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III.2 Recurrence and Transience

- for MC fXn : n 2 N0g with state space S � Z let Pi = P(� jX0 = i)
(so p(n)ij = Pi (Xn = j)) and let Ei denote expectation wrt Pi

De�nition III.2.1 The (i , j)-th return probability for the MC
fXn : n 2 N0g is given by

fij = Pi (Xn = j for some n) =
∞

∑
n=1

Pi (X1 6= j , . . .Xn�1 6= j ,Xn = j)

= the probability the chain visits state j after starting in state i

- so

fii = the prob. the chain returns to state i after starting in state i

1� fij = the prob. the chain never hits state j after starting in state i
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- note

Pi (Xn = j and Xn+m = k for some n and m)

and by TTP

=
∞

∑
n=1

P(Xn+m = k for some m jX0 = i ,X1 6= j , . . .Xn�1 6= j ,Xn = j)�

Pi (X1 6= j , . . .Xn�1 6= j ,Xn = j) and by Prop. III.3 and TH

=
∞

∑
n=1

P(Xm = k for some m jX0 = j)Pi (X1 6= j , . . .Xn�1 6= j ,Xn = j)

= fjk
∞

∑
n=1

Pi (X1 6= j , . . .Xn�1 6= j ,Xn = j) = fij fjk
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- let Ni = #fn : Xn = ig 2 N0 [ f∞g and Ni is the number of visits the
chain makes to state i

- therefore the conditional distribution of Nj given X0 = i is given by
(using argument on previous slide)

Pi (Nj = 0) = 1� fij
Pi (Nj � 1) = fij ,Pi (Nj � 2) = fij fjj , . . . ,Pi (Nj � k) = fij f k�1jj

Pi (Nj = k) = Pi (Nj � k)� Pi (Nj � k + 1) = fij f k�1jj (1� fjj )
Pi (Ni = k) = f kii (1� fii ) (= 0 when fii = 1)

Pi (Ni = ∞) = 1�
∞

∑
k=0

Pi (Ni = k) =
�
1 fii = 1
0 fii < 1

De�nition III.2.1 A state i of a MC is recurrent if fii = 1 and is transient
if fii < 1.
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Proposition III.6 (Recurrent state theorem) For a MC
(i) state i is recurrent i¤Pi (Ni = ∞) = 1 i¤ Ei (Ni ) = ∑∞

n=1 p
(n)
ii = ∞,

(ii) state i is transient i¤Pi (Ni = ∞) = 0 i¤ Ei (Ni ) = ∑∞
n=1 p

(n)
ii < ∞.

Proof: The �rst parts of (i) and (ii) follow from the conditional
distribution of Ni given X0 = i just worked out. Now note that
Ni = ∑∞

n=1 Ifig(Xn) and so

Ei (Ni ) = Ei

 
∞

∑
n=1

Ifig(Xn)

!
MCT
=

∞

∑
n=1

Ei (Ifig(Xn)) =
∞

∑
n=1

p(n)ii

and when i is recurrent Pi (Ni = ∞) = 1 so Ei (Ni ) = ∞. Now when
fii < 1, then

Ei (Ni ) =
∞

∑
k=1

kf kii (1� fii ) =
�
fii � f 2ii

�
+ 2

�
f 2ii � f 3ii

�
+ . . .

=
∞

∑
k=1

f kii =
�

1
1� fii

� 1
�
=

fii
1� fii

< ∞.

So when ∑∞
n=1 p

(n)
ii = ∞ then state i is recurrent and is otherwise

transient. �
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Side note - an alternative expression for the expectation of a r. v.

Lemma If X � 0 then E (X ) =
R ∞
0 (1� FX (z)) dz and when

P(X 2 N0) = 1 this equals E (X ) = ∑∞
k=1 P(X � k).

