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III. Markov Chains

- consider probability model (Ω,A,P) and X : (Ω,A)! (S , C) as a
random object so X (ω) 2 S , C is a σ-algebra on S and X�1C 2 A for
every C 2 C
- then (S , C,PX ) is a probability model where PX (C ) = P(X�1C ) (see
PSPI notes)

- e.g., when (S , C) = (Rk ,Bk ) then we call X a random vector (variable
when k = 1)

- basically all the results we discussed for random vectors/variables also
apply to random objects except those that depend on S being Euclidean
Example III.1

- S = set of all 2-dimensional similar triangles

- these "could" be as represented by the 3 angles as a (constrained and
largest to smallest) point in R3 but what is the signi�cance of the cdf in
that case? �
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- assume all random objects X are de�ned on the same underlying
probability space (Ω,A,P) and refer to S as the state space (in PSPI we
used the notation X for S but we�ll follow the book)
- consider a stochastic process fXt : t 2 Tg where the set T can be
totally ordered so that for t1, t2 2 T we have one of t1 < t2, t1 = t2 or
t1 > t2 being true

- for example, T � R1 and t corresponds to "time" but we can be more
general (e.g., distance, vertices in a graph by number of connecting edges)

- suppose we observe the values of Xt for t � t0 where we think of Xt0 as
being the present "state" of the process

- then "roughly speaking" we call the process fXt : t 2 Tg a Markov
process (MP) if for every s1 � 0, . . . , sn � 0 and n, and C 2 Ck

P((Xt0+s1 , . . . ,Xt0+sn ) 2 C jXt : t � t0) = P((Xt0+s1 , . . . ,Xt0+sn ) 2 C jXt0)

- in other words the probability distribution of the future given the present
and past only depends on the present
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- note - if in addition P((Xt0+s1 , . . . ,Xt0+sn ) 2 C jXt0) only depends on
the time di¤erences from t0, namely s1, . . . , sn, then this is a time
homogeneous (TH) Markov process, namely,

P((Xt0+s1 , . . . ,Xt0+sn ) 2 C jXt0)

is the same for every t0,C 2 Cn

- there are Gaussian processes that are time homogeneous Markov
processes (Brownian motion) but we restrict attention for now to
situations where S and T are required to be countable (so various
probability measures are discrete)
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III.1 De�nition and Basic Computations

De�nition III.1 A stochastic process fXt : t 2 Tg is a discrete time,
discrete space, time homogeneous Markov chain if:
(i) S is countable (typically represented as S � Z, C = power set),
(ii) T is countable (typically represented as T = N0),
(iii) there is an initial probability measure P(X0 = i) = υi for i 2 S ,
(iv) Markov property (MP) PXn+1(� jX0, . . . ,Xn) = PXn+1(� jXn) with
transition probabilities pij = P(Xn+1 = j jXn = i) for every n.
Proposition III.1 For a MC the υi , pij determine all the �nite dimensional
distributions.

Proof:

P(X0 = i0, . . . ,Xn = in)
= P(X0 = i0, . . . ,Xn�1 = in�1)P(Xn = in jX0 = i0, . . . ,Xn�1 = in�1)
= P(X0 = i0, . . . ,Xn�1 = in�1)pin�1 in = . . . = υi0pi0 i1 � � � pin�1 in . �

- note - when we use the terminology "Markov chain" hereafter we will
mean a s.p. that satis�es De�nition III.1
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- note - this gives a valid de�nition of a stochastic process (via
Kolmogorov consistency and use ∑i υi = 1 and ∑j pij = 1 for each i)

- note - when S � Z,T = N0 the initial probabilty distribution can be
represented as a (possibly in�nitely dimensional) row vector υ and the
transition probabilities can be represented as a (possibly in�nitely
dimensional) matrix with (i , j)-th element pij , say P = (pij )

- then

P(X1 = j)
TTP
= ∑

i2S
P(X0 = i)P(X1 = j jX0 = i) = ∑

i2S
υipij

which is the product of the vector υ with the j-th column of P so

(. . . ,P(X1 = j � 1),P(X1 = j),P(X1 = j + 1), . . .) = υP

is the probability distribution of X1

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes I I Lecture 3a 2024 6 / 23



- also

P(X2 = j)
TTP
= ∑

i2S
P(X2 = j jX1 = i)P(X1 = i)

TH
= ∑

i2S
pijP(X1 = i) = ∑

i2S
pij ∑

k2S
υkpki

Fubini
= ∑

k2S
υk ∑

i2S
pkipij = ∑

k2S
υkp

(2)
kj

where p(2)kj = ∑i2S pkipij = the k-th row of P times the j-th column of P

so (p(2)ij ) = PP = P
2 and so

(. . .P(X2 = j � 1),P(X2 = j),P(X2 = j + 1), . . .) = υP2

is the probability distribution of X2
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- also

p(2)kj = ∑
i2S
pkipij = ∑

i2S
P(X1 = i jX0 = k)P(X1 = j jX0 = i)

TH
= ∑

i2S
P(X1 = i jX0 = k)P(X2 = j jX1 = i)

MP
= ∑

i2S
P(X1 = i jX0 = k)P(X2 = j jX1 = i ,X0 = k)

below
= ∑

i2S
P(X1 = i ,X2 = j jX0 = k) = P(X2 = j jX0 = k)

which is the probability of going from state k to state j in two time steps
and so is a 2-step transition probability

- note the last step uses (multiplication rule for conditional prob.)

