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- when a stationary distribution 7t exists, do we have
limp—co P(Xn = j) = 7;?

Example 1V.5

- suppose S = {1,2} and P = < é (1) ) , then T =(1/2,1/2) is

stationary but
N1 ifXy=1
P(X”_l)_{o if Xo =2

so limp—e P(Xn = j) # 7;
- note that the chain is reducible B

- another concern is periodicity
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IV.2 Periodicity
Definition IV.3 The period of state i is gcd T (i) where
T(i)={n>1: p,-(,-n) > 0}.
A chain where all states have period 1 is called aperiodic.
- so determine the set {n > 1: p,-(,-n) > 0} and then find the largest m € N
s.t. m divides evenly into every n in this set

Example IV.6 - suppose

0 1/2 1/2
P=1|1/2 0 1/2
1/2 1/2 0

- then pﬁ) >0, pﬁ) > 0 so period of state 1 must be 1 because that is
the largest integer dividing 1 and 2

- note that we didn't need to determine all the elements of
T(1)={n>1: pg) > 0} to determine the period

- by the same argument the states 2 and 3 also have period 1 so the chain
is aperiodic Ml
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(n+1)

- in general if p(") > 0, p; > 0 for some n, then the period of /is 1

i
Proposition IV.5 If / <> j, then / and j have the same period.

Proof: There exist r, s s.t. pl-(jr) > 0 and p}is) > 0. Now

pf,-r+"+5) > p,g-r)p}j")p},s), so if pfj") > 0, then pf,-r+"+5) > 0 which implies

that the period (/) must divide r + n+s. Since pl.(l.r“) > plg.r)p}is) > 0,

then period(/) must divide r + s and so it must divide n as well. Therefore
period(i) divides every element of T (j) which implies period (/) <
period(j). Reversing the argument establishes that period(i) > period(j)
and so they are equal. B

Corollary I1V.6 If the MC is irreducible, then all states have the same
period and if p;; > 0 for some i, then the chain is aperiodic.
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IV.3 The Convergence Theorem

Proposition V.6 If an irreducible chain has a stationary distribution then
it is recurrent.

Proof: Recall Corollary IV.4 that a transient chain cannot have a
stationary distribution. H

Proposition V.7 If state i has f; > 0 and is aperiodic, then there exists
no(i) s.t. p,(,-") > 0 for all n > ny(i).
(m)

i

(n) > 0. Therefore

i

>0,p
p,(,-mﬂ) > p,-(,-m)p,-(,-") > 0 (Chapman-Kolmogorov) which implies
T(i)y={n>1: p,-(,-n) > 0} is additive, namely if m,n € T(i), then

m+n € T(i).

Note that we need only show that there exists k s.t. k,k+1 € T(i) since

plgl_zk) > P(k)Pi(/k) > prl_(izk+1) > p’_(ik)pl_(ik+1) > O'P;(/2k+2) > p_('k+1)plgik+1) >0

il il
implies 2k, 2k + 1,2k +2 € T(i) and similarly
Jk,jk+1,...,jk+j € T(i) for any j. As soon as j > k — 1 the blocks
overlap and this implies the result.

Proof: Suppose m, n satisfy p
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A result from number theory (Niven and Zuckerman (1972) An
Introduction to the Theory of Numbers, Thm 1.5) : if the gcd of a set T

is g, then there exist distinct ny,...,nx € T and integers x; s.t.
g = Zf-‘zl xin;j. In this case g = 1. Now write x; = x,.+ — Xx;~ where
o — x; ifx; >0 . — —x; ifx; <0
71 0 otherwise 10 otherwise.

Therefore

k
1:Zx,-n,-:an, Zx n;

i=1 x>0 x>0

where Y +_ o x"nj > 0,%,-~¢x—n; > 0. Therefore

Y xini= ( ) x,.—n,-> +1

x>0 x>0
and since ny,...,nx € T(i), and T(i) is additive then
" >0 xni € T(i), Yx->0x ni € T(i) and so it has been shown that
there are consecutive elements of T (/). W
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Corollary 1V.8 If a chain is irreducible and aperiodic then for any i,j € S
there is no(/,j) € N s.t. p,-(j") > 0 for all n > ng(7,J).

