# Probability and Stochastic Processes I I Lecture 3a 

Michael Evans<br>University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

## III. Markov Chains

- consider probability model $(\Omega, \mathcal{A}, P)$ and $X:(\Omega, \mathcal{A}) \rightarrow(\mathcal{S}, \mathcal{C})$ as a random object so $X(\omega) \in \mathcal{S}, \mathcal{C}$ is a $\sigma$-algebra on $\mathcal{S}$ and $X^{-1} C \in \mathcal{A}$ for every $C \in \mathcal{C}$
- then $\left(\mathcal{S}, \mathcal{C}, P_{X}\right)$ is a probability model where $P_{X}(C)=P\left(X^{-1} C\right)$ (see PSPI notes)
- e.g., when $(\mathcal{S}, \mathcal{C})=\left(\mathbb{R}^{k}, \mathcal{B}^{k}\right)$ then we call $X$ a random vector (variable when $k=1$ )
- basically all the results we discussed for random vectors/variables also apply to random objects except those that depend on $\mathcal{S}$ being Euclidean


## Example III. 1

- $\mathcal{S}=$ set of all 2-dimensional similar triangles
- these "could" be as represented by the 3 angles as a (constrained and largest to smallest) point in $\mathbb{R}^{3}$ but what is the significance of the cdf in that case?
- assume all random objects $X$ are defined on the same underlying probability space $(\Omega, \mathcal{A}, P)$ and refer to $\mathcal{S}$ as the state space (in PSPI we used the notation $\mathcal{X}$ for $\mathcal{S}$ but we'll follow the book)
- consider a stochastic process $\left\{X_{t}: t \in T\right\}$ where the set $T$ can be totally ordered so that for $t_{1}, t_{2} \in T$ we have one of $t_{1}<t_{2}, t_{1}=t_{2}$ or $t_{1}>t_{2}$ being true
- for example, $T \subset \mathbb{R}^{1}$ and $t$ corresponds to "time" but we can be more general (e.g., distance, vertices in a graph by number of connecting edges)
- suppose we observe the values of $X_{t}$ for $t \leq t_{0}$ where we think of $X_{t_{0}}$ as being the present "state" of the process
- then "roughly speaking" we call the process $\left\{X_{t}: t \in T\right\}$ a Markov process (MP) if for every $s_{1} \geq 0, \ldots, s_{n} \geq 0$ and $n$, and $C \in \mathcal{C}^{k}$
$P\left(\left(X_{t_{0}+s_{1}}, \ldots, X_{t_{0}+s_{n}}\right) \in C \mid X_{t}: t \leq t_{0}\right)=P\left(\left(X_{t_{0}+s_{1}}, \ldots, X_{t_{0}+s_{n}}\right) \in C \mid X_{t_{0}}\right)$
- in other words the probability distribution of the future given the present and past only depends on the present
- note - if in addition $P\left(\left(X_{t_{0}+s_{1}}, \ldots, X_{t_{0}+s_{n}}\right) \in C \mid X_{t_{0}}\right)$ only depends on the time differences from $t_{0}$, namely $s_{1}, \ldots, s_{n}$, then this is a time homogeneous (TH) Markov process, namely,

$$
P\left(\left(X_{t_{0}+s_{1}}, \ldots, X_{t_{0}+s_{n}}\right) \in C \mid X_{t_{0}}\right)
$$

is the same for every $t_{0}, C \in \mathcal{C}^{n}$

- there are Gaussian processes that are time homogeneous Markov processes (Brownian motion) but we restrict attention for now to situations where $\mathcal{S}$ and $T$ are required to be countable (so various probability measures are discrete)


## III. 1 Definition and Basic Computations

Definition III. 1 A stochastic process $\left\{X_{t}: t \in T\right\}$ is a discrete time, discrete space, time homogeneous Markov chain if:
(i) $\mathcal{S}$ is countable (typically represented as $\mathcal{S} \subset \mathbb{Z}, \mathcal{C}=$ power set),
(ii) $T$ is countable (typically represented as $T=\mathbb{N}_{0}$ ),
(iii) there is an initial probability measure $P\left(X_{0}=i\right)=v_{i}$ for $i \in \mathcal{S}$,
(iv) Markov property (MP) $P_{X_{n+1}}\left(\cdot \mid X_{0}, \ldots, X_{n}\right)=P_{X_{n+1}}\left(\cdot \mid X_{n}\right)$ with transition probabilities $p_{i j}=P\left(X_{n+1}=j \mid X_{n}=i\right)$ for every $n$.

