Probability and Stochastic Processes II - Lecture 3c

Michael Evans
University of Toronto
https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

III. 4 Simple Random Walk with Absorbing Barriers (Gambler's Ruin)

- consider $Z_{1}, Z_{2}, \ldots \stackrel{i . i . d .}{\sim} 2 \operatorname{Bernoulli}(p)-1$, so $P\left(Z_{i}=1\right)=p, P\left(Z_{i}=-1\right)=1-p$, and independent of Z_{0}
- put $X_{n}=Z_{0}+\sum_{i=1}^{n} Z_{i}$
- we proved, when $Z_{0} \equiv i$, that

$$
\begin{aligned}
& p_{i j}^{(n)}=P\left(\sum_{k=1}^{n} Z_{k}=j-i\right) \\
& = \begin{cases}0 & \text { if } n+j-i \text { not even } \\
\binom{n}{\frac{n+j-i}{2}} p^{\frac{n+j-i}{2}}(1-p)^{n-\frac{n+j-i}{2}} & \text { if } n+j-i \in\{0,2, \ldots, 2 n\}\end{cases}
\end{aligned}
$$

- now suppose $Z_{0} \equiv a \in \mathbb{N}_{0}$, a gambler's initial fortune, and the house has fortune $c-a$ so the total fortune at stake is c
- so for $j \in\{0, \ldots, c\}$

$$
\begin{aligned}
& p_{a j}^{(n)}=P\left(\sum_{k=1}^{n} Z_{k}=j-a\right) \\
& = \begin{cases}0 & \text { if } n+j-a \text { not even } \\
\left(\frac{n+j-a}{2}\right) p^{\frac{n+j-a}{2}}(1-p)^{\frac{n-j+a}{2}} & \text { if } n+j-a \in\{0,2, \ldots, 2 n\}\end{cases}
\end{aligned}
$$

- at each time the gamber bets and wins one 1 unit with probability p and loses one unit to the house with probability $1-p$
- the gambling ends when $X_{n}=0$ or $X_{n}=c$
- let $T_{i}=1$ st time $X_{n}=i$
- compute

$$
\begin{aligned}
s(a) & =P_{a}\left(T_{c}<T_{0}\right)=\text { prob. gambler acquires entire fortune } \\
& =P_{a}\left(X_{n}=c, \text { for some } n \text { and } X_{1}, \ldots, X_{n-1} \neq 0\right)
\end{aligned}
$$

- note that the function s satisfies the boundary conditions $s(0)=0, s(c)=1$
- s also satisfies the difference equation for $a \in\{1, \ldots, c-1\}$

$$
\begin{aligned}
& s(a)=P_{a}\left(T_{c}<T_{0}\right) \stackrel{T T P}{=} \quad P_{a}\left(T_{c}<T_{0} \mid X_{1}=a+1\right) p+ \\
& P_{a}\left(T_{c}<T_{0} \mid X_{1}=a-1\right)(1-p) \\
& \stackrel{M P}{=} p s(a+1)+(1-p) s(a-1) \text { so using } s(a)=p s(a)+(1-p) s(a) \\
& p(s(a+1)-s(a))=(1-p)(s(a)-s(a-1)) \text { or } \\
& s(a+1)-s(a)=\left(\frac{1-p}{p}\right)(s(a)-s(a-1)) \\
& =\ldots=\left(\frac{1-p}{p}\right)^{a}(s(1)-s(0))=\left(\frac{1-p}{p}\right)^{a} s(1) \text { so } \\
& s(a)=(s(a)-s(a-1))+(s(a-1)-s(a-2))+\cdots+(s(1)-s(0 \\
& =\sum_{k=1}^{a}\left(\frac{1-p}{p}\right)^{k-1} s(1)=\left\{\begin{array}{ll}
\frac{1-\left(\frac{1-p}{p}\right)^{a}}{1-\left(\frac{1-p}{p}\right)} s(1) & p \neq 1 / 2 \\
a s(1)^{2} & p=1 / 2
\end{array}\right. \text { so }
\end{aligned}
$$

$$
\begin{aligned}
1 & =s(c)=\left\{\begin{array}{ll}
\frac{1-\left(\frac{1-p}{p}\right)^{c}}{1-\left(\frac{1-p}{p}\right)} s(1) & p \neq 1 / 2 \\
a s(1)^{2} & p=1 / 2
\end{array}\right. \text { or } \\
s(1) & = \begin{cases}\frac{1-\left(\frac{1-p}{p}\right)}{1-\left(\frac{1-p}{p}\right)^{c}} & p \neq 1 / 2 \\
1 / c & p=1 / 2\end{cases} \\
s(a) & = \begin{cases}\frac{1-\left(\frac{1-p}{p}\right)^{a}}{1-\left(\frac{1-p}{p}\right)^{c}} & p \neq 1 / 2 \\
a / c & p=1 / 2\end{cases}
\end{aligned}
$$

- Gambler's ruin probability (reverse role of p and $1-p$ and a and $c-a$)

$$
\begin{aligned}
& r(a)=P_{a}\left(T_{0}<T_{c}\right)=\text { prob. gambler is ruined } \\
= & \begin{cases}\frac{1-\left(\frac{p}{1-p}\right)^{c-a}}{1-\left(\frac{p}{1-p}\right)^{c}} & p \neq 1 / 2 \\
(c-a)^{2} / c & p=1 / 2\end{cases}
\end{aligned}
$$

- typically $c-a \gg a$ and we want $\lim _{c \rightarrow \infty} P\left(T_{0}<T_{c}\right)$
- $\left\{T_{0}<T_{c}\right\}$ is monotone increasing in c and since $T_{c} \geq c-a$ then

$$
\left\{T_{0}<c-a\right\} \subset\left\{T_{0}<T_{c}\right\} \subset\left\{T_{0}<\infty\right\}
$$

which implies (using convergence of events)

$$
\left\{T_{0}<\infty\right\}=\lim _{c \rightarrow \infty}\left\{T_{0}<c-a\right\} \leq \lim _{c \rightarrow \infty}\left\{T_{0}<T_{c}\right\} \leq\left\{T_{0}<\infty\right\}
$$

and so, by continuity of the probability measure, $P\left(T_{0}<\infty\right)=\lim _{c \rightarrow \infty} P\left(T_{0}<T_{c}\right)$ implying

$$
\begin{aligned}
& P\left(T_{0}<\infty\right)=\lim _{c \rightarrow \infty} P\left(T_{0}<T_{c}\right)= \begin{cases}1 & p \leq 1 / 2 \\
\left(\frac{1-p}{p}\right)^{a} & p>1 / 2\end{cases} \\
& P\left(T_{0}=\infty\right)= \begin{cases}0 & p \leq 1 / 2 \\
1-\left(\frac{1-p}{p}\right)^{a} & p>1 / 2\end{cases}
\end{aligned}
$$

- so in practical circumstances ruin is certain but if the gambler has an edge $p>1 / 2$, then the probability they are never ruined is $1-\left(\frac{1-p}{p}\right)^{a}$

Exercises

Exercise III.4.1 Text 1.7.2.
Exercise III.4.2 (Text 1.7.4) Prove $r(a)+s(a)=1$ so the game ends with probability 1 . So if $T=\min \left\{T_{0}, T_{c}\right\}=$ time game ends and this is finite with probability 1 . Propostion 1.7.6 also shows $E(T)<\infty$.

Exercise III.4.3 Text 1.7.9
Exercise III.4.4 Text 1.7.11

