Probability and Stochastic Processes II - Lecture 4b

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

2024

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

- when a stationary distribution π exists, do we have $\lim_{n\to\infty} P(X_n=j)=\pi_j?$

Example IV.5

- suppose
$$\mathcal{S}=\{1,2\}$$
 and $\mathcal{P}=\left(egin{array}{cc} 1&0\\ 0&1 \end{array}
ight)$, then $\pi=(1/2,1/2)$ is stationary but

$$P(X_n = 1) = \begin{cases} 1 & \text{if } X_0 = 1 \\ 0 & \text{if } X_0 = 2 \end{cases}$$

so $\lim_{n\to\infty} P(X_n = j) \neq \pi_j$

- note that the chain is reducible
- another concern is periodicity

IV.2 Periodicity

Definition IV.3 The *period* of state *i* is gcd T(i) where

$$T(i) = \{n \ge 1 : p_{ii}^{(n)} > 0\}.$$

A chain where all states have period 1 is called *aperiodic*.

- so determine the set $\{n \ge 1 : p_{ii}^{(n)} > 0\}$ and then find the largest $m \in \mathbb{N}$ s.t. m divides evenly into every n in this set

Example IV.6 - suppose

$$P=\left(egin{array}{cccc} 0&1/2&1/2\ 1/2&0&1/2\ 1/2&1/2&0 \end{array}
ight)$$

- then $p_{_{11}}^{(2)}>0,\,p_{_{11}}^{(3)}>0$ so period of state 1 must be 1 because that is the largest integer dividing 1 and 2

- note that we didn't need to determine all the elements of $T(1) = \{n \ge 1 : p_{11}^{(n)} \ge 0\}$ to determine the period

- by the same argument the states 2 and 3 also have period 1 so the chain 2024 3 / 21 - in general if $p_{ii}^{(n)} > 0$, $p_{ii}^{(n+1)} > 0$ for some *n*, then the period of *i* is 1 **Proposition IV.5** If $i \leftrightarrow j$, then *i* and *j* have the same period.

Proof: There exist r, s s.t. $p_{ij}^{(r)} > 0$ and $p_{ji}^{(s)} > 0$. Now $p_{ii}^{(r+n+s)} \ge p_{ij}^{(r)} p_{ji}^{(s)} p_{ji}^{(s)}$, so if $p_{jj}^{(n)} > 0$, then $p_{ii}^{(r+n+s)} > 0$ which implies that the period(i) must divide r + n + s. Since $p_{ii}^{(r+s)} \ge p_{ij}^{(r)} p_{ji}^{(s)} > 0$, then period(i) must divide r + s and so it must divide n as well. Therefore period(i) divides every element of T(j) which implies period(i) \le period(j). Reversing the argument establishes that period(i) \ge period(j) and so they are equal.

Corollary IV.6 If the MC is irreducible, then all states have the same period and if $p_{ii} > 0$ for some *i*, then the chain is aperiodic.

IV.3 The Convergence Theorem

Proposition IV.6 If an irreducible chain has a stationary distribution then it is recurrent.

Proof: Recall Corollary IV.4 that a transient chain cannot have a stationary distribution. ■

Proposition IV.7 If state *i* has $f_{ii} > 0$ and is aperiodic, then there exists $n_0(i)$ s.t. $p_{ii}^{(n)} > 0$ for all $n \ge n_0(i)$.

Proof: Suppose *m*, *n* satisfy $p_{ii}^{(m)} > 0$, $p_{ii}^{(n)} > 0$. Therefore $p_{ii}^{(m+n)} \ge p_{ii}^{(m)} p_{ii}^{(n)} > 0$ (Chapman-Kolmogorov) which implies $T(i) = \{n \ge 1 : p_{ii}^{(n)} > 0\}$ is additive, namely if *m*, $n \in T(i)$, then $m + n \in T(i)$.

