Probability and Stochastic Processes II - Lecture 4a

Michael Evans
University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

IV Markov Chain Convergence

IV 1 Stationary Distributions

- suppose $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ is a MC and assume $\lim _{n \rightarrow \infty} P\left(X_{n}=j\right)=\pi_{j}$ for every j so

$$
\begin{aligned}
\pi_{j} & =\lim _{n \rightarrow \infty} P\left(X_{n+1}=j\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i \in \mathcal{S}} P\left(X_{n}=i\right) P\left(X_{n+1}=j \mid X_{n}=i\right) \text { by TTP } \\
& =\lim _{n \rightarrow \infty} \sum_{i \in \mathcal{S}} P\left(X_{n}=i\right) p_{i j} \text { by TH }
\end{aligned}
$$

$$
=\sum_{i \in \mathcal{S}} \lim _{n \rightarrow \infty} P\left(X_{n}=i\right) p_{i j} \text { (assume limit and sum can be interchanged) }
$$

$$
=\sum_{i \in \mathcal{S}} \pi_{i} p_{i j}
$$

so these limiting probabilities, when they exist, satisfy the system of linear equations $\pi P=\pi$

- in particular π is a left eigenvector of P associated with the eigenvalue 1

Example IV. 1

- recall Example III. 2

$$
\begin{aligned}
\mathcal{S} & =\{1,2,3,4\}, \\
v & =(1 / 4,1 / 2,1 / 8,1 / 8), \\
P & =\left(\begin{array}{cccc}
0 & 1 / 3 & 1 / 2 & 1 / 6 \\
1 / 3 & 0 & 1 / 2 & 1 / 6 \\
1 / 6 & 1 / 6 & 0 & 2 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
\end{aligned}
$$

- then the probability distributions of X_{1}, X_{10} and X_{100} are given by

$$
\begin{aligned}
v P^{1} & =(0.2291667,0.1458333,0.4166667,0.2083333) \\
v P^{10} & =(0.2121419,0.2121462,0.3030114,0.2727005) \\
v P^{100} & =(0.2121212,0.2121212,0.3030303,0.2727273)
\end{aligned}
$$

which definitely indicates convergence

Definition IV. 1 A probability distribution π on S is stationary for the MC with transition matrix P if $\pi P=\pi,\left(\sum_{i \in \mathcal{S}} \pi_{i} p_{i j}=\pi_{j}\right.$ for every j. \square

- suppose π is the initial distribution then

$$
\left(\ldots, P\left(X_{n}=j-1\right), P\left(X_{n}=j\right), P\left(X_{n}=j+1\right), \ldots\right)=\pi P^{n}=\pi
$$

and so the distribution of X_{n} is the same (stationary) for all n
Example IV. 2 (double stochasticity)

- suppose S is finite and P is doubly stochastic (each column also sums to 1)
- then if $\pi_{i}=1 / \#(S)$ for all i, then

$$
\sum_{k \in \mathcal{S}} \pi_{k} p_{k j}=\frac{1}{\#(S)} \sum_{k \in \mathcal{S}} p_{k j}=\frac{1}{\#(S)}=\pi_{j}
$$

and the uniform distribution on S is stationary

- how to obtain π when it exists?
- calculate $v P^{n}$ for large n or compute left eigenvalues of P

Example IV. 1 (continued)