(m)

Proof: Let ng(/) be as in the proposition, m be s.t. p; ~ >0 and put
no(i,j) = no(i) + m. When n > no(i,j) then n—m > no(i) so
pf,-n_m) > 0 which implies p,.(jn) > pfin_m)p,g-m) >0 N

- the following result shows that, under conditions, the initial distribution
of the chain has no long term effect, also the proof introduces the
important technique of coupling
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Proposition IV.8 If a MC {X, : n € INp} is irreducible and aperiodic with
stationary distribution 7t then for all /,j, k € S

; (n) _ (n)) _
n'me Pik’ — P | =0.

Proof: Define a new chain {(X,, Y,) : n € No} where {Y,:n € Np} is
an independent copy of {X, : n € INp}. So the state space of the new
chain is § x S with transition probabilities p(; jy(«,;/) = pikpji- This new
chain has stationary distribution 7'[2‘1.,].) = 7T;7T; since

Y TPl = X TPk Y TP = Tk = T ).
(ij)eSxS ieS keS

The new chain is irreducible, since p((;?.)(k N = f:)p},") > 0 whenever

n > max{ng(i,j), no(k,1)}. Also the new chain is aperiodic since
pg;’;)(ij) — pfi")pjg.") > 0 iff p,-(,-") > 0 and pjg-n) > 0 which is true whenever
n > max{ng (i), no(j)}. By Prop. IV.6 the new chain is recurrent.
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Now choose iy € S and let T = inf{n: (X,, Y,) = (io.io)}. By the
recurrence of the new chain we have f; ;¢ i) = 1 for all (i, ) which
implies P(; j)(T < o) = 1 for all (i, ). We have

P(Xo =i, Xy = k)P(Yy =)
P(Xo = )P(Yo =)
P(Xo =i, Xy =k, Yo =)

= - - by independence
P(Xo=1,Yo =) Y

Py = Pi(Xy=k) =

= P (Xn = k)
= Z P(,-’j)(Xn—k,T—m)
m=1

P(i,j)(Xn = k,T: m) +P(,J)(Xn = k,T > n)} ,
nd by the same argument

Zl P(,-,j)(yn =k 1= m)—f—P(,-J)(Yn =k, T> n)}
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For n > m
Plijy(Xn = kT =m) = P (T = m)P;j(Xo = k| T=m)
= P(i,j)<T = m)P(i,j)(Xn = k| Xm = Ym = iy and coupling

doesn't happen before time m)

Py (T = m)P(ij)(Xo = k| Xm = Ym = io) by MP
P j(t = m)Pi(X, = k| Xmn = ip) by independence of the chains
= Pijp(t= m)plok m) by TH and
P(I.J)(Y,7 =k, T=m)= P(,J)(T = m)p( m) by the same argument.
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Now we have

o = i
O P ke B Akt
m=1 m=1

Plijy(Xn =k, T > n) = P jy (Yo =k, T > n)

= |P(i,j)(X”:va>n)_P(i,j)(Yn:k,T>n)|
< (Pijp(T>n)+Pij(t>n)) =2P; (T > n).
Therefore

Tim [ple) — plf'| <2 lim P (T > n) = 2P(; (T = 00) =
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Proposition 1V.9 (Markov Chain Convergence Theorem - MCCT) If a
MC is irreducible, aperiodic and has stationary distribution 7T, then

(i) limy oo p,.(jn) = mj forevery i,j € S,

(i) limp—eo P(X, = j) = 71j for any initial distribution v.
Proof: We have

) il = | e (o) | < X e [ef —
keS keS
so
iy A7~ 1< i -
" "% kes
= Z TTk nlilnm pfjn) - p/(;) by DCT since p,-(jn) - p,((;) < p,g-n) + p/((;)) <2
keS
= 0 by Prop. IV.8

and this proves (i).
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Now

= TRes

n—oo n—oo A —00
= Y v lim pi” by DCT since p” < 1

ies "%
= El/;ﬂj by part (I)

ieS

and this proves (ii). W
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Example IV.7 (Example I11.2 continued)

