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II. Convergence

- various modes of convergence, and their relationships, were discussed in
PSPI and we review these here but for random vectors and establish some
useful results

Suppose Xn is a sequence of random vectors and X is a random vector all
de�ned wrt probability space (Ω,A,P) mapping into Rk .

1. Convergence in Distribution (weak convergence): Xn
d! X if

limn!∞ PXn (B) = PX(B) for every continuity set B 2 Bk of PX (if
PX(∂B) = 0 then B is a continuity set)

- for k = 1 then ∂(a, b] = fa, bg and (a, b] is a continuity set of PX when
PX (fag) = PX (fbg) = 0 so a and b are continuity points of FX

- also Xn
d! X i¤ FXn (x)! FX(x) at all continuity points for FX (see van

der Vaart (1998) Asymptotic Statistics)
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Proposition II.1 (Continuous mapping theorem for convergence in

distribution) If Xn
d! X and g : Rk ! Rl is continuous, then

g(Xn)
d! g(X).

Proof: Suppose B 2 Bl is a continuity set for the distribution of g(X).
Then

0 = P(g(X) 2 ∂B) = P(X 2 g�1(∂B)) � P(X 2 ∂g�1B)

since ∂g�1B � g�1(∂B) for a continuous g (see below). Therefore g�1B
is a continuity set for X which implies

lim
n!∞

P(g(Xn) 2 B) = lim
n!∞

P(Xn 2 g�1B) = P(X 2 g�1B) =P(g(X) 2 B)

which establishes the result. �
- if x 2 ∂g�1B, by de�nition for any open set O with x 2 O, then
O \ g�1B 6= φ and O \ (g�1B)c = O \ g�1Bc 6= φ

- so for any open ball Bε(g(x)) then Bε(g(x)) \ B 6= φ since
g�1(Bε(g(x)) \ B) = g�1Bε(g(x)) \ g�1B 6= φ as x 2 g�1Bε(g(x))
and g�1Bε(g(x)) is open, similarly Bε(g(x)) \ Bc 6= φ and so g(x) 2 ∂B
which implies x 2 g�1(∂B)
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- CLT holds for random vectors, namely, X1,X2, . . . i .i .d .� P with mean µ
and variance Σ, then

p
n

 
1
n

n

∑
i=1
Xi � µ

!
d! X �Nk (0,Σ)

Example II.1
- if Xn

d! X � Nk (µ,Σ), then we know g(Xn) is approximately
distributed like g(X) but this doesn�t tell us the approximate distribution
(but we can simulate from the distribution of g(X) if we can simulate
from the distribution of X) �

- recall from PSPI that Yn
d! c i¤ Yn

P! c
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Proposition II.2 If Xn
d! X and Wn

P! 0, then Wn +Xn
d! X.

Proof: Let ε > 0 and x be a cty point for FX. Then

P(Wn +Xn � x)
= P(Xn � x�Wn, jjWn jj � ε) + P(Xn � x�Wn, jjWn jj > ε)

� P(Xn � x+ ε1) + P(jjWn jj > ε) and

P(Xn � x� ε1, jjWn jj � ε)

= P(Xn � x� ε1)� P(Xn � x� ε1, jjWn jj > ε)

� P(Wn +Xn � x).

We can choose ε s.t. x� ε1 are cty points of FX. Now
P(Xn � x� ε1, jjWn jj > ε) � P(jjWn jj > ε)! 0 and so

FX(x� ε1) � lim inf P(Wn +Xn � x)
� lim supP(Wn +Xn � x) � FX(x+ ε1)

and since ε can be chosen arbitrarily small and x is a cty point of FX, the
result is proved. �
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Proposition II.3 If Xn
d! X and Yn

d! Y (i) it is not generally true that
(Xn,Yn)

d! (X,Y) (ii) but if Y is degenerate at c then this is true.

Proof: (i) If (X ,Y )t � N2 (0,I ), then X � N(0, 1),Y � N(0, 1). Now
putting Xn = X ,Yn = X for all n, then Xn

d! X ,Yn
d! Y but for all n�

Xn
Yn

�
� N2

�
0,
�
1 1
1 1

��
6= N2 (0,I ) .

