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I11.2 Recurrence and Transience
- for MC {X, : n € No} with state space S C Z let P, = P(- | Xp = 1)
(so p,g-n) = P;(X, =J)) and let E; denote expectation wrt P;

Definition 111.2.1 The (i, j)-th return probability for the MC
{Xh :n €Ny} is given by

[e°]

fi = Pi(X,=jforsomen) =Y Pi(Xi#j ...Xp-1#jXo=])
n=1

= the probability the chain visits state j after starting in state /
- so

f;i = the prob. the chain returns to state i after starting in state /

1 — f; = the prob. the chain never hits state j after starting in state /
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- note

P;(X, = j and X,+m = k for some n and m)
and by TTP

= ZP(X,H_,,, =k forsome m| Xo =i, X1 #j,... Xo—1 £, Xp = J) X
n=1

Pi(X1 # j,...Xn—1 # j, Xn = J) and by Prop. 1ll.3 and TH

= Z P(Xm = k for some m| Xy = j)Pi(X1 # j,... Xo—1 £ j, Xn = J)
n=1

= i Y Pi(Xt £ Ji . Xno1 # J Xa = J) = fif

n=1
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-let Ni =#{n: X, =i} € NgU {oo} and N; is the number of visits the
chain makes to state /

- therefore the conditional distribution of N; given Xy = i is given by
(using argument on previous slide)

Pi(N; = 0)=1—f;
P,(Nj > 1):f P(N >2)—fUl§J ..... P’(Mzk):ﬁjf/j{_l
Pi(N; = k) =Pi(N; > k)= Pi(N; > k+1) = fiff (1 - f)
Pi(N; = k)=fk(1—1£;) (=0whenf;=1)
. 1 fi=1
P,(N, = OO)—].—I(;)P,'(N,'—/()—{O f,','<1
Definition 111.2.1 A state i of a MC is recurrent if f;; = 1 and is transient

if f; < 1.
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Proposition 111.6 (Recurrent state theorem) For a MC

(i) state i is recurrent iff P;(N; = o0) = 1 iff £;(N;) = ¥, p") = oo,
(ii) state i is transient iff P;(N; = o0) = 0 iff E;(N;) = Yooy pf,-") < 0.
Proof: The first parts of (i) and (ii) follow from the conditional

distribution of N; given Xy = i just worked out. Now note that
Ni = Yozq Igiy (X,) and so

Ei(N;) = E; (i ’{i}(Xn)> = iEi(l{i}(Xn)) = ip,(,-")

and when i is recurrent P;(N; = 00) = 1 so E;(N;) = oo. Now when
fi < 1, then

Ei(Ni) = Y kfF(1—f) = (fi — ) +2(F7 — ) + ...

So when Y77 4 p,.(,.") = oo then state i is recurrent and is otherwise

dl N
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Side note - an alternative expression for the expectation of a r. v.
Lemma If X > 0 then E(X) = [;°(1 — Fx(z)) dz and when
P(X € Ng) =1 this equals E(X) = Y1 P(X > k).

Proof: We have

E(X):/ xPx (dx) = / /dsz dx)

:// (0.x) (2)dz Px (d F“b’”’// (0.0 (2) Px (dx) dz

— /0 P(X>z)dz—/o (1-Fx(z))dz

= Y P(X>k)when P(XeNp)=1. 1
k=1
Exercise 111.2.1 If E(X) exists, then prove
0

E(X):/Ooo(l—FX(z))dz—/ Fx(2) dz

—0o0

Y P(X >k) ZPX<k)whenP(X€]No)
k=1 k=1
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Example 111.2.1 Simple random walk

- we showed (assuming Xy = 0)

() 0 if n+j — i not even
pi = n ntj—i O L.
y (n+é'-;)p > (1—p)" 2 ifn+j—ie€{0,2,...,2n}
- therefore
2 (n = (2n\ , n = (2n)! n
Yh =Y <n>p (1=p)" =) P (1-p)
n=1 n=1 n=1 """

- Stirling’s approximation to n! says, putting s, = (n/e)"\/27tn, that
lim,_~en!'/s, =1 and so

fim (20! 50
n—oo nln! Son
LS 22"(n/e)?"\/4rtn 22"
" s2  (n/e)?"(2mn)  Jmn

=1 and
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- now

(n,n, > top" (1—p)"

<t> (4,)(;% p)”

and note that 0 < 4p(1 — p) < 1 is maximized at p = 1/2 and equals 1
there

»
»

- for large n the n-th term in this series is Iikew and

— (4p(1—p))" [ <0 p#1/2
nzl Vn {=°° p=1/2

and

2n)!
0 < b< <( n)! > < B for all n for some (b, B) which implies

i () _ [ <o p#1/2
Pii —c p=1/2
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and so any i is recurrent for a symmetric srw and in the nonsymmetric
case all states / are transient l

Exercises
111.2.2 Text 1.5.12
111.2.3 Text 1.5.15
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I11.3 Communicating States and Irreducibility

Definition 111.3.1 State i communicates with state j if f;; > 0 denoted by

i — j (equivalently there exist n s.t. p,g-") > 0). A MC is irreducible if
i—jforalli,jes.

