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I11. Markov Chains

- consider probability model (Q), A, P) and X : (O, A) — (S,C) as a
random object so X(w) € S,C is a c-algebra on S and X~1C € A for
every C € C

- then (S, C, Px) is a probability model where Px(C) = P(X~1C) (see
PSPI notes)

- e.g., when (S,C) = (R¥, B¥) then we call X a random vector (variable
when k = 1)

- basically all the results we discussed for random vectors/variables also
apply to random objects except those that depend on S being Euclidean

Example 111.1
- § = set of all 2-dimensional similar triangles

- these "could" be as represented by the 3 angles as a (constrained and
largest to smallest) point in IR® but what is the significance of the cdf in
that case? B

Michael Evans University of Toronto https://Probability and Stochastic Processes | | Lect



- assume all random objects X are defined on the same underlying
probability space (0, A, P) and refer to S as the state space (in PSPI we
used the notation X for S but we'll follow the book)

- consider a stochastic process {X; : t € T} where the set T can be
totally ordered so that for t1,tp € T we have one of t; < tp,t; = t, or
t; > tp being true

- for example, T C R! and t corresponds to "time" but we can be more
general (e.g., distance, vertices in a graph by number of connecting edges)

- suppose we observe the values of X; for t < tg where we think of Xy, as
being the present "state" of the process

- then "roughly speaking" we call the process {X; : t € T} a Markov
process (MP) if for every s; >0,...,s, > 0and n, and C € CK

P((Xigtsi -+ Xgts,) € CIXe 1t < to) = P((Xegtsy -0 Xegts,) € C| Xyy)

- in other words the probability distribution of the future given the present
and past only depends on the present
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- note - if in addition P((Xg4s,---, Xig+s,) € C| Xz, ) only depends on
the time differences from tg, namely s, ..., s,, then this is a time
homogeneous (TH) Markov process, namely,

'D(<Xt0+51""'Xt0+Sn) € Clxto)

is the same for every ty, C € C"

- there are Gaussian processes that are time homogeneous Markov
processes (Brownian motion) but we restrict attention for now to
situations where S and T are required to be countable (so various
probability measures are discrete)
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111.1 Definition and Basic Computations

Definition 111.1 A stochastic process {X; : t € T} is a discrete time,
discrete space, time homogeneous Markov chain if:

(i) S is countable (typically represented as S C Z,C = power set),

(ii) T is countable (typically represented as T = Np),

(iii) there is an initial probability measure P(Xo = i) = v; fori € S,

(iv) Markov property (MP) Px,. (- | Xo, ..., Xn) = Px,,,(- | Xa) with
transition probabilities pjj = P(Xp41 = j| Xp, = i) for every n.
Proposition I11.1 For a MC the v;, pj; determine all the finite dimensional
distributions.

Proof:
P(Xo=1o,.... X0 =1in)
P(Xo =10, ... Xne1 = in—1)P(Xo =in | Xo =10, ..., Xno1 = in—1)
= P(Xo=1o,-, Xo—1 = in—1)Piy 1iy = +++ = VigPigiy * * * Pi_1i,- W

- note - when we use the terminology "Markov chain" hereafter we will
mean a s.p. that satisfies Definition Ill.1
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- note - this gives a valid definition of a stochastic process (via
Kolmogorov consistency and use }; v; = 1 and }_; p;j = 1 for each i)

- note - when § C Z, T = Ny the initial probabilty distribution can be
represented as a (possibly infinitely dimensional) row vector v and the
transition probabilities can be represented as a (possibly infinitely
dimensional) matrix with (7, j)-th element p;;, say P = (pj)

- then

N TTP . i .
PXi=j)'= Y PXo=)PX1=j|Xo=1i)=)_vipj
i€s ieS

which is the product of the vector v with the j-th column of P so
(o, P(X1=j—1),P(Xy =), P(X1 =j+1),...) =vP

is the probability distribution of X
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- also

P(Xa = J)

Py P(Xo = Xi = i)P(Xq = i)
€S

TH .

=Y pP(Xe=1)=Y_pj Y VkPxi

€S €S keS

Fubini

=" 2 Uk 2 PkiPij = 2 Ukpkj
keS €S keS

where p,(j.) = )Y ics Pkipij = the k-th row of P times the j-th column of P

so (p,gg)) = PP = P? and so
(. PXo=j—1),P(X=j),P(Xa=j+1),...) = vP?

is the probability distribution of X;
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- also

=Y pupy =Y, P(Xi =i Xo = K)P(Xa = j| Xo = i)

ieS ieS

TH . . .
= ZP(X1:I|X0:/()P(X2 :j|X1:I)

ieS
Y PXi=i|X=KPXo=j|X =i X = k)

ieS
LY P(Xy =i, X = | Xo = k) = P(Xo = j | Xo = k)

ieS

which is the probability of going from state k to state j in two time steps
and so is a 2-step transition probability

- note the last step uses (multiplication rule for conditional prob.)