Proposition III. 1 For a MC the $v_{i}, p_{i j}$ determine all the finite dimensional distributions.

Proof:

$$
\begin{aligned}
& P\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
= & P\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) P\left(X_{n}=i_{n} \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) \\
= & P\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right) p_{i_{n-1} i_{n}}=\ldots=v_{i_{0}} p_{i_{1} i_{1}} \cdots p_{i_{n-1} i_{n} .}
\end{aligned}
$$

- note - when we use the terminology "Markov chain" hereafter we will mean a s.p. that satisfies Definition III. 1
- note - this gives a valid definition of a stochastic process (via Kolmogorov consistency and use $\sum_{i} v_{i}=1$ and $\sum_{j} p_{i j}=1$ for each $i$ )
- note - when $\mathcal{S} \subset \mathbb{Z}, T=\mathbb{N}_{0}$ the initial probabilty distribution can be represented as a (possibly infinitely dimensional) row vector $v$ and the transition probabilities can be represented as a (possibly infinitely dimensional) matrix with $(i, j)$-th element $p_{i j}$, say $P=\left(p_{i j}\right)$
- then

$$
P\left(X_{1}=j\right) \stackrel{T T P}{=} \sum_{i \in \mathcal{S}} P\left(X_{0}=i\right) P\left(X_{1}=j \mid X_{0}=i\right)=\sum_{i \in \mathcal{S}} v_{i} p_{i j}
$$

which is the product of the vector $v$ with the $j$-th column of $P$ so

$$
\left(\ldots, P\left(X_{1}=j-1\right), P\left(X_{1}=j\right), P\left(X_{1}=j+1\right), \ldots\right)=v P
$$

is the probability distribution of $X_{1}$

- also

$$
\begin{aligned}
& P\left(X_{2}=j\right) \\
& \stackrel{\text { TITP }}{=} \sum_{i \in \mathcal{S}} P\left(X_{2}=j \mid X_{1}=i\right) P\left(X_{1}=i\right) \\
& \stackrel{\text { TH }}{=} \sum_{i \in \mathcal{S}} p_{i j} P\left(X_{1}=i\right)=\sum_{i \in \mathcal{S}} p_{i j} \sum_{k \in \mathcal{S}} v_{k} p_{k i} \\
& \stackrel{\text { FUbini }}{=} \sum_{k \in \mathcal{S}} v_{k} \sum_{i \in \mathcal{S}} p_{k i} p_{i j}=\sum_{k \in \mathcal{S}} v_{k} p_{k j}^{(2)}
\end{aligned}
$$

where $p_{k j}^{(2)}=\sum_{i \in \mathcal{S}} p_{k i} p_{i j}=$ the $k$-th row of $P$ times the $j$-th column of $P$ so $\left(p_{i j}^{(2)}\right)=P P=P^{2}$ and so

$$
\left(\ldots P\left(X_{2}=j-1\right), P\left(X_{2}=j\right), P\left(X_{2}=j+1\right), \ldots\right)=v P^{2}
$$

is the probability distribution of $X_{2}$

- also

$$
\begin{aligned}
& p_{k j}^{(2)}=\sum_{i \in \mathcal{S}} p_{k i} p_{i j}=\sum_{i \in \mathcal{S}} P\left(X_{1}=i \mid X_{0}=k\right) P\left(X_{1}=j \mid X_{0}=i\right) \\
& \stackrel{T H}{=} \sum_{i \in \mathcal{S}} P\left(X_{1}=i \mid X_{0}=k\right) P\left(X_{2}=j \mid X_{1}=i\right) \\
& \stackrel{M P}{=} \sum_{i \in \mathcal{S}} P\left(X_{1}=i \mid X_{0}=k\right) P\left(X_{2}=j \mid X_{1}=i, X_{0}=k\right) \\
& \stackrel{\text { below }}{=} \sum_{i \in \mathcal{S}} P\left(X_{1}=i, X_{2}=j \mid X_{0}=k\right)=P\left(X_{2}=j \mid X_{0}=k\right)
\end{aligned}
$$

which is the probability of going from state $k$ to state $j$ in two time steps and so is a 2-step transition probability

- note the last step uses (multiplication rule for conditional prob.)

$$
P(B \mid C) P(A \mid B \cap C)=\frac{P(B \cap C)}{P(C)} \frac{P(A \cap B \cap C)}{P(B \cap C)}=P(A \cap B \mid C)
$$