Note that we need only show that there exists k s.t. $k, k+1 \in T(i)$ since

$$p_{ii}^{(2k)} \ge p_{ii}^{(k)} p_{ii}^{(k)} > 0, p_{ii}^{(2k+1)} \ge p_{ii}^{(k)} p_{ii}^{(k+1)} > 0, p_{ii}^{(2k+2)} \ge p_{ii}^{(k+1)} p_{ii}^{(k+1)} > 0$$

implies $2k, 2k + 1, 2k + 2 \in T(i)$ and similarly
 $jk, jk + 1, \dots, jk + j \in T(i)$ for any j . As soon as $j \ge k - 1$ the blocks

overlap and this implies the result.

A result from number theory (Niven and Zuckerman (1972) An Introduction to the Theory of Numbers, Thm 1.5) : if the gcd of a set Tis g, then there exist distinct $n_1, \ldots, n_k \in T$ and integers x_i s.t. $g = \sum_{i=1}^{k} x_i n_i$. In this case g = 1. Now write $x_i = x_i^+ - x_i^-$ where

$$x_i^+ = \left\{ egin{array}{ccc} x_i & ext{if } x_i \geq 0 \\ 0 & ext{otherwise} \end{array} & x_i^- = \left\{ egin{array}{ccc} -x_i & ext{if } x_i < 0 \\ 0 & ext{otherwise.} \end{array}
ight.$$

Therefore

$$1 = \sum_{i=1}^{k} x_i n_i = \sum_{x_i^+ > 0} x_i^+ n_i - \sum_{x_i^- > 0} x_i^- n_i$$

where $\sum_{x_i^+ > 0} x_i^+ n_i > 0$, $\sum_{x_i^- > 0} x_i^- n_i > 0$. Therefore

$$\sum_{\substack{x_i^+>0}} x_i^+ n_i = \left(\sum_{x_i^->0} x_i^- n_i\right) + 1$$

and since $n_1, \ldots, n_k \in T(i)$, and T(i) is additive then $\sum_{x_i^+>0} x_i^+ n_i \in T(i)$, $\sum_{x_i^->0} x_i^- n_i \in T(i)$ and so it has been shown that there are consecutive elements of T(i). **Corollary IV.8** If a chain is irreducible and aperiodic then for any $i, j \in S$ there is $n_0(i, j) \in \mathbb{N}$ s.t. $p_{ij}^{(n)} > 0$ for all $n \ge n_0(i, j)$.

Proof: Let $n_0(i)$ be as in the proposition, m be s.t. $p_{ij}^{(m)} > 0$ and put $n_0(i,j) = n_0(i) + m$. When $n \ge n_0(i,j)$ then $n - m \ge n_0(i)$ so $p_{ii}^{(n-m)} > 0$ which implies $p_{ij}^{(n)} \ge p_{ii}^{(n-m)} p_{ij}^{(m)} > 0$.

- the following result shows that, under conditions, the initial distribution of the chain has no long term effect, also the proof introduces the important technique of *coupling*

Proposition IV.8 If a MC $\{X_n : n \in \mathbb{N}_0\}$ is irreducible and aperiodic with stationary distribution π then for all $i, j, k \in S$

$$\lim_{n \to \infty} |p_{ik}^{(n)} - p_{jk}^{(n)}| = 0.$$

Proof: Define a new chain $\{(X_n, Y_n) : n \in \mathbb{N}_0\}$ where $\{Y_n : n \in \mathbb{N}_0\}$ is an independent copy of $\{X_n : n \in \mathbb{N}_0\}$. So the state space of the new chain is $S \times S$ with transition probabilities $p_{(i,j)(k,l)} = p_{ik}p_{jl}$. This new chain has stationary distribution $\pi^*_{(i,j)} = \pi_i \pi_j$ since

$$\sum_{(i,j)\in\mathcal{S}\times\mathcal{S}}\pi^*_{(i,j)}p_{(i,j)(k,l)}=\sum_{i\in\mathcal{S}}\pi_ip_{ik}\sum_{k\in\mathcal{S}}\pi_jp_{jl}=\pi_k\pi_l=\pi^*_{(k,l)}.$$

The new chain is irreducible, since $p_{(i,j)(k,l)}^{(n)} = p_{ik}^{(n)} p_{jl}^{(n)} > 0$ whenever $n \ge \max\{n_0(i,j), n_0(k,l)\}$. Also the new chain is aperiodic since $p_{(i,j)(i,j)}^{(n)} = p_{ii}^{(n)} p_{jj}^{(n)} > 0$ iff $p_{ii}^{(n)} > 0$ and $p_{jj}^{(n)} > 0$ which is true whenever $n \ge \max\{n_0(i), n_0(j)\}$. By Prop. IV.6 the new chain is recurrent.