P(BNC) P(ANBNC)

P(BIC)P(AIBNC) = =5~ pgrc

=P(ANB| ()
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- this can be generalized to give the distribution of X, and the n-step
transition probabilities

oy = P(Xy = | X =)
Proposition 1.2 For Markov chain with transition probability matrix P

and initial prob. dist. v, then (p")) = P" and

(. PXy=j—1),P(Xy=J),P(Xy =j+1),...) = vP".

Proof: (by induction) True for n = 1 and the above argument gives the
inductive step. W

Example 111.2 - suppose

S = {1,2,3,4},

v = (1/4,1/2,1/8,1/8),

0 1/3 1/2 1/6
1/3 0 1/2 1/6
1/6 1/6 0 2/3
1/3 1/3 1/3 0

Michael Evans University of Toronto https://Probability and Stochastic Processes | | Lect



- a nonnegative matrix where each row sums to 1 is called a stochastic
matrix and can serve as a transition matrix for a MC

- then for n = 10 the probability distribution of Xiq is given by
vP% = (0.2121419, 0.2121462, 0.3030114, 0.2727005)
and P9 is given by

0.2121699 0.2121530 0.3029984 0.2726787
0.2121530 0.2121699 0.3029984 0.2726787
0.2120860 0.2120860 0.3031143 0.2727137
0.2120977 0.2120977 0.3029867 0.2728179
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- obtained via R commands

#computing probabilities
r1=c(0,1/3,1/2,1/6)
r2=c(1/3,0,1/2,1/6)
r3=c(1/6,1/6,0,2/3)
r4=c(1/3,1/3,1/3,0)
P=rbind(rl1,r2,r3,r4)

P
P10=PY%*%P%*%P%*hP%h*%Ph* % P%*hPY*%P%* Y P%* %P
P10
nu=t(c(1/4,1/2,1/8,1/8))
nu’*%P10
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note - if you want to start the chain in state / and then compute the
probabilities for its evolution then simply put v = e; where ¢; is the row
vector with a 1 in the j-th place and 0's elsewhere

- so putting v = e; then
e P9 = (0.2121699, 0.212153, 0.3029984, 0.2726787)

- how about simulating from the chain? below is 100 steps, including
starting state, generated from this chain

[1]12343421241341342421232121241341234342
[38] 1314134212342123423413241234341214134
[75]134121321341213421413134134

computed using the R code
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#simulating n steps from the chain
n=100

state=rep(0,101)

#starting state
U=runif(1,0,1)

if(U < 1/4) {i=1}

if(U >= 1/4 & U < 3/4) {i=2}
if(U >= 3/4 & U < 7/8) {i=3}
if (U >= 7/8) {i=4}
state[1]=1

for (k in 1:100){

# generate next step
U=runif(1,0,1)

if (i==1){

if(U < 1/3) {j=2}

if(U >= 1/3 & U < 5/6) {j=3}
if (U >= 5/6) {j=4}

X
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if (i==2){

if (U < 1/3) {j=1}

if(U >= 1/3 & U < 5/6) {j=3}
if (U >= 5/6) {j=4}

+

if (i==3){

if(U < 1/6) {j=1}

if(U >= 1/6 & U < 1/3) {j=2}
if (U >= 1/4) {j=4}

}

if (i==4){

if(U < 1/3) {j=1}

if(U >= 1/3 & U < 2/3) {j=2}
if (U >= 2/3) {j=3%}

}

state[k+1]=j

i=]

}

state W

Michael Evans University of Toronto https://Probability and Stochastic Processes | | Lect



- suppose we want the distribution of

nm— Z Xn—H

for some n for which a closed form is dlfﬁcult (or impossible) to obtain

- can we approximate this by simulation say computing P (Xj.;m < x) for
various x?