- this can be generalized to give the distribution of $X_{n}$ and the $n$-step transition probabilities

$$
p_{i j}^{(n)}=P\left(X_{n}=j \mid X_{0}=i\right)
$$

Proposition III. 2 For Markov chain with transition probability matrix $P$ and initial prob. dist. $v$, then $\left(p_{i j}^{(n)}\right)=P^{n}$ and

$$
\left(\ldots P\left(X_{n}=j-1\right), P\left(X_{n}=j\right), P\left(X_{n}=j+1\right), \ldots\right)=v P^{n}
$$

Proof: (by induction) True for $n=1$ and the above argument gives the inductive step.
Example III. 2 - suppose

$$
\begin{aligned}
\mathcal{S} & =\{1,2,3,4\}, \\
v & =(1 / 4,1 / 2,1 / 8,1 / 8), \\
P & =\left(\begin{array}{cccc}
0 & 1 / 3 & 1 / 2 & 1 / 6 \\
1 / 3 & 0 & 1 / 2 & 1 / 6 \\
1 / 6 & 1 / 6 & 0 & 2 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
\end{aligned}
$$

- a nonnegative matrix where each row sums to 1 is called a stochastic matrix and can serve as a transition matrix for a MC
- then for $n=10$ the probability distribution of $X_{10}$ is given by

$$
v P^{10}=(0.2121419,0.2121462,0.3030114,0.2727005)
$$

and $P^{10}$ is given by

$$
\begin{array}{llll}
0.2121699 & 0.2121530 & 0.3029984 & 0.2726787 \\
0.2121530 & 0.2121699 & 0.3029984 & 0.2726787 \\
0.2120860 & 0.2120860 & 0.3031143 & 0.2727137 \\
0.2120977 & 0.2120977 & 0.3029867 & 0.2728179
\end{array}
$$

- obtained via R commands

```
#computing probabilities
r1=c(0,1/3,1/2,1/6)
r2=c(1/3,0,1/2,1/6)
r3=c(1/6,1/6,0,2/3)
r4=c(1/3,1/3,1/3,0)
P=rbind(r1,r2,r3,r4)
P
P10=P%*%P%*%P%*%P%*%P%*%%P%*%P%*%%P%*%P%*%%P
P10
nu=t(c(1/4,1/2,1/8,1/8))
nu%*%P10
```

note - if you want to start the chain in state $i$ and then compute the probabilities for its evolution then simply put $v=e_{i}$ where $e_{i}$ is the row vector with a 1 in the $i$-th place and 0 's elsewhere

- so putting $v=e_{1}$ then

$$
e_{1} P^{10}=(0.2121699,0.212153,0.3029984,0.2726787)
$$

- how about simulating from the chain? below is 100 steps, including starting state, generated from this chain
[1] 2343421241341342421232121241341234342 [38] 1314134212342123423413241234341214134
[75] 134121321341213421413134134
computed using the R code

```
#simulating n steps from the chain
n=100
state=rep (0,101)
#starting state
U=runif (1,0,1)
if(U < 1/4) {i=1}
if(U >= 1/4 & U < 3/4) {i=2}
if(U >= 3/4 & U < 7/8) {i=3}
if(U >= 7/8) {i=4}
state[1]=i
for (k in 1:100){
# generate next step
U=runif(1,0,1)
if(i==1){
if(U < 1/3) {j=2}
if(U >= 1/3 & U < 5/6) {j=3}
if(U >= 5/6) {j=4}
}
```

```
if(i==2){
if(U < 1/3) {j=1}
if(U >= 1/3 & U < 5/6) {j=3}
if(U >= 5/6) {j=4}
}
if(i==3){
if(U < 1/6) {j=1}
if(U >= 1/6 & U < 1/3) {j=2}
if(U >= 1/4) {j=4}
}
if(i==4){
if(U < 1/3) {j=1}
if(U >= 1/3 & U < 2/3) {j=2}
if(U >= 2/3) {j=3}
}
state[k+1]=j
i=j
}
state
```

- suppose we want the distribution of

$$
\bar{X}_{n: m}=\frac{1}{m} \sum_{i=0}^{m-1} X_{n+i}
$$

for some $n$ for which a closed form is difficult (or impossible) to obtain

- can we approximate this by simulation say computing $P\left(\bar{X}_{n: m} \leq x\right)$ for various $x$ ?
- if $X_{1}, X_{2}, \ldots$ were i.i.d. then we would repeatedly generate the vector $\left(X_{1}, \ldots, X_{m}\right)$, compute $\bar{X}_{1: m}$ and determine the proportion of times $\bar{X}_{1: m} \leq x$ as the estimate
- but $X_{1}, X_{2}, \ldots$ are not i.i.d. for a Markov chain and so we would have to repeatedly generate $X_{0}, X_{1}, \ldots, X_{n}, X_{n+1}, \ldots, X_{n+m-1}$ compute $\bar{X}_{n: m}$ and determine the proportion of times $\bar{X}_{n: m} \leq x$ as the estimate
- if we can generate from the probability distribution of $X_{n-1}$, then can instead generate $X_{n-1}, X_{n}\left|X_{n-1}, X_{n+1}\right| X_{n}, \ldots, X_{n+m-1} \mid X_{n+m-2}$
- under some circumstances this can be made more effiicient when $n$ is large (to be discussed) and this is connected with issues of convergence of the chain