Now choose $i_0 \in S$ and let $\tau = \inf\{n : (X_n, Y_n) = (i_0, i_0)\}$. By the recurrence of the new chain we have $f_{(i,j)(i_0,i_0)} = 1$ for all (i,j) which implies $P_{(i,j)}(\tau < \infty) = 1$ for all (i,j). We have

$$\begin{split} p_{ik}^{(n)} &= P_i(X_n = k) = \frac{P(X_0 = i, X_n = k)P(Y_0 = j)}{P(X_0 = i)P(Y_0 = j)} \\ &= \frac{P(X_0 = i, X_n = k, Y_0 = j)}{P(X_0 = i, Y_0 = j)} \text{ by independence} \\ &= P_{(i,j)} (X_n = k) \\ &= \sum_{m=1}^{\infty} P_{(i,j)} (X_n = k, \tau = m) \\ &= \left\{ \sum_{m=1}^{n} P_{(i,j)} (X_n = k, \tau = m) + P_{(i,j)} (X_n = k, \tau > n) \right\}, \\ &\text{ and by the same argument} \\ p_{jk}^{(n)} &= \left\{ \sum_{m=1}^{n} P_{(i,j)} (Y_n = k, \tau = m) + P_{(i,j)} (Y_n = k, \tau > n) \right\}. \end{split}$$

2024 9 / 21

For $n \ge m$

$$\begin{aligned} & P_{(i,j)}(X_n = k, \tau = m) = P_{(i,j)}(\tau = m)P_{(i,j)}(X_n = k \mid \tau = m) \\ & = P_{(i,j)}(\tau = m)P_{(i,j)}(X_n = k \mid X_m = Y_m = i_0 \text{ and coupling} \\ & \text{ doesn't happen before time } m) \end{aligned} \\ & = P_{(i,j)}(\tau = m)P_{(i,j)}(X_n = k \mid X_m = Y_m = i_0) \text{ by MP} \\ & = P_{(i,j)}(\tau = m)P_i(X_n = k \mid X_m = i_0) \text{ by independence of the chains} \\ & = P_{(i,j)}(\tau = m)p_{i_0k}^{(n-m)} \text{ by TH and} \\ & P_{(i,j)}(Y_n = k, \tau = m) = P_{(i,j)}(\tau = m)p_{i_0k}^{(n-m)} \text{ by the same argument.} \end{aligned}$$

This has proved that

$$P_{(i,j)}(X_n = k, \tau = m) = P_{(i,j)}(Y_n = k, \tau = m).$$

024 10 / 21

イロト イ団ト イヨト イヨト

Now we have

$$\begin{aligned} |p_{ik}^{(n)} - p_{jk}^{(n)}| \\ &= |\sum_{m=1}^{n} P_{(i,j)}(X_n = k, \tau = m) - \sum_{m=1}^{n} P_{(i,j)}(Y_n = k, \tau = m) + \\ P_{(i,j)}(X_n = k, \tau > n) - P_{(i,j)}(Y_n = k, \tau > n)| \\ &= |P_{(i,j)}(X_n = k, \tau > n) - P_{(i,j)}(Y_n = k, \tau > n)| \\ &\leq (P_{(i,j)}(X_n = k, \tau > n) + P_{(i,j)}(Y_n = k, \tau > n)) \\ &\leq (P_{(i,j)}(\tau > n) + P_{(i,j)}(\tau > n)) = 2P_{(i,j)}(\tau > n). \end{aligned}$$

Therefore

$$\lim_{n \to \infty} |p_{ik}^{(n)} - p_{jk}^{(n)}| \le 2 \lim_{n \to \infty} P_{(i,j)}(\tau > n) = 2P_{(i,j)}(\tau = \infty) = 0.$$

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

æ

イロト イヨト イヨト イヨト

Proposition IV.9 (*Markov Chain Convergence Theorem - MCCT*) If a MC is irreducible, aperiodic and has stationary distribution π , then

(i)
$$\lim_{n o\infty} p_{ij}^{(n)} = \pi_j$$
 for every $i,j\in\mathcal{S}$,

(ii) $\lim_{n\to\infty} P(X_n = j) = \pi_j$ for any initial distribution ν .