- $P^{t} \pi^{t}=Q \pi^{t}$ so π^{t} is a right eigenvector of $Q=P^{t}$ associated with eigenvalue 1
- in R (recall any constant times an eigenvector is an eigenvector associated with the same eigenvalue so need to normalize) when P is finite dimensional

```
#computing stationary distribution
r1=c(0,1/3,1/2,1/6)
r2=c(1/3,0,1/2,1/6)
r3=c(1/6,1/6,0,2/3)
r4=c (1/3,1/3,1/3,0)
P=rbind(r1,r2,r3,r4)
Q=t(P)
e=eigen(Q)
evals=e$values
evals
E=e$vectors
E
norm=Re(sum(E[,1]))
pi=Re(t(E[,1]/norm))
pi
pi%*%P
```

```
- output
> evals
[1] 1.0000000+0.0000000i -0.3333333+0.2357023i -0.3333333-0.2357023i -0.3333333+0.0000000i
> E=e$vectors
>E
    [,1] [,2] [,3] [,4]
[1,] 0.4190790+0i 0.2581989+0.1825742i 0.2581989-0.1825742i -7.071068e-01+0i
[2,] 0.4190790+0i 0.2581989+0.1825742i 0.2581989-0.1825742i 7.071068e-01+0i
[3,] 0.5986843+0i 0.2581989-0.3651484i 0.2581989+0.3651484i 3.238467e-16+0i
[4,] 0.5388159+0i -0.7745967+0.0000000i -0.7745967+0.0000000i -5.867608e-16+0i
> norm=Re(sum(E[,1]))
> pi=Re(t(E[,1]/norm))
> pi
    [,1] [,2] [,3] [,4]
[1,] 0.2121212 0.2121212 0.3030303 0.2727273
> pi%*%P
    [,1] [,2] [,3] [,4]
[1,] 0.2121212 0.2121212 0.3030303 0.2727273
```

Definition IV. 2 A MC is time reversible (or satisfies detailed balance) wrt probability distribution π if $\pi_{i} p_{i j}=\pi_{j} p_{j i}$ for every $i, j \in \mathcal{S}$. \square

- so suppose at time n the chain is at state j but you don't know what the previous states were, then when the chain is time reversible and the initial distribution was π

$$
\begin{aligned}
& P\left(X_{n-1}=i \mid X_{n}=j\right)=\frac{P\left(X_{n-1}=i, X_{n}=j\right)}{P\left(X_{n}=j\right)} \\
= & \frac{\sum_{i_{0}, \ldots, i_{n-2}} \pi_{i_{0}} p_{i_{0} i_{1}} \cdots p_{i_{n-2} i} p_{i j}}{\sum_{i_{0}, \ldots, i_{n-1}} \pi_{i_{0}} p_{i_{0} i_{1}} \cdots p_{i_{n-1} j}} \\
= & \frac{\sum_{i_{0}, \ldots, i_{n-2}} \pi_{i_{1}} p_{i_{1} i_{0}} p_{i_{1} i_{2}} \cdots p_{i_{n-2}} p_{i j}}{\sum_{i_{0}, \ldots, i_{n-1}} \pi_{i_{1}} p_{i_{1} i_{0}} \cdots p_{i_{n-1} j}} \\
= & \frac{\sum_{i_{1}, \ldots, i_{n-2}} \pi_{i_{2}} p_{i_{2} i_{1}} p_{i_{2} i_{3}} \cdots p_{i_{n-2}} p_{i j}}{\sum_{i_{1}, \ldots, i_{n-1}} \pi_{i_{2}} p_{i_{1} i_{2}} \cdots p_{i_{n-1} j}} \\
= & \cdots=\frac{\sum_{i_{n-2}} \pi_{i_{n-2}} p_{i_{n-2} i} p_{i j}}{\sum_{i_{n-1}} \pi_{i_{n-1}} p_{i_{n-1} j}} \\
= & \frac{\pi_{j} p_{j i}}{\pi_{j}}=p_{j i}
\end{aligned}
$$

- also

$$
\begin{aligned}
& P\left(X_{n-1}=i \mid X_{n}=j, X_{n+1}=k\right) \\
= & \frac{P\left(X_{n-1}=i, X_{n}=j, X_{n+1}=k\right)}{P\left(X_{n}=j, X_{n+1}=k\right)} \\
= & \frac{P\left(X_{n+1}=k \mid X_{n-1}=i, X_{n}=j\right) P\left(X_{n-1}=i, X_{n}=j\right)}{P\left(X_{n+1}=k \mid X_{n}=j\right) P\left(X_{n}=j\right)} \\
= & \frac{P\left(X_{n+1}=k \mid X_{n}=j\right) P\left(X_{n-1}=i, X_{n}=j\right)}{P\left(X_{n+1}=k \mid X_{n}=j\right) P\left(X_{n}=j\right)}=P\left(X_{n-1}=i \mid X_{n}=j\right)
\end{aligned}
$$