- recall
S = {1,2,3,4},v=(1/4,1/2,1/8,1/8),
0 1/3 1/2 1/6
1/3 0 1/2 1/6
1/6 1/6 0 2/3
1/3 1/3 1/3 0

P =

- chain is irreducible, recurrent and aperiodic {n : Pg) >0} ={2,3...}

- as we saw, and now by the Markov Chain Convergence Thm,
7T1 Tlp 703 Tia

n_ ((n) 7Ty T2 713 T4
P" = (P,'j ) —

7T1 Tl 713 Tia

7ty 7l 713 T7la

and P(X, = j) — 7; where
(711, 712, 713, 714) = (0.2121212,0.2121212, 0.3030303, 0.2727273)
[
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Corollary 1V.10 If a MC is irreducible and aperiodic then it has at most
one stationary distribution.

Proof: If the chain has a stationary distribution then by the MCCT
limp—eo P(Xp, =j) = 7.
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Example IV.8 (Simple Random Walk)

- the chain is irreducible but has period 2 so MCCT doesn't apply and no
stationary distribution exists anyway

- recall P(X, =j) = P(X7_1 Z = j) where the Z; are i.i.d. with
P(Zi=1)=p,P(Zi=—-1)=1—pso

E(Zz) = p—(1-p)=2p—1,
Var(Z)) = 1—(2p—1)>=4p(1—p)

- therefore by SLLN
Z " op—1 (1)

- when p # 1/2 the chain is transient
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- when p>1/2 thereise >0st. 2p—1—¢€¢>0s0

1 n
1=P(lm =Y Z>2p—1—

so for ¢ > 0 and w s.t. (1) holds there is an n(w, ¢) s.t. Y11 Zi(w) > ¢
for all n > n(w, ¢) which implies lim,_.c Y71 Zj(w) = oo which implies

1=p (n@noo Yy 7 = oo> =P ((lim X, = oo)
i=1

- similarly when p < 1/2

1= P (nllnm iz,- - —oo> —p (H|mexn - _oo)

i=1

- what about when p = 1/2? since it is a recurrent chain in this case we
have f;; = 1 for all /, j which implies

ﬁlig f}gl}, tee fl

m—1/m

=1

for any sequence of distinct states i1, o, . .., im (and there are infinitely
many such sequences) so the chain never settles down
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- but note in all cases the CLT gives

Xo/n—(2p—1) 4 5 N(0,1)
4p(1—p)/n '

SO

P(Xo=j)=P(—1/2<X,<j+1/2)

(j—1/2)/n—(2p—1) (j+1/2)/n—(2p—1)
P( Vai—p/n  S°° ap(1—p)/n )
_ q)<(j+1/2)/n—(2p—1)>_¢<(j—1/2)/n—(2p—1)>
4p(1—p)/n 4p(1—p)/n

-eg. p=23/4,n=100, = 40, then

P(X,=]j)~ ®(—1.0970) — ®(—1.2124) = 0.0236 W

Michael Evans University of Toronto https:/ Probability and Stochastic Processes Il - Lect



Proposition V.11 (Periodic Convergence Theorem) If a MC is irreducible
with period b > 2 and stationary distribution 7, then for all i,j € §

1 b—1
lim — Z p(-"+k) =T

n—eo b =Y
b—1
Jim 2} P(Xork =Jj) =
k=0
1 _ :
lim 2P (Wb Xese =) = 75

Proof: See book.

- again this implies that, if a stationary distribution exists for an irreducible
MC, then it is unique
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Example IV.9 Ehrenfest’s Urn
-recall § ={0,1,2,...,d} and

0o 1 0 0 0
1/d 0 (d—1)/d 0
0 2/d 0 (d—2)/d

P =

(d—1)/d 0 1/d
0 1 0

- the chain is irreducible, recurrent with stationary distribution
d\A—
7T, = (i)2 d

-so T(1)={n: pg) >0} = {2,4,...} and period(1) = 2 which is the
period of all the states but we can't apply the MCCT

- but

(n n d\,-
LB ) (o e
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Exercises

IV.1 Text 2.1.3
IV.2 Text 2.2.4
IV.3 Text 2.3.5
IV.4 Text 2.4.18
IV.5 Text 2.5.4
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