Proof: We have

$$|p_{ij}^{(n)} - \pi_j| = \left| \sum_{k \in S} \pi_k \left(p_{ij}^{(n)} - p_{kj}^{(n)} \right) \right| \le \sum_{k \in S} \pi_k \left| p_{ij}^{(n)} - p_{kj}^{(n)} \right|$$

so

$$\begin{split} &\lim_{n \to \infty} |p_{ij}^{(n)} - \pi_j| \le \lim_{n \to \infty} \sum_{k \in \mathcal{S}} \pi_k \left| p_{ij}^{(n)} - p_{kj}^{(n)} \right| \\ &= \sum_{k \in \mathcal{S}} \pi_k \lim_{n \to \infty} \left| p_{ij}^{(n)} - p_{kj}^{(n)} \right| \text{ by DCT since } \left| p_{ij}^{(n)} - p_{kj}^{(n)} \right| \le p_{ij}^{(n)} + p_{kj}^{(n)} \le 2 \\ &= 0 \text{ by Prop. IV.8} \end{split}$$

and this proves (i).

Michael Evans University of Toronto https://Probability and Stochastic Processes II - Lect

Now

$$\lim_{n \to \infty} P(X_n = j) = \lim_{n \to \infty} \sum_{i \in S} v_i P_i(X_n = j) = \lim_{n \to \infty} \sum_{i \in S} v_i p_{ij}^{(n)}$$
$$= \sum_{i \in S} v_i \lim_{n \to \infty} p_{ij}^{(n)} \text{ by DCT since } p_{ij}^{(n)} \le 1$$
$$= \sum_{i \in S} v_i \pi_j \text{ by part (i)}$$
$$= \pi_j$$

and this proves (ii). \blacksquare

024 13/21

イロト イ団ト イヨト イヨト

Example IV.7 (Example III.2 continued)

- recall

$$S = \{1, 2, 3, 4\}, v = (1/4, 1/2, 1/8, 1/8), \\P = \begin{pmatrix} 0 & 1/3 & 1/2 & 1/6 \\ 1/3 & 0 & 1/2 & 1/6 \\ 1/6 & 1/6 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 & 0 \end{pmatrix}$$

- chain is irreducible, recurrent and aperiodic $\{n: p_{11}^{(n)}>0\}=\{2,3\ldots\}$

- as we saw, and now by the Markov Chain Convergence Thm,

$$P^{n} = (p_{ij}^{(n)}) \rightarrow \begin{pmatrix} \pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\ \pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\ \pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\ \pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \end{pmatrix}$$

and $P(X_n = j) \rightarrow \pi_j$ where $(\pi_1, \pi_2, \pi_3, \pi_4) = (0.2121212, 0.2121212, 0.3030303, 0.2727273)$ **Corollary IV.10** If a MC is irreducible and aperiodic then it has at most one stationary distribution.

Proof: If the chain has a stationary distribution then by the MCCT $\lim_{n\to\infty} P(X_n = j) = \pi_j$.

Example IV.8 (Simple Random Walk)

- the chain is irreducible but has period 2 so MCCT doesn't apply and no stationary distribution exists anyway

- recall $P(X_n = j) = P(\sum_{i=1}^n Z_i = j)$ where the Z_i are *i.i.d.* with $P(Z_i = 1) = p, P(Z_i = -1) = 1 - p$ so

$$E(Z_i) = p - (1 - p) = 2p - 1,$$

 $Var(Z_i) = 1 - (2p - 1)^2 = 4p(1 - p)$

- therefore by SLLN

$$\frac{1}{n}\sum_{i=1}^{n}Z_{i} \xrightarrow{wp1} 2p-1 \tag{1}$$

- when $p \neq 1/2$ the chain is transient

- when p>1/2 there is $\epsilon>0$ s.t. $2p-1-\epsilon>0$ so

$$1 = P\left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Z_i > 2p - 1 - \epsilon\right)$$

so for c > 0 and ω s.t. (1) holds there is an $n(\omega, c)$ s.t. $\sum_{i=1}^{n} Z_i(\omega) > c$ for all $n \ge n(\omega, c)$ which implies $\lim_{n\to\infty} \sum_{i=1}^{n} Z_i(\omega) = \infty$ which implies

$$1 = P\left(\lim_{n \to \infty} \sum_{i=1}^{n} Z_i = \infty\right) = P\left(\lim_{n \to \infty} X_n = \infty\right)$$

