Probability and Stochastic Processes II Lecture 2

Michael Evans
University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

II. Convergence

- various modes of convergence, and their relationships, were discussed in PSPI and we review these here but for random vectors and establish some useful results

Suppose \mathbf{X}_{n} is a sequence of random vectors and \mathbf{X} is a random vector all defined wrt probability space (Ω, \mathcal{A}, P) mapping into \mathbb{R}^{k}.

1. Convergence in Distribution (weak convergence): $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ if $\lim _{n \rightarrow \infty} P_{\mathbf{X}_{n}}(B)=P_{\mathbf{X}}(B)$ for every continuity set $B \in \mathcal{B}^{k}$ of $P_{\mathbf{X}}$ (if $P_{\mathbf{X}}(\partial B)=0$ then B is a continuity set)

- for $k=1$ then $\partial(a, b]=\{a, b\}$ and $(a, b]$ is a continuity set of P_{X} when $P_{X}(\{a\})=P_{X}(\{b\})=0$ so a and b are continuity points of F_{X}
- also $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ iff $F_{\mathbf{X}_{n}}(\mathbf{x}) \rightarrow F_{\mathbf{X}}(\mathbf{x})$ at all continuity points for $F_{\mathbf{X}}$ (see van der Vaart (1998) Asymptotic Statistics)

Proposition II. 1 (Continuous mapping theorem for convergence in distribution) If $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\prime}$ is continuous, then $g\left(\mathbf{X}_{n}\right) \xrightarrow{d} g(\mathbf{X})$.
Proof: Suppose $B \in \mathcal{B}^{\prime}$ is a continuity set for the distribution of $g(\mathbf{X})$.
Then

$$
0=P(g(\mathbf{X}) \in \partial B)=P\left(\mathbf{X} \in g^{-1}(\partial B)\right) \geq P\left(\mathbf{X} \in \partial g^{-1} B\right)
$$

since $\partial g^{-1} B \subset g^{-1}(\partial B)$ for a continuous g (see below). Therefore $g^{-1} B$ is a continuity set for \mathbf{X} which implies
$\lim _{n \rightarrow \infty} P\left(g\left(\mathbf{X}_{n}\right) \in B\right)=\lim _{n \rightarrow \infty} P\left(\mathbf{X}_{n} \in g^{-1} B\right)=P\left(\mathbf{X} \in g^{-1} B\right)=P(g(\mathbf{X}) \in B)$
which establishes the result.

- if $x \in \partial g^{-1} B$, by definition for any open set O with $x \in O$, then $O \cap g^{-1} B \neq \phi$ and $O \cap\left(g^{-1} B\right)^{c}=O \cap g^{-1} B^{c} \neq \phi$
- so for any open ball $B_{\epsilon}(g(x))$ then $B_{\epsilon}(g(x)) \cap B \neq \phi$ since $g^{-1}\left(B_{\epsilon}(g(x)) \cap B\right)=g^{-1} B_{\epsilon}(g(x)) \cap g^{-1} B \neq \phi$ as $x \in g^{-1} B_{\epsilon}(g(x))$ and $g^{-1} B_{\epsilon}(g(x))$ is open, similarly $B_{\epsilon}(g(x)) \cap B^{c} \neq \phi$ and so $g(x) \in \partial B$ which implies $x \in g^{-1}(\partial B)$
- CLT holds for random vectors, namely, $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim} P$ with mean μ and variance Σ, then

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right) \xrightarrow{d} \mathbf{X} \sim N_{k}(0, \Sigma)
$$

Example II. 1

- if $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X} \sim N_{k}(\boldsymbol{\mu}, \Sigma)$, then we know $g\left(\mathbf{X}_{n}\right)$ is approximately distributed like $g(\mathbf{X})$ but this doesn't tell us the approximate distribution (but we can simulate from the distribution of $g(\mathbf{X})$ if we can simulate from the distribution of \mathbf{X}) \square
- recall from PSPI that $\mathbf{Y}_{n} \xrightarrow{d} \mathbf{c}$ iff $\mathbf{Y}_{n} \xrightarrow{P} \mathbf{c}$

Proposition II. 2 If $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ and $\mathbf{W}_{n} \xrightarrow{P} \mathbf{0}$, then $\mathbf{W}_{n}+\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$.
Proof: Let $\epsilon>0$ and \mathbf{x} be a cty point for $F_{\mathbf{X}}$. Then

$$
\begin{aligned}
& P\left(\mathbf{W}_{n}+\mathbf{X}_{n} \leq \mathbf{x}\right) \\
= & P\left(\mathbf{X}_{n} \leq \mathbf{x}-\mathbf{W}_{n},\left\|\mathbf{W}_{n}\right\| \leq \epsilon\right)+P\left(\mathbf{X}_{n} \leq \mathbf{x}-\mathbf{W}_{n},\left\|\mathbf{W}_{n}\right\|>\epsilon\right) \\
\leq & P\left(\mathbf{X}_{n} \leq \mathbf{x}+\epsilon \mathbf{1}\right)+P\left(\left\|\mathbf{W}_{n}\right\|>\epsilon\right) \text { and } \\
& P\left(\mathbf{X}_{n} \leq \mathbf{x}-\epsilon \mathbf{1},\left\|\mathbf{W}_{n}\right\| \leq \epsilon\right) \\
= & P\left(\mathbf{X}_{n} \leq \mathbf{x}-\epsilon \mathbf{1}\right)-P\left(\mathbf{X}_{n} \leq \mathbf{x}-\epsilon \mathbf{1},\left\|\mathbf{W}_{n}\right\|>\epsilon\right) \\
\leq & P\left(\mathbf{W}_{n}+\mathbf{X}_{n} \leq \mathbf{x}\right) .
\end{aligned}
$$