P(B jC )P(A jB \ C ) = P(B \ C )
P(C )

P(A\ B \ C )
P(B \ C ) = P(A\ B jC )
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- this can be generalized to give the distribution of Xn and the n-step
transition probabilities

p(n)ij = P(Xn = j jX0 = i)
Proposition III.2 For Markov chain with transition probability matrix P

and initial prob. dist. ν, then (p(n)ij ) = P
n and

(. . .P(Xn = j � 1),P(Xn = j),P(Xn = j + 1), . . .) = υPn.

Proof: (by induction) True for n = 1 and the above argument gives the
inductive step. �
Example III.2 - suppose

S = f1, 2, 3, 4g,
υ = (1/4, 1/2, 1/8, 1/8),

P =

0BB@
0 1/3 1/2 1/6
1/3 0 1/2 1/6
1/6 1/6 0 2/3
1/3 1/3 1/3 0

1CCA
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- a nonnegative matrix where each row sums to 1 is called a stochastic
matrix and can serve as a transition matrix for a MC

- then for n = 10 the probability distribution of X10 is given by

υP10 = (0.2121419, 0.2121462, 0.3030114, 0.2727005)

and P10 is given by

0.2121699 0.2121530 0.3029984 0.2726787
0.2121530 0.2121699 0.3029984 0.2726787
0.2120860 0.2120860 0.3031143 0.2727137
0.2120977 0.2120977 0.3029867 0.2728179
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- obtained via R commands

#computing probabilities
r1=c(0,1/3,1/2,1/6)
r2=c(1/3,0,1/2,1/6)
r3=c(1/6,1/6,0,2/3)
r4=c(1/3,1/3,1/3,0)
P=rbind(r1,r2,r3,r4)
P
P10=P%*%P%*%P%*%P%*%P%*%P%*%P%*%P%*%P%*%P
P10
nu=t(c(1/4,1/2,1/8,1/8))
nu%*%P10
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note - if you want to start the chain in state i and then compute the
probabilities for its evolution then simply put υ = ei where ei is the row
vector with a 1 in the i-th place and 0�s elsewhere

- so putting υ = e1 then

e1P10 = (0.2121699, 0.212153, 0.3029984, 0.2726787)

- how about simulating from the chain? below is 100 steps, including
starting state, generated from this chain

[1] 2 3 4 3 4 2 1 2 4 1 3 4 1 3 4 2 4 2 1 2 3 2 1 2 1 2 4 1 3 4 1 2 3 4 3 4 2
[38] 1 3 1 4 1 3 4 2 1 2 3 4 2 1 2 3 4 2 3 4 1 3 2 4 1 2 3 4 3 4 1 2 1 4 1 3 4
[75] 1 3 4 1 2 1 3 2 1 3 4 1 2 1 3 4 2 1 4 1 3 1 3 4 1 3 4

computed using the R code
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#simulating n steps from the chain
n=100
state=rep(0,101)
#starting state
U=runif(1,0,1)
if(U < 1/4) {i=1}
if(U >= 1/4 & U < 3/4) {i=2}
if(U >= 3/4 & U < 7/8) {i=3}
if(U >= 7/8) {i=4}
state[1]=i
for (k in 1:100){
# generate next step
U=runif(1,0,1)
if(i==1){
if(U < 1/3) {j=2}
if(U >= 1/3 & U < 5/6) {j=3}
if(U >= 5/6) {j=4}
}
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if(i==2){
if(U < 1/3) {j=1}
if(U >= 1/3 & U < 5/6) {j=3}
if(U >= 5/6) {j=4}
}
if(i==3){
if(U < 1/6) {j=1}
if(U >= 1/6 & U < 1/3) {j=2}
if(U >= 1/4) {j=4}
}
if(i==4){
if(U < 1/3) {j=1}
if(U >= 1/3 & U < 2/3) {j=2}
if(U >= 2/3) {j=3}
}
state[k+1]=j
i=j
}
state �
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- suppose we want the distribution of

X̄n:m =
1
m

m�1
∑
i=0

Xn+i

for some n for which a closed form is di¢ cult (or impossible) to obtain

- can we approximate this by simulation say computing P (X̄n:m � x) for
various x?

- if X1,X2, . . . were i .i .d . then we would repeatedly generate the vector
(X1, . . . ,Xm), compute X̄1:m and determine the proportion of times
X̄1:m � x as the estimate
- but X1,X2, . . . are not i .i .d . for a Markov chain and so we would have to
repeatedly generate X0,X1, . . . ,Xn,Xn+1, . . . ,Xn+m�1 compute X̄n:m and
determine the proportion of times X̄n:m � x as the estimate
- if we can generate from the probability distribution of Xn�1, then can
instead generate Xn�1,Xn jXn�1,Xn+1 jXn, . . . ,Xn+m�1 jXn+m�2
- under some circumstances this can be made more e¢ icient when n is
large (to be discussed) and this is connected with issues of convergence of
the chain
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Example III.3 Random walks on Z

- suppose Z1,Z2, . . . are i .i .d . with distribution given by a probability
measure on Z, stat. ind. of Z0 also distributed on Z (the initial dist.)