Proof: We have

E (X ) =
Z ∞

0
xPX (dx) =

Z ∞

0

Z x

0
dz PX (dx)

=
Z ∞

0

Z ∞

0
I(0,x )(z)dz PX (dx)

Fubini
=

Z ∞

0

Z ∞

0
I(0,x )(z)PX (dx) dz

=
Z ∞

0
P(X > z) dz =

Z ∞

0
(1� FX (z)) dz

=
∞

∑
k=1

P(X � k) when P(X 2 N0) = 1. �

Exercise III.2.1 If E (X ) exists, then prove

E (X ) =
Z ∞

0
(1� FX (z)) dz �

Z 0

�∞
FX (z) dz

=
∞

∑
k=1

P(X � k)�
�∞

∑
k=�1

P(X � k) when P(X 2 N0) = 1.
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Example III.2.1 Simple random walk

- we showed (assuming X0 = 0)

p(n)ij =

(
0 if n+ j � i not even
( n
n+j�i
2
)p

n+j�i
2 (1� p)n� n+j�i

2 if n+ j � i 2 f0, 2, . . . , 2ng

- therefore

∞

∑
n=1

p(n)ii =
∞

∑
n=1

�
2n
n

�
pn (1� p)n =

∞

∑
n=1

(2n)!
n!n!

pn (1� p)n

- Stirling�s approximation to n! says, putting sn = (n/e)n
p
2πn, that

limn!∞ n!/sn = 1 and so

lim
n!∞

(2n)!
n!n!

s2n
s2n

= 1 and

tn =
s2n
s2n
=
22n(n/e)2n

p
4πn

(n/e)2n(2πn)
=

22np
πn
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- now
∞

∑
n=1

(2n)!
n!n!

pn (1� p)n =
∞

∑
n=1

�
(2n)!
n!n!tn

�
tnpn (1� p)n

=
∞

∑
n=1

�
(2n)!
n!n!tn

�
(4p(1� p))np

πn

and note that 0 � 4p(1� p) � 1 is maximized at p = 1/2 and equals 1
there

- for large n the n-th term in this series is like (4p(1�p))
n

p
πn

and

∞

∑
n=1

(4p(1� p))np
πn

�
< ∞ p 6= 1/2
= ∞ p = 1/2

and

0 < b �
�
(2n)!
n!n!tn

�
� B for all n for some (b,B) which implies

∞

∑
n=1

p(n)ii =

�
< ∞ p 6= 1/2
= ∞ p = 1/2
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and so any i is recurrent for a symmetric srw and in the nonsymmetric
case all states i are transient �
Exercises

III.2.2 Text 1.5.12

III.2.3 Text 1.5.15
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III.3 Communicating States and Irreducibility

De�nition III.3.1 State i communicates with state j if fij > 0 denoted by
i ! j (equivalently there exist n s.t. p(n)ij > 0). A MC is irreducible if
i ! j for all i , j 2 S .

Lemma III.7 (Sum Lemma) If i ! k and l ! j and ∑∞
n=1 p

(n)
kl = ∞, then

∑∞
n=1 p

(n)
ij = ∞. In particular, if i $ k and ∑∞

n=1 p
(n)
kk = ∞, then

∑∞
n=1 p

(n)
ii = ∞ so if i and k mutually communicate and one is recurrent

then both are recurrent.

Proof: There exist m, r � 1 s.t. p(m)ik > 0, p(r )lj > 0. The

Chapman-Kolmogorov inequality implies p(m+s+r )ij � p(m)ik p(s)kl p
(r )
lj for all s.

Therefore,
∞

∑
n=1

p(n)ij �
∞

∑
s=1

p(m+s+r )ij �
∞

∑
s=1

p(m)ik p(s)kl p
(r )
lj = p(m)ik p(r )lj

∞

∑
s=1

p(s)kl = ∞

as required. Now suppose i $ k and put j = i , l = k which implies

∑∞
n=1 p

(n)
ii = ∞ whenever ∑∞

n=1 p
(n)
kk = ∞ and conversely. �
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Proposition III.8 (Cases theorem) For an irreducible MC either (i)
∑∞
n=1 p

(n)
ij = ∞ for all i , j and so all states are recurrent or (ii)

∑∞
n=1 p

(n)
ij < ∞ for all i , j and all states are transient.