(ii) We have

P(jj(Xn,Yn)� (Xn, c)jj > ε) = P(jjYn � cjj > ε)! 0

and so Wn = (Xn,Yn)� (Xn, c)
P! 0 and clearly (Xn, c)

d! (X, c).
Therefore, by Prop. II.2 (Xn,Yn) =Wn + (Xn, c)

d! (X, c). �
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Corollary II.4 (Slutsky�s Theorem) If Xn
d! X and Yn

d! c, then (i)
Xn +Yn

d! X+ c (ii) YtnXn
d! ctX. (iii) If Xn

d! X and Yn
d! c , then

provided c 6= 0, Xn/Yn
d! X/c .

Proof: The functions g(x, y) = x+ y, g(x, y) = ytx are continuous and
g(x , y) = x/y is continuous provided y 6= 0. The continuous mapping
theorem then gives the result. �
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De�nition A sequence fXn : n 2 Ng of random vectors is bounded in
probability if for every ε > 0 there is a constant M such that

sup
n
P(jjXn jj > M) < ε.

Proposition II.5 If Xn
d! X, then fXn : n 2 Ng is bounded in probability.

Proof: Let ε > 0. Choose M such that P(jjXjj � M) < ε/2 and such
that fjjXjj � Mg is a continuity set for PX. Then, since

lim
n!∞

P(jjXn jj � M) = P(jjXjj � M),

there exists nε such that for all n > nε then P(jjXn jj � M) < ε. Now
choose M 0 > M and such that P(jjXn jj � M 0) < ε for n = 1, . . . , nε.
This implies that supn P(jjXn jj > M 0) < ε and the result is proven. �
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Proposition II.6 (The delta theorem) Suppose rn(Xn � µ)
d! X for some

real sequence rn ! ∞ and g : Rk ! Rl is continuously di¤erentiable at µ
with derivative

G (µ) =

 
∂gi (x)

∂xj

����
x=µ

!
2 Rl�k ,

then rn(g(Xn)� g(µ)) d! G (µ)X.

Proof: By Lemma II.2 the sequence rn(Xn � µ) is bounded in probability
and so for given δ > 0 there exists M such that
P(jjXn � µjj > M/rn) < δ for every n. This implies that

limn!∞ P(jjXn � µjj > ε) = 0 so Xn
P! µ. Since g is continuously

di¤erentiable at µ this implies G (Xn)
P! G (µ). Taking the �rst term of a

Taylor expansion with remainder of g about µ gives

g(Xn) = g(µ)+G (µ�(Xn))(Xn � µ)

for some point µ�(Xn) on the line segment joining Xn to µ. Then
jjµ�(Xn)� µjj � jjXn � µjj so
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P(jjµ�(Xn)� µjj > ε) � P(jjXn � µjj > ε)! 0

as n! ∞, then µ�(Xn)
P! µ which implies G (µ�(Xn))

P! G (µ).
Therefore, by Slutsky�s Theorem (generalized)

rn(g(Xn)� g(µ)) = G (µ(Xn))rn(Xn � µ)
d! G (µ)X.

�
Corollary II.7 (Asymptotic normality) Suppose
rn(Xn � µ)

d! X � Nk (0,Σ), then for g satisfying the delta theorem

rn(g(Xn)� g(µ)) d! Nl (0,G (µ)ΣG t (µ)).
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Example II.2
- suppose X1, . . . ,Xn is an i .i .d . sequence from a distribution with mean µ
and variance σ2

- then by the CLT
p
n(X̄ � µ)

d! N(0, σ2)

- let g(x) = cos x so G (x) = sin x and by the delta theorem
p
n(cos(X̄ )� cos(µ)) d! N(0, (sin µ)2σ2)

- or g(x) = x2 with G (x) = 2x so by the delta theorem
p
n(X̄ 2 � µ2)

d! N(0, 4µ2σ2) �
- note - if G (µ) = 0 the delta theorem is still valid but not very useful as
the approximating distribution is degenerate

- in such a case an approximation can be worked out based on a higher
order Taylor expansion, for example, in Example II.2 with µ = 0, then
p
n(X̄ 2 � µ2) =

p
nX̄ 2

d! 0 but

nX̄ 2 = (
p
nX̄ )2 = σ2(

p
nX̄/σ)2

d! σ2W

where W � chi-squared(1)
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2. Convergence in Probability: Xn
P! X if for every ε > 0

lim
n!∞

P(jjXn �Xjj > ε) = 0

where jjxjj =
n

∑k
i=1 x

2
i

o1/2
is the Euclidean norm on Rk

Proposition II.8 Xn
P! X i¤ Xin

P! Xi for each i = 1, . . . , k.