- similarly when p < 1/2

$$1 = P\left(\lim_{n \to \infty} \sum_{i=1}^{n} Z_{i} = -\infty\right) = P\left(\lim_{n \to \infty} X_{n} = -\infty\right)$$

- what about when p = 1/2? since it is a recurrent chain in this case we have $f_{ij} = 1$ for all i, j which implies

$$f_{i_1i_2}f_{i_2i_3}\cdots f_{i_{m-1}i_m}=1$$

for any sequence of distinct states i_1, i_2, \ldots, i_m (and there are infinitely many such sequences) so the chain never settles down

- but note in all cases the CLT gives

$$\frac{X_n/n - (2p-1)}{\sqrt{4p(1-p)/n}} \xrightarrow{d} Z \sim N(0,1)$$

so

$$P(X_n = j) = P(j - 1/2 \le X_n \le j + 1/2)$$

$$\approx P\left(\frac{(j - 1/2)/n - (2p - 1)}{\sqrt{4p(1 - p)/n}} \le Z \le \frac{(j + 1/2)/n - (2p - 1)}{\sqrt{4p(1 - p)/n}}\right)$$

$$= \Phi\left(\frac{(j + 1/2)/n - (2p - 1)}{\sqrt{4p(1 - p)/n}}\right) - \Phi\left(\frac{(j - 1/2)/n - (2p - 1)}{\sqrt{4p(1 - p)/n}}\right)$$

- e.g. p = 3/4, n = 100, j = 40, then

$$P(X_n = j) \approx \Phi(-1.0970) - \Phi(-1.2124) = 0.0236$$

Proposition IV.11 (*Periodic Convergence Theorem*) If a MC is irreducible with period $b \ge 2$ and stationary distribution π , then for all $i, j \in S$

$$\lim_{n \to \infty} \frac{1}{b} \sum_{k=0}^{b-1} p_{ij}^{(n+k)} = \pi_j$$
$$\lim_{n \to \infty} \frac{1}{b} \sum_{k=0}^{b-1} P(X_{n+k} = j) = \pi_j$$
$$\lim_{n \to \infty} \frac{1}{b} P\left(\bigcup_{k=0}^{b-1} \{X_{n+k} = j\}\right) = \pi_j$$

Proof: See book.

- again this implies that, if a stationary distribution exists for an irreducible MC, then it is unique

Example IV.9 Ehrenfest's Urn

- recall $S = \{0, 1, 2, ..., d\}$ and $\begin{pmatrix} 0 & 1 & 0 & ... \\ 1/d & 0 & (d-1)/d & 0 \end{pmatrix}$

$$P = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 1/d & 0 & (d-1)/d & 0 \\ 0 & 2/d & 0 & (d-2)/d \\ & & (d-1)/d & 0 & 1/d \\ 0 & & & 1 & 0 \end{pmatrix}$$

- the chain is irreducible, recurrent with stationary distribution $\pi_i = \binom{d}{i} 2^{-d}$

- so $T(1) = \{n : p_{11}^{(n)} > 0\} = \{2, 4, ...\}$ and period(1) = 2 which is the period of all the states but we can't apply the MCCT

- but

$$rac{1}{2}\sum_{k=0}^{1} p_{ij}^{(n+k)} = rac{1}{2} (p_{ij}^{(n)} + p_{ij}^{(n+1)}) o \pi_j = \binom{d}{j} 2^{-d} ext{ as } n o \infty$$

Exercises

- **IV.1** Text 2.1.3
- IV.2 Text 2.2.4
- IV.3 Text 2.3.5
- IV.4 Text 2.4.18
- IV.5 Text 2.5.4

3

イロト イヨト イヨト イヨト