- then the s.p. fXn : n 2 N0g given by Xn = ∑n
i=0 Zi is a random walk

with state space S =Z and

P(Xn = j jXn�1 = i ,Xn�2 = sn�2 . . . ,X0 = s0)
= P(Zn = j � i jXn�1 = i ,Xn�2 = sn�2, . . . ,X0 = s0)

and since Zn is stat. ind. of X0, . . . ,Xn�1
= P(Zn = j � i) = P(Z1 = j � i) = P(X1 = j jX0 = i)

and so this is a time homogeneous Markov chain with transition matrix
given by

(pij ) = (P(Z1 = j � i)) 2 RZ�Z

(all the rows of P are the same)
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- when Zi � 2Wi � 1 where Wi � Bernoulli(p) this is a simple random
walk (moves by increments/decrements of 1 at each step) and when
p = 1/2 it is called a symmetric simple random walk, then

pij =

8<:
0 ji � j j 6= 1
p j = i + 1
1� p j = i � 1

P =

0BBBBBBB@

. . . . . .

. . . p 0
. . . 1� p 0 p

. . .
0 1� p 0

. . . . . . . . .

1CCCCCCCA
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p(n)ij = P

 
n

∑
k=1

Zk = j � i
!

=

(
0 if n+ j � i not even
P
�

∑n
k=1Wk =

n+j�i
2

�
if n+ j � i even

=

(
0 if n+ j � i not even
( n
n+j�i
2
)p

n+j�i
2 (1� p)n� n+j�i

2 if n+ j � i 2 f0, 2, . . . , 2ng

since
n

∑
k=1

Wk � binomial(n, p) �
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Proposition III.3 For a Markov chain suppose
0 � l1 � � � � � lm , 0 � k1 � � � � � kn, then

P(Xkn+l1 ,...,Xkn+lm )(� jXk1 , . . . ,Xkn ) = P(Xkn+l1 ,...,Xkn+lm )(� jXkn )

so the probability distribution of the future is determined by the present
state.

Proof: We have that

P(Xkn+l1 = j1,Xkn+l2 = j2, . . . ,Xkn+lm = jlm jXk1 = ik1 , . . . ,Xkn = ikn )

=
P(Xk1 = ik1 , . . . ,Xkn = ikn ,Xkn+1 = j1,Xkn+2 = j2, . . . ,Xkn+lm = jlm )

P(Xk1 = ik1 , . . . ,Xkn = ikn )
.

Summing over

A =
�
(s0, s1, . . . , skn+lm ) : si 2 S with si �xed when

i 2 fk1, . . . , kn, kn + l1, . . . , kn + lmg

�
the numerator equals
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∑
A

P
�

X0 = s0,X1 = s1, . . . ,Xkn = skn ,
Xkn+1 = skn+1,Xkn+2 = skn+2, . . . ,Xkn+lm = skn+lm

�
MP
= ∑

A

P (X0 = s0,X1 = s1, . . . ,Xkn = skn , )�

P(Xkn+1 = skn+1,Xkn+2 = skn+2, . . . ,Xkn+lm = skn+lm jXkn = ikn )
= P(Xk1 = ik1 , . . . ,Xkn = ikn )�

P(Xkn+l1 = j1,Xkn+l2 = j2, . . . ,Xkn+lm = jlm jXkn = ikn )

and this gives the result. �
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Proposition III.4 (Chapman-Kolmogorov equations) For a Markov chain
and m, n, s 2 N0, then

(i) p(m+n)ij = ∑
k

p(m)ik p(n)kj

(ii) p(m+s+n)ij = ∑
k

∑
l

p(m)ik p(s)kl p
(n)
lj .

Proof: For (ii) we have

p(m+s+n)ij = P(Xm+s+n = j jX0 = i) and applying TTP
= ∑

k
∑
l

P(Xm+s+n = j jX0 = i ,Xm = k,Xm+s = l)�

P(Xm = k,Xm+s = l jX0 = i)
= ∑

k
∑
l

P(Xm+s+n = j jX0 = i ,Xm = k,Xm+s = l)�

P(Xm+s = l jX0 = i ,Xm = k)P(Xm = k jX0 = i)
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and by Prop. III.3

= ∑
k

∑
l

P(Xm+s+n = j jXm+s = l)�

P(Xm+s = l jXm = k)P(Xm = k jX0 = i)
and by TH

= ∑
k

∑
l

p(m)ik p(s)kl p
(n)
lj

and (i) follows similarly. �

Corollary III.5 (Chapman-Kolmogorov inequality) p(m+n)ij � p(m)ik p(n)kj for
any k.
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Exercises

III.1.1 Text 1.3.3

III.1.2 Text 1.3.97

III.1.3 Text 1.4.7

III.1.4 Prove part (i) of Prop. III.4.
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