Lemma 1.7 (Sum Lemma) If i — k and | — j and Y ;"4 p,(j) = oo, then
Yoo, plg.”) = oo. In particular, if i <> k and Y7 ; p,((';) = o0, then

Yoo, p,s.") = o0 so if i and k mutually communicate and one is recurrent

then both are recurrent.

Proof: There exist m,r > 1 s.t. p,.(km) > 0, p,(jr) > 0. The
Chapman-Kolmogorov inequality implies p,.(jm+s+r) > pfé")p,(j)p,(jr) for all s.

Therefore,

(e 0]

co ( ) co
Elpijn) 2 2 m+s+r Z 2 k P/J 2
n— s=1 s=1

as required. Now suppose i <+ k and put j = i,/ = k which implies

(m)

Yo, pfl.") = oo whenever Y, p,,’ = o0 and conversely. B
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Proposition 111.8 (Cases theorem) For an irreducible MC either (i)

Yoo p,g.") = oo for all 7, and so all states are recurrent or (ii)

Yot p,g-n) < oo for all i,/ and all states are transient.
Proof: (i) If Yoo p,((';) = oo for some k, /, then by Lemma I11.7

Yoo, p(n) = oo for all i,j which implies }"7° ; p(n) = oo for all i. (ii) If

ij i
¥, pi < oo for all k, I then Y2, pi” < oo for all i. M
Example 111.3.1 Simple random walk

- we have

pU ntj—i

m |0 - ifn+j—inot even
- (#)pT(l—p)”_¥ ifn+j—iec{0,2... 2n}

(n)

i >0so/i—jand

so choosing ns.t. n+ j — i is even we have that p
similarly j — i and a srw is irreducible ll
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Proposition 111.9 (Finite State Space Theorem) If the MC is irreducible
and S is finite then the chain is recurrent.

Proof: We have

P ICEAED W WAES MR

JeS n=1 n=1jeS§

(n)

j =00 for some j and

and since ) ;s is a finite sum this implies Yooup
result follows. Wl
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- put

Hij = A{forsomen, Xi #j,...Xp—1 #j, Xo =i}

= event chain hits / before j

Lemma I11.10 (Hit Lemma) If j — i with j # i then P;(H;) > 0.

Proof: Since j — i there exists a sequence of states iy, i1, ..., im wWith
o = J, im = i and such that pj,; pii, - - - Pi,,_1i, > 0. Then thereis a
shortest such subsequence within this sequence which starts with j, and
since this chain is in Hj; this proves the result. l
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Lemma lI1.11 (f-Lemma) If j — i and f; = 1, then f; = 1.
Proof: This is clear when i = j so assume i # j. Then Pj(H;;) > 0. Now

0 = 1 — f;j = Pj(never return to j)
Pj(for some n, Xi%# j,... X, 1# j, X,=iand Xpypm# jV m>1)

= Y Pi(Xi#j ... X, #j Xy=iand Xopm# jV m>1)

v

I
e 3

Pj(Xl#.j""Xn—l#.j'Xn: I)P( n+m7é./vm> 1|X _I)

3
Il
—

|
e

Pj(Xl #jv---Xn—l #J.vXn = i)Pi<Xm #Jv m > 1) (TH)

3
Il
—

_ <1_f,,i PUXy # oo Koot 7. X = i) = (1= ) Py(Hy) > 0

and this implies f; = 1. &
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Lemma 111.12 (Infinite Returns Lemma) For an irreducible MC,
B | 1 for every i,j if chain is recurrent

Pi(N; = o0) = 0 for every i, if chain is transient.

Proof: This follows from the earlier derivation

Pi(N; = k) = ff (1 — f)

since this implies Pj(N; = k) = 0 for every k € IN when the chain is
recurrent since f; = 1. When f; < 1, so the chain is transient, then

Pi(N; = 00) = Jlim. Pi(N; > k) = fim- ikl =0,

- so there are a number of ways to characterize the recurrence or
transience of an irreducible MC and the book presents a nice summary
(pages 22-23.)

- a subset C C S is called closed if for every i € C,j & C then f;; = 0 so
once we get into C we can never leave

- so we can consider a new chain with state space C once we enter C
which may be recurrent or transient.
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Exercises

111.3.1 Text 1.6.4
111.3.2 Text 1.6.20
111.3.2 Text 1.6.24
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