- so running a chain backwards is always a MC (conditioning on the present and the future only depends on the present) and time reversibility means this has the same transition probabilities

Proposition IV. 1 If a MC is time reversible wrt π, then π is stationary. Proof: We have

$$
\sum_{k \in \mathcal{S}} \pi_{k} p_{k j}=\sum_{k \in \mathcal{S}} \pi_{j} p_{j k}=\pi_{j}
$$

Example IV. 3 (Ehrenfest's Urn)

- two urns Urn I and Urn II and d labelled balls (labelled $1, \ldots, d$) in total distributed into the two urns
- at each time one ball is chosen at "random" and moved to the other urn
- let $X_{n}=\#$ of balls in Urn I at time n so for $i, j \in S=\{0,1, \ldots, d\}$

$$
\begin{aligned}
& P\left(X_{n}=j \mid X_{0}=i_{0}, \ldots, X_{n-1}=i\right)=P\left(X_{n}=j \mid X_{n-1}=i\right) \\
= & \begin{cases}\frac{i}{d} & j=i-1 \\
\frac{d-i}{d} & j=i+1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- so this is a time homogeneous MC with $P \in \mathbb{R}^{(d+1) \times(d+1)}$ given by

$$
P=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
1 / d & 0 & (d-1) / d & 0 & & \\
0 & 2 / d & 0 & (d-2) / d & \\
& & & & \\
& & & (d-1) / d & 0 & 1 / d \\
0 & & & & 1 & 0
\end{array}\right)
$$

- it is clear that $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ is an irreducible MC and since S is finite it is a recurrent chain
- if there is a distribution π s.t. $\pi_{i} p_{i j}=\pi_{j} p_{j i}$ it must satisfy the equations below (this is expressed pairwise in terms of the off-diagonal elements) and multiplying all elements of P by d

$$
\begin{aligned}
\pi_{1}= & d \pi_{0}=\binom{d}{1} \pi_{0} \\
2 \pi_{2}= & (d-1) \pi_{1}=d(d-1) \pi_{0} \text { or } \pi_{2}=\frac{d(d-1)}{2} \pi_{0}=\binom{d}{2} \pi_{0} \\
3 \pi_{3}= & (d-2) \pi_{2}=\frac{d(d-1)(d-2)}{2} \pi_{0} \text { or } \pi_{3}=\binom{d}{3} \pi_{0} \\
& \vdots \\
d \pi_{d}= & \pi_{d-1} \text { or } \pi_{d}=\binom{d}{d} \pi_{0}
\end{aligned}
$$

- also π must satisfy

$$
\begin{aligned}
1-\pi_{0}= & \sum_{i=1}^{d} \pi_{i}=\pi_{0} \sum_{i=1}^{d}\binom{d}{i}=\pi_{0}\left(2^{d}-1\right) \text { so } \pi_{0}=1 / 2^{d} \\
& \text { which implies that detailed balance is satisfied by } \\
\pi_{i}= & \binom{d}{i} 2^{-d} \text { for } i \in S
\end{aligned}
$$

- therefore the MC is time reversible wrt π and π (the binomial $(d, 1 / 2)$ distribution) is a stationary distribution for the chain
\square
- not all chains with stationary distributions are time reversible

Proposition IV. 2 For a MC, if $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$ for all i, j, then the chain doesn't have a stationary distribution.