Proof: (i) If ∑∞
n=1 p

(n)
kl = ∞ for some k, l , then by Lemma III.7

∑∞
n=1 p

(n)
ij = ∞ for all i , j which implies ∑∞

n=1 p
(n)
ii = ∞ for all i . (ii) If

∑∞
n=1 p

(n)
kl < ∞ for all k, l then ∑∞

n=1 p
(n)
ii < ∞ for all i . �

Example III.3.1 Simple random walk

- we have

p(n)ij =

(
0 if n+ j � i not even
( n
n+j�i
2
)p

n+j�i
2 (1� p)n� n+j�i

2 if n+ j � i 2 f0, 2, . . . , 2ng

so choosing n s.t. n+ j � i is even we have that p(n)ij > 0 so i ! j and
similarly j ! i and a srw is irreducible �
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Proposition III.9 (Finite State Space Theorem) If the MC is irreducible
and S is �nite then the chain is recurrent.

Proof: We have

∑
j2S

∞

∑
n=1

p(n)ij
Fubini
=

∞

∑
n=1

∑
j2S

p(n)ij =
∞

∑
n=1

1 = ∞

and since ∑j2S is a �nite sum this implies ∑∞
n=1 p

(n)
ij = ∞ for some j and

result follows. �
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- put

Hij = ffor some n, X1 6= j , . . .Xn�1 6= j ,Xn = ig
= event chain hits i before j

Lemma III.10 (Hit Lemma) If j ! i with j 6= i then Pj (Hij ) > 0.
Proof: Since j ! i there exists a sequence of states i0, i1, . . . , im with
i0 = j , im = i and such that pi0 i1pi1 i2 . . . pim�1 im > 0. Then there is a
shortest such subsequence within this sequence which starts with j , and
since this chain is in Hij this proves the result. �
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Lemma III.11 (f-Lemma) If j ! i and fjj = 1, then fij = 1.

Proof: This is clear when i = j so assume i 6= j . Then Pj (Hij ) > 0. Now

0 = 1� fjj = Pj (never return to j)
� Pj (for some n, X1 6= j , . . .X n�1 6= j ,X n= i and Xn+m 6= j 8 m � 1)

=
∞

∑
n=1

Pj (X 1 6= j , . . .X n�1 6= j ,X n= i and Xn+m 6= j 8 m � 1)

=
∞

∑
n=1

Pj (X 1 6= j , . . .X n�1 6= j ,X n= i)P(X n+m 6= j 8 m � 1 jX n= i)

=
∞

∑
n=1

Pj (X1 6= j , . . .Xn�1 6= j ,Xn = i)Pi (Xm 6= j 8 m � 1) (TH)

= (1� fij )
∞

∑
n=1

Pj (X1 6= j , . . .Xn�1 6= j ,Xn = i) = (1� fij )Pj (Hij ) � 0

and this implies fij = 1. �
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Lemma III.12 (In�nite Returns Lemma) For an irreducible MC,

Pi (Nj = ∞) =
�
1 for every i , j if chain is recurrent
0 for every i , j if chain is transient.

Proof: This follows from the earlier derivation

Pi (Nj = k) = fij f k�1jj (1� fjj )
since this implies Pi (Nj = k) = 0 for every k 2 N when the chain is
recurrent since fjj = 1. When fjj < 1, so the chain is transient, then

Pi (Nj = ∞) = lim
k!∞

Pi (Nj � k) = lim
k!∞

fij f k�1jj = 0.

�
- so there are a number of ways to characterize the recurrence or
transience of an irreducible MC and the book presents a nice summary
(pages 22-23.)

- a subset C � S is called closed if for every i 2 C , j /2 C then fij = 0 so
once we get into C we can never leave

- so we can consider a new chain with state space C once we enter C
which may be recurrent or transient.
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Exercises

III.3.1 Text 1.6.4

III.3.2 Text 1.6.20

III.3.2 Text 1.6.24
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