Proof: Suppose Xn
P! X, then P(jXin � Xi j > ε) � P(jjXn �Xjj > ε)

which implies Xin
P! Xi . Now suppose Xin

P! Xi for each i = 1, . . . , k.
Then

P(jjXn �Xjj > ε) � P(maxfjX1n � X1j, . . . , jXkn � Xk jg > ε/
p
k)

= P([ki=1fjXin � Xi j > ε/
p
kg) �

k

∑
i=1
P(jXin � Xi j > ε/

p
k)! 0

as n! ∞. �
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Proposition II.9 (Continuous mapping theorem for convergence in

probability) If Xn
P! X and g : Rk ! Rl is continuous, then

g(Xn)
P! g(X).

Proof: Let ε, ε0 > 0. Since Xn
P! X we have Xn

d! X and so fXng is
bounded in probability by Proposition II.2. So there exists M such that
P(jjXn jj > M) < ε0/2 for every n and P(jjXjj > M) < ε0/2. Now
C = fx : jjxjj � Mg is compact and so there exists δ > 0 s.t.
jjx� yjj < δ implies jjg(x)� g(y)jj < ε for all x, y 2C .Therefore,

P(jjg(Xn)� g(X)jj > ε)

= P(jjg(Xn)� g(X)jj > ε and Xn,X 2 C ) +
P(jjg(Xn)� g(X)jj > ε and Xn or X /2 C )

� P(jjXn)�Xjj � δ) + P(jjXn jj > M) + P(jjXjj > M)
� P(jjXn)�Xjj � δ) + ε0

! ε0 as n! ∞

and this implies the result. �
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3. Convergence with Probability 1 (convergence almost surely):

Xn
wp1! X if P(limn!∞ Xn = X) = 1

Proposition II.10 (Continuous mapping theorem for convergence wp1) If

Xn
wp1! X and g : Rk ! Rl is continuous, then g(Xn)

wp1! g(X).
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4. Convergence in mean of order r : Xn
r! X (also denoted as Xn

Lr!
X) if limn!∞ E

�
∑k
i=1 jXin � Xi jr

�
= 0

- r = 1 (convergence in mean) and r = 2 (convergence in mean square)
are the most important cases

Proposition II.11 For both convergence wp1 and convergence in mean of
order r convergence of Xn to X occurs i¤ Xin converges to Xi for all
i = 1, . . . , k.
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5. Relationships

- as for r.v.�s we have

Xn
wp1! X =) Xn

P! X =) Xn
d! X

r > s then Xn
r! X =) Xn

s! X

Xn
1! X =) Xn

P! X

Xn
d! X; Xn

P! X; Xn
wp1! X

Xn
1! X; Xn

wp1! X
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Example II.3 Xn
P! X; Xn

wp1! X and Xn
1! X; Xn

wp1! X

- let ω � Uniform(0, 1)

- de�ne
X1 = I[0,1/2](ω),X2 = I(1/2,1](ω)
X3= I [0,1/4](ω),X 4= I (1/4,1/2](ω),X 5= I (1/2,3/4](ω),X 6= I (3/4,1](ω)
...
- then P(jXn � 0j > ε) = P(Xn > ε)! 0 as n! ∞ so Xn

P! 0

- but limn!∞ Xn(ω) doesn�t exist as for any ω 2 [0, 1] and N there is
n0, n1 > N s.t. Xn0(ω) = 0,Xn1(ω) = 1 so convergence wp1 doesn�t hold

- also E (jXn � 0j) = E (Xn) = P(Xn = 1)! 0 as n! ∞ �
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Exercises

II.1 Prove that if Xn
d! X then FXn (x)! FX(x) at all continuity points x

for FX.

II.2 Prove that if Xn
d! X then Xin

d! Xi .

II.3 Suppose X1, . . . ,Xn is an i .i .d . sequence from a distribution with
�nite �rst 4 moments µ1, µ2, µ3, µ4. Prove that

p
n
� 1

n ∑n
i=1 Xi � µ1

1
n ∑n

i=1 X
2
i � µ2

�
d! N2

��
0
0

�
,

�
µ2 � µ21 µ3 � µ1µ2

µ3 � µ1µ2 µ4 � µ22

��
.

Using the function g(x , y) = y � x2 determine the asymptotic disribution
of S2 = 1

n ∑n
i=1(Xi � X̄ )2 = 1

n ∑n
i=1 X

2
i � X̄ 2 and express the asymptotic

variance in terms of the 4th central moment.

II.4 Prove Proposition II.10.

II.5 Prove Proposition II.11.
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