Proof: Suppose a stationary distribution π exists. Then we have $\pi P^{n}=\pi$ for all n so $\lim _{n \rightarrow \infty} \pi P^{n}=\pi$ or

$$
\begin{aligned}
\pi_{j} & =\lim _{n \rightarrow \infty} \sum_{i \in \mathcal{S}} \pi_{i} p_{i j}^{(n)}=\lim _{n \rightarrow \infty} \int_{\mathcal{S}} p_{i j}^{(n)} \Pi(d i) \text { and by DCT } \\
& =\int_{\mathcal{S}} \lim _{n \rightarrow \infty} p_{i j}^{(n)} \Pi(d i) \text { since }\left|p_{i j}^{(n)}\right| \leq 1 \text { and } \int_{\mathcal{S}} 1 \Pi(d i)=\sum_{i \in \mathcal{S}} \pi_{i}=1 \\
& =0
\end{aligned}
$$

so $\pi_{j}=0$ for all j and so $\sum_{i \in \mathcal{S}} \pi_{i}=0$ which is a contradiction.
Lemma IV. 3 For a MC, if $\lim _{n \rightarrow \infty} p_{k l}^{(n)}=0$ for some k, l and $k \rightarrow i, j \rightarrow l$, then $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$.
Proof: There eixist $r, s>0$ s.t. $p_{k i}^{(r)}>0, p_{j l}^{(s)}>0$ so
$p_{k l}^{(r+n+s)} \geq p_{k i}^{(r)} p_{i j}^{(n)} p_{j l}^{(s)}$ which implies $0 \leq p_{i j}^{(n)} \leq p_{k l}^{(r+n+s)} / p_{k i}^{(r)} p_{j l}^{(s)} \rightarrow 0$ as $n \rightarrow \infty$.

Corollary IV. 4 For an irreducible MC (i) either $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$ for all i, j or $\lim _{n \rightarrow \infty} p_{i j}^{(n)} \neq 0$ for all i, j, (ii) so if $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$ for some i, j the MC does not have a stationary distribution and in particular (iii) a transient chain does not have a stationary distribution.

Proof: (i) is immediate from Lemma IV. 3 and (ii) follows from Proposition IV.2. For (iii), the Cases Theorem implies $\sum_{n=1}^{\infty} p_{i j}^{(n)}<\infty$ for all i, j which implies $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$ for all i, j and the result follows from Proposition IV.2.

Example IV. 4 Simple random walk

- the chain is irreducible so the previous result applies
- when $p \neq 1$ / 2 we showed the chain is transient and so no stationary distribution exists
- when $p=1 / 2$ we showed the chain is recurrent so we need only show $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$ for some i, j to show that a stationary distribution doesn't exist
- we have

$$
p_{00}^{(n)}= \begin{cases}0 & \text { if } n \text { not even } \\ \binom{n}{n / 2}\left(\frac{1}{2}\right)^{n} & \text { if } n \text { even }\end{cases}
$$

and for $n=2 m$, using results from Example III.2.1, namely, $t_{m}=2^{2 m} / \sqrt{\pi m}$

$$
\begin{aligned}
p_{00}^{(2 m)} & =\binom{2 m}{m}\left(\frac{1}{2}\right)^{2 m}=\frac{(2 m)!}{m!m!}\left(\frac{1}{2}\right)^{2 m}=\left(\frac{(2 m)!}{m!m!t_{m}}\right) t_{m}\left(\frac{1}{2}\right)^{2 m} \\
& =\left(\frac{(2 m)!}{m!m!t_{2 m}}\right) \frac{1}{\sqrt{\pi m}} \rightarrow 0 \text { as } m \rightarrow 0
\end{aligned}
$$

- therefore a stationary distribution doesn't exist for any srw
- note - when $p=1 / 2$, by the Cases Theorem

$$
\sum_{n} p_{i j}^{(n)}=\infty \text { even though } p_{i j}^{(n)} \rightarrow 0
$$

also

$$
\sum_{j} p_{i j}^{(n)}=1 \text { for every } n \text { so } \lim _{n \rightarrow \infty} \sum_{j} p_{i j}^{(n)}=1 \neq 0=\sum_{j} \lim _{n \rightarrow \infty} p_{i j}^{(n)}
$$

so this is a situation where we can't interchange summation and limit (can't use MCT or DCT) ■

- see the book for a MC with $\#(S)=\infty$ and a stationary distribution exists