## Example III. 3 Random walks on $\mathbb{Z}$

- suppose $Z_{1}, Z_{2}, \ldots$ are i.i.d. with distribution given by a probability measure on $\mathbb{Z}$, stat. ind. of $Z_{0}$ also distributed on $\mathbb{Z}$ (the initial dist.)
- then the s.p. $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ given by $X_{n}=\sum_{i=0}^{n} Z_{i}$ is a random walk with state space $\mathcal{S}=\mathbb{Z}$ and

$$
\begin{aligned}
& P\left(X_{n}=j \mid X_{n-1}=i, X_{n-2}=s_{n-2} \ldots, X_{0}=s_{0}\right) \\
= & P\left(Z_{n}=j-i \mid X_{n-1}=i, X_{n-2}=s_{n-2}, \ldots, X_{0}=s_{0}\right) \\
& \text { and since } Z_{n} \text { is stat. ind. of } X_{0}, \ldots, X_{n-1} \\
= & P\left(Z_{n}=j-i\right)=P\left(Z_{1}=j-i\right)=P\left(X_{1}=j \mid X_{0}=i\right)
\end{aligned}
$$

and so this is a time homogeneous Markov chain with transition matrix given by

$$
\left(p_{i j}\right)=\left(P\left(Z_{1}=j-i\right)\right) \in \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}
$$

(all the rows of $P$ are the same)

- when $Z_{i} \sim 2 W_{i}-1$ where $W_{i} \sim \operatorname{Bernoulli}(p)$ this is a simple random walk (moves by increments/decrements of 1 at each step) and when $p=1 / 2$ it is called a symmetric simple random walk, then

$$
\begin{aligned}
p_{i j} & =\left\{\begin{array}{llll}
0 & |i-j| \neq 1 \\
p & j=i+1 \\
1-p & j=i-1
\end{array}\right. \\
P & =\left(\begin{array}{ccccc} 
& \ddots & \ddots & \\
& \ddots & p & 0 & \\
\ddots & 1-p & 0 & p & \ddots \\
& 0 & 1-p & 0 & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& p_{i j}^{(n)}=P\left(\sum_{k=1}^{n} Z_{k}=j-i\right) \\
= & \begin{cases}0 & \text { if } n+j-i \text { not even } \\
P\left(\sum_{k=1}^{n} W_{k}=\frac{n+j-i}{2}\right) & \text { if } n+j-i \text { even }\end{cases} \\
= & \begin{cases}0 & \text { if } n+j-i \text { not even } \\
\left(\frac{n+j-i}{2}\right) p^{n+j-i} \\
\frac{n+1}{2}(1-p)^{n-\frac{n+j-i}{2}} & \text { if } n+j-i \in\{0,2, \ldots, 2 n\}\end{cases} \\
& \text { since } \sum_{k=1}^{n} W_{k} \sim \operatorname{binomial}(n, p) \square
\end{aligned}
$$

Proposition III. 3 For a Markov chain suppose $0 \leq I_{1} \leq \cdots \leq I_{m}, 0 \leq k_{1} \leq \cdots \leq k_{n}$, then

$$
P_{\left(X_{k_{n}+l_{1}}, \ldots, X_{\left.k_{n}+l_{m}\right)}\right.}\left(\cdot \mid X_{k_{1}}, \ldots, X_{k_{n}}\right)=P_{\left(X_{k_{n}+l_{1}}, \ldots, X_{\left.k_{n}+l_{m}\right)}\right.}\left(\cdot \mid X_{k_{n}}\right)
$$

so the probability distribution of the future is determined by the present state.

