(n)ij > 0 for all n � n0(i , j).

Proof: Let n0(i) be as in the proposition, m be s.t. p(m)ij > 0 and put
n0(i , j) = n0(i) +m. When n � n0(i , j) then n�m � n0(i) so
p(n�m)ii > 0 which implies p(n)ij � p(n�m)ii p(m)ij > 0. �
- the following result shows that, under conditions, the initial distribution
of the chain has no long term e¤ect, also the proof introduces the
important technique of coupling

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes II - Lecture 4b 2024 7 / 21



Proposition IV.8 If a MC fXn : n 2 N0g is irreducible and aperiodic with
stationary distribution π then for all i , j , k 2 S

lim
n!∞

jp(n)ik � p(n)jk j = 0.

Proof: De�ne a new chain f(Xn,Yn) : n 2 N0g where fYn : n 2 N0g is
an independent copy of fXn : n 2 N0g. So the state space of the new
chain is S � S with transition probabilities p(i ,j)(k ,l) = pikpjl . This new
chain has stationary distribution π�(i ,j) = πiπj since

∑
(i ,j)2S�S

π�(i ,j)p(i ,j)(k ,l) = ∑
i2S

πipik ∑
k2S

πjpjl = πkπl = π�(k ,l).

The new chain is irreducible, since p(n)
(i ,j)(k ,l) = p

(n)
ik p

(n)
jl > 0 whenever

n � maxfn0(i , j), n0(k, l)g. Also the new chain is aperiodic since
p(n)
(i ,j)(i ,j) = p

(n)
ii p

(n)
jj > 0 i¤ p(n)ii > 0 and p(n)jj > 0 which is true whenever

n � maxfn0(i), n0(j)g. By Prop. IV.6 the new chain is recurrent.
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Now choose i0 2 S and let τ = inffn : (Xn,Yn) = (i0, i0)g. By the
recurrence of the new chain we have f(i ,j)(i0,i0) = 1 for all (i , j) which
implies P(i ,j)(τ < ∞) = 1 for all (i , j). We have

p(n)ik = Pi (Xn = k) =
P(X0 = i ,Xn = k)P(Y0 = j)

P(X0 = i)P(Y0 = j)

=
P(X0 = i ,Xn = k,Y0 = j)

P(X0 = i ,Y0 = j)
by independence

= P(i ,j) (Xn = k)

=
∞

∑
m=1

P(i ,j)(Xn = k, τ = m)

=

(
n

∑
m=1

P(i ,j)(Xn = k, τ = m) + P(i ,j)(Xn = k, τ > n)

)
,

and by the same argument

p(n)jk =

(
n

∑
m=1

P(i ,j)(Yn = k, τ = m) + P(i ,j)(Yn = k, τ > n)

)
.
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For n � m

P(i ,j)(Xn = k, τ = m) = P(i ,j)(τ = m)P(i ,j)(Xn = k j τ = m)
= P(i ,j)(τ = m)P(i ,j)(Xn = k jXm = Ym = i0 and coupling

doesn�t happen before time m)

= P(i ,j)(τ = m)P(i ,j)(Xn = k jXm = Ym = i0) by MP
= P(i ,j)(τ = m)Pi (Xn = k jXm = i0) by independence of the chains

= P(i ,j)(τ = m)p
(n�m)
i0k

by TH and

P(i ,j)(Yn = k, τ = m) = P(i ,j)(τ = m)p
(n�m)
i0k

by the same argument.

This has proved that

P(i ,j)(Xn = k, τ = m) = P(i ,j)(Yn = k, τ = m).
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Now we have

jp(n)ik � p(n)jk j

= j
n

∑
m=1

P(i ,j)(Xn = k, τ = m)�
n

∑
m=1

P(i ,j)(Yn = k, τ = m) +

P(i ,j)(Xn = k, τ > n)� P(i ,j)(Yn = k, τ > n)j
= jP(i ,j)(Xn = k, τ > n)� P(i ,j)(Yn = k, τ > n)j
� (P(i ,j)(Xn = k, τ > n) + P(i ,j)(Yn = k, τ > n))

� (P(i ,j)(τ > n) + P(i ,j)(τ > n)) = 2P(i ,j)(τ > n).

Therefore

lim
n!∞

jp(n)ik � p(n)jk j � 2 limn!∞
P(i ,j)(τ > n) = 2P(i ,j)(τ = ∞) = 0.

�
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Proposition IV.9 (Markov Chain Convergence Theorem - MCCT ) If a
MC is irreducible, aperiodic and has stationary distribution π, then

(i) limn!∞ p
(n)
ij = πj for every i , j 2 S ,

(ii) limn!∞ P(Xn = j) = πj for any initial distribution ν.