-if X1, Xa, ... were i.i.d. then we would repeatedly generate the vector
(X1,..., Xm), compute X1i.m and determine the proportion of times
Xi:m < x as the estimate

- but X7, X5, ... are not i.i.d. for a Markov chain and so we would have to
repeatedly generate Xo, X1,..., Xp, Xot1, -+, Xotm—1 compute X,.,, and
determine the proportion of times X,.,, < x as the estimate

- if we can generate from the probability distribution of X,,_1, then can
instead generate X,_1, Xp | Xo—1, Xnt1 | Xov -« -y Xotm—1 | Xotm—2

- under some circumstances this can be made more effiicient when n is
large (to be discussed) and this is connected with issues of convergence of
the chain
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Example 111.3 Random walks on Z

- suppose 71,2y, ... are i.i.d. with distribution given by a probability
measure on Z, stat. ind. of Zj also distributed on Z (the initial dist.)

- then the s.p. {X, : n € Np} given by X, =Y. Z is a random walk
with state space S =Z and

P(Xy=j|Xp-1 =1, Xn—2="51-2..., X0 =50)

= P(Z,=j —i|Xoo1 =1, Xp—2 =5p-2,..., Xo =)
and since Z, is stat. ind. of Xg, ..., X,_1

— P(Zy=j—i)=P(Zi=j—0) = P(X =] | X = i)

and so this is a time homogeneous Markov chain with transition matrix
given by
(by) = (P(21 == i) € R%**

(all the rows of P are the same)
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- when Z; ~ 2W; — 1 where W; ~ Bernoulli(p) this is a simple random
walk (moves by increments/decrements of 1 at each step) and when
p=1/2 it is called a symmetric simple random walk, then

0 i—jl#1
pij = P J=i+1
1—p j=i—1

p 0
P = 1—-p 0 p

0 1—-p O
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(n) .

n . .

p;; =P E Zy=j—1
k=1

0 if n4j — i not even
():k Wy = "+f—’) if n+j— i even
0 - ifn+4j—inot even
T GG A—p) T ifn+j—ie{02...,2n)
2

n
since ) _ Wi ~ binomial(n, p) B
k=1
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Proposition 111.3 For a Markov chain suppose
0<h <+ <0< kg <+ < ky, then

P(an+’1 """ an+/m) <. ’ Xkl' Tty Xk"> = P(an+/1 """ an+/m) (' ’ Xk")

so the probability distribution of the future is determined by the present
state.

Proof: We have that
P(Xkytry = 1 Xkyty = 20+ s Xkl = di | Xk = ks -+ Xky = k)

P(Xi, = ity Xiy = lkys Xkyt1 = J1. Xiyr2 = 20+« -2 Xiythyy = Ji)
P(Xk1 e R ik,,)

Summing over

A= (50,51, .. "Skn+Im) 15 € S with s; fixed when
- R U A Sy |

the numerator equals
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= Siyt1s Xky+2 = Skp+2

1= )>M

( XoZSo,Xlzsl,...,Xk = Sk, )
P n n
Xip+1

. ’an+/m = Skn“l’lrn
P

ZP(XOZSQ,Xl :51,...,an :Skn,) X
A

P(Xk,+1 = Sky+1: Xiy+2 = Skp+2,

s Xyt = Skotly | Xy = ik,)
= P(Xk1 = Ik, -

..,an = ik,,) X
P(Xi, 41, = J1, Xy, = J20 -+ o Xythy, = Jiy | Xky = Ik,)
and this gives the result.

Michael Evans University of Toronto http.

robability and Stochastic Processes | | Lect



Proposition 111.4 (Chapman-Kolmogorov equations) For a Markov chain
and m, n,s € Ny, then

(i) p" " = prkm)p,((f)

(m+s+n) (n)
(ii) pjj ZZP,/( Pk/ P

Proof: For (ii) we have

(m-+s+n)
Um n_P

ZZP(Xm+s+n :j’XO = inm = k,Xm—i-s = /> X
k

P(Xm = k, Xmys =1 X0 = i)
Y ) P(Xmisin =4 Xo =i, X =k, Xipys = ) X
k 1

P(Xmys=1]Xo =i, Xn = k)P(Xy = k| Xo = i)

(Xatsn = J | Xo = i) and applying TTP
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and by Prop. 111.3
= ZZP(Xm+s+n :j|Xm+s = /) X
ko1

P(Xm-i-s:”xm:k)P(Xm:k|X0:i)
and by TH

= ;X/)Pfkm oy

and (i) follows similarly. Il

Corollary 111.5 (Chapman-Kolmogorov inequality) p,g-mﬂ) > p,.(,in)p,({;.’) for

any k.
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Exercises

I11.1.1 Text 1.3.3

[11.1.2 Text 1.3.97

I11.1.3 Text 1.4.7

[11.1.4 Prove part (i) of Prop. Il1.4.
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