Proof: We have that

$$
\begin{aligned}
& P\left(X_{k_{n}+l_{1}}=j_{1}, X_{k_{n}+l_{2}}=j_{2}, \ldots, X_{k_{n}+l_{m}}=j_{m} \mid X_{k_{1}}=i_{k_{1}}, \ldots, X_{k_{n}}=i_{k_{n}}\right) \\
& =\frac{P\left(X_{k_{1}}=i_{k_{1}}, \ldots, X_{k_{n}}=i_{k_{n}}, X_{k_{n}+1}=j_{1}, X_{k_{n}+2}=j_{2}, \ldots, X_{k_{n}+l_{m}}=j_{m}\right)}{P\left(X_{k_{1}}=i_{k_{1}}, \ldots, X_{k_{n}}=i_{k_{n}}\right)} .
\end{aligned}
$$

Summing over

$$
A=\left\{\begin{array}{c}
\left(s_{0}, s_{1}, \ldots, s_{k_{n}+I_{m}}\right): s_{i} \in \mathcal{S} \text { with } s_{i} \text { fixed when } \\
i \in\left\{k_{1}, \ldots, k_{n}, k_{n}+I_{1}, \ldots, k_{n}+I_{m}\right\}
\end{array}\right\}
$$

the numerator equals

$$
\begin{aligned}
& \quad \sum_{A} P\binom{X_{0}=s_{0}, X_{1}=s_{1}, \ldots, X_{k_{n}}=s_{k_{n}},}{X_{k_{n}+1}=s_{k_{n}+1}, X_{k_{n}+2}=s_{k_{n}+2}, \ldots, X_{k_{n}+l_{m}}=s_{k_{n}+l_{m}}} \\
& \stackrel{M P}{=} \sum_{A} P\left(X_{0}=s_{0}, X_{1}=s_{1}, \ldots, X_{k_{n}}=s_{k_{n}},\right) \times \\
& \quad P\left(X_{k_{n}+1}=s_{k_{n}+1}, X_{k_{n}+2}=s_{k_{n}+2}, \ldots, X_{k_{n}+l_{m}}=s_{k_{n}+l_{m}} \mid X_{k_{n}}=i_{k_{n}}\right) \\
& =P\left(X_{K_{1}}=i_{\left.k_{1}, \ldots, X_{k_{n}}=i_{k_{n}}\right) \times} \quad P\left(X_{k_{n}+l_{1}}=j_{1}, X_{k_{n}+l_{2}}=j_{2}, \ldots, X_{k_{n}+l_{m}}=j_{l_{m}} \mid X_{k_{n}}=i_{k_{n}}\right)\right.
\end{aligned}
$$

and this gives the result. ■

Proposition III. 4 (Chapman-Kolmogorov equations) For a Markov chain and $m, n, s \in \mathbb{N}_{0}$, then

$$
\begin{aligned}
\text { (i) } p_{i j}^{(m+n)} & =\sum_{k} p_{i k}^{(m)} p_{k j}^{(n)} \\
\text { (ii) } p_{i j}^{(m+s+n)} & =\sum_{k} \sum_{l} p_{i k}^{(m)} p_{k l}^{(s)} p_{l j}^{(n)}
\end{aligned}
$$

Proof: For (ii) we have

$$
\begin{aligned}
& p_{i j}^{(m+s+n)}=P\left(X_{m+s+n}=j \mid X_{0}=i\right) \text { and applying TTP } \\
= & \sum_{k} \sum_{l} P\left(X_{m+s+n}=j \mid X_{0}=i, X_{m}=k, X_{m+s}=I\right) \times \\
& P\left(X_{m}=k, X_{m+s}=I \mid X_{0}=i\right) \\
= & \sum_{k} \sum_{l} P\left(X_{m+s+n}=j \mid X_{0}=i, X_{m}=k, X_{m+s}=I\right) \times \\
& P\left(X_{m+s}=I \mid X_{0}=i, X_{m}=k\right) P\left(X_{m}=k \mid X_{0}=i\right)
\end{aligned}
$$

and by Prop. III. 3

$$
\begin{aligned}
= & \sum_{k} \sum_{l} P\left(X_{m+s+n}=j \mid X_{m+s}=I\right) \times \\
& P\left(X_{m+s}=I \mid X_{m}=k\right) P\left(X_{m}=k \mid X_{0}=i\right) \\
& \text { and by TH } \\
= & \sum_{k} \sum_{l} p_{i k}^{(m)} p_{k l}^{(s)} p_{l j}^{(n)}
\end{aligned}
$$

and (i) follows similarly.
Corollary III. 5 (Chapman-Kolmogorov inequality) $p_{i j}^{(m+n)} \geq p_{i k}^{(m)} p_{k j}^{(n)}$ for any $k$.

## Exercises

III.1.1 Text 1.3.3
III.1.2 Text 1.3.97
III.1.3 Text 1.4.7
III.1.4 Prove part (i) of Prop. III.4.