Proof: We have

jp(n)ij � πj j =
�����∑k2S πk

�
p(n)ij � p(n)kj

������ � ∑
k2S

πk

���p(n)ij � p(n)kj
���

so

lim
n!∞

jp(n)ij � πj j � lim
n!∞ ∑

k2S
πk

���p(n)ij � p(n)kj
���

= ∑
k2S

πk lim
n!∞

���p(n)ij � p(n)kj
��� by DCT since ���p(n)ij � p(n)kj

��� � p(n)ij + p(n)kj � 2

= 0 by Prop. IV.8

and this proves (i).
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Now

lim
n!∞

P(Xn = j) = lim
n!∞ ∑

i2S
νiPi (Xn = j) = lim

n!∞ ∑
i2S

νip
(n)
ij

= ∑
i2S

νi lim
n!∞

p(n)ij by DCT since p(n)ij � 1

= ∑
i2S

νiπj by part (i)

= πj

and this proves (ii). �
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Example IV.7 (Example III.2 continued)

- recall

S = f1, 2, 3, 4g, υ = (1/4, 1/2, 1/8, 1/8),

P =

0BB@
0 1/3 1/2 1/6
1/3 0 1/2 1/6
1/6 1/6 0 2/3
1/3 1/3 1/3 0

1CCA
- chain is irreducible, recurrent and aperiodic fn : p(n)11 > 0g = f2, 3 . . .g
- as we saw, and now by the Markov Chain Convergence Thm,

Pn = (p(n)ij )!

0BB@
π1 π2 π3 π4
π1 π2 π3 π4
π1 π2 π3 π4
π1 π2 π3 π4

1CCA
and P(Xn = j)! πj where

(π1,π2,π3,π4) = (0.2121212, 0.2121212, 0.3030303, 0.2727273)

�
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Corollary IV.10 If a MC is irreducible and aperiodic then it has at most
one stationary distribution.

Proof: If the chain has a stationary distribution then by the MCCT
limn!∞ P(Xn = j) = πj .
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Example IV.8 (Simple Random Walk)

- the chain is irreducible but has period 2 so MCCT doesn�t apply and no
stationary distribution exists anyway

- recall P(Xn = j) = P(∑n
i=1 Zi = j) where the Zi are i .i .d . with

P(Zi = 1) = p,P(Zi = �1) = 1� p so

E (Zi ) = p � (1� p) = 2p � 1,
Var(Zi ) = 1� (2p � 1)2 = 4p(1� p)

- therefore by SLLN
1
n

n

∑
i=1
Zi

wp1! 2p � 1 (1)

- when p 6= 1/2 the chain is transient
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- when p > 1/2 there is ε > 0 s.t. 2p � 1� ε > 0 so

1 = P

 
lim
n!∞

1
n

n

∑
i=1
Zi > 2p � 1� ε

!
so for c > 0 and ω s.t. (1) holds there is an n(ω, c) s.t. ∑n

i=1 Zi (ω) > c
for all n � n(ω, c) which implies limn!∞ ∑n

i=1 Zi (ω) = ∞ which implies

1 = P

 
lim
n!∞

n

∑
i=1
Zi = ∞

!
= P

�
lim
n!∞

Xn = ∞
�

- similarly when p < 1/2

1 = P

 
lim
n!∞

n

∑
i=1
Zi = �∞

!
= P

�
lim
n!∞

Xn = �∞
�

- what about when p = 1/2? since it is a recurrent chain in this case we
have fij = 1 for all i , j which implies

fi1 i2 fi2 i3 � � � fim�1 im = 1
for any sequence of distinct states i1, i2, . . . , im (and there are in�nitely
many such sequences) so the chain never settles down
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- but note in all cases the CLT gives

Xn/n� (2p � 1)p
4p(1� p)/n

d! Z � N(0, 1)

so

P(Xn = j) = P(j � 1/2 � Xn � j + 1/2)

� P

 
(j � 1/2)/n� (2p � 1)p

4p(1� p)/n
� Z � (j + 1/2)/n� (2p � 1)p

4p(1� p)/n

!

= Φ

 
(j + 1/2)/n� (2p � 1)p

4p(1� p)/n

!
�Φ

 
(j � 1/2)/n� (2p � 1)p

4p(1� p)/n

!

- e.g. p = 3/4, n = 100, j = 40, then

P(Xn = j) � Φ(�1.097 0)�Φ(�1.212 4) = 0.0236 �
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Proposition IV.11 (Periodic Convergence Theorem) If a MC is irreducible
with period b � 2 and stationary distribution π, then for all i , j 2 S

lim
n!∞

1
b

b�1
∑
k=0

p(n+k )ij = πj

lim
n!∞

1
b

b�1
∑
k=0

P(Xn+k = j) = πj

lim
n!∞

1
b
P
�
[b�1k=0fXn+k = jg

�
= πj

Proof: See book.

- again this implies that, if a stationary distribution exists for an irreducible
MC, then it is unique
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Example IV.9 Ehrenfest�s Urn

- recall S = f0, 1, 2, . . . , dg and

P =

0BBBBBB@

0 1 0 . . . 0 0
1/d 0 (d � 1)/d 0
0 2/d 0 (d � 2)/d

(d � 1)/d 0 1/d
0 1 0

1CCCCCCA
- the chain is irreducible, recurrent with stationary distribution
πi = (

d
i )2

�d

- so T (1) = fn : p(n)11 > 0g = f2, 4, . . .g and period(1) = 2 which is the
period of all the states but we can�t apply the MCCT

- but

1
2

1

∑
k=0

p(n+k )ij =
1
2
(p(n)ij + p(n+1)ij )! πj =

�
d
j

�
2�d as n! ∞

�
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Exercises

IV.1 Text 2.1.3

IV.2 Text 2.2.4

IV.3 Text 2.3.5

IV.4 Text 2.4.18

IV.5 Text 2.5.4
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