We can choose ϵ s.t. $\mathbf{x} \pm \epsilon \mathbf{1}$ are cty points of $F_{\mathbf{X}}$. Now $P\left(\mathbf{X}_{n} \leq \mathbf{x}-\epsilon \mathbf{1},\left\|\mathbf{W}_{n}\right\|>\epsilon\right) \leq P\left(\left\|\mathbf{W}_{n}\right\|>\epsilon\right) \rightarrow 0$ and so

$$
\begin{aligned}
F_{\mathbf{X}}(\mathbf{x}-\epsilon \mathbf{1}) & \leq \liminf P\left(\mathbf{W}_{n}+\mathbf{X}_{n} \leq \mathbf{x}\right) \\
& \leq \lim \sup P\left(\mathbf{W}_{n}+\mathbf{X}_{n} \leq \mathbf{x}\right) \leq F_{\mathbf{X}}(\mathbf{x}+\epsilon \mathbf{1})
\end{aligned}
$$

and since ϵ can be chosen arbitrarily small and \mathbf{x} is a cty point of $F_{\mathbf{X}}$, the result is proved.

Proposition II. 3 If $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ and $\mathbf{Y}_{n} \xrightarrow{d} \mathbf{Y}$ (i) it is not generally true that $\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right) \xrightarrow{d}(\mathbf{X}, \mathbf{Y})$ (ii) but if \mathbf{Y} is degenerate at \mathbf{c} then this is true. Proof: (i) If $(X, Y)^{t} \sim N_{2}(\mathbf{0}, I)$, then $X \sim N(0,1), Y \sim N(0,1)$. Now putting $X_{n}=X, Y_{n}=X$ for all n, then $X_{n} \xrightarrow{d} X, Y_{n} \xrightarrow{d} Y$ but for all n

$$
\binom{X_{n}}{Y_{n}} \sim N_{2}\left(\mathbf{0},\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right) \neq N_{2}(\mathbf{0}, I) .
$$

(ii) We have

$$
P\left(\left\|\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right)-\left(\mathbf{X}_{n}, \mathbf{c}\right)\right\|>\epsilon\right)=P\left(\left\|\mathbf{Y}_{n}-\mathbf{c}\right\|>\epsilon\right) \rightarrow \mathbf{0}
$$

and so $\mathbf{W}_{n}=\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right)-\left(\mathbf{X}_{n}, \mathbf{c}\right) \xrightarrow{P} \mathbf{0}$ and clearly $\left(\mathbf{X}_{n}, \mathbf{c}\right) \xrightarrow{d}(\mathbf{X}, \mathbf{c})$.
Therefore, by Prop. II. $2\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right)=\mathbf{W}_{n}+\left(\mathbf{X}_{n}, \mathbf{c}\right) \xrightarrow{d}(\mathbf{X}, \mathbf{c})$.

Corollary II. 4 (Slutsky's Theorem) If $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ and $\mathbf{Y}_{n} \xrightarrow{d} \mathbf{c}$, then (i) $\mathbf{X}_{n}+\mathbf{Y}_{n} \xrightarrow{d} \mathbf{X}+\mathbf{c}$ (ii) $\mathbf{Y}_{n}^{t} \mathbf{X}_{n} \xrightarrow{d} \mathbf{c}^{t} \mathbf{X}$. (iii) If $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ and $Y_{n} \xrightarrow{d} c$, then provided $c \neq 0, \mathbf{X}_{n} / Y_{n} \xrightarrow{d} \mathbf{X} / c$.
Proof: The functions $g(\mathbf{x}, \mathbf{y})=\mathbf{x}+\mathbf{y}, g(\mathbf{x}, \mathbf{y})=\mathbf{y}^{t} \mathbf{x}$ are continuous and $g(x, y)=\mathbf{x} / y$ is continuous provided $y \neq 0$. The continuous mapping theorem then gives the result. \square

Definition A sequence $\left\{\mathbf{X}_{n}: n \in \mathbb{N}\right\}$ of random vectors is bounded in probability if for every $\epsilon>0$ there is a constant M such that

$$
\sup _{n} P\left(\left\|\mathbf{X}_{n}\right\|>M\right)<\epsilon
$$

Proposition II. 5 If $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$, then $\left\{\mathbf{X}_{n}: n \in \mathbb{N}\right\}$ is bounded in probability. Proof: Let $\epsilon>0$. Choose M such that $P(\|\mathbf{X}\| \geq M)<\epsilon / 2$ and such that $\{\|\mathbf{X}\| \geq M\}$ is a continuity set for $P_{\mathbf{X}}$. Then, since

$$
\lim _{n \rightarrow \infty} P\left(\left\|\mathbf{X}_{n}\right\| \geq M\right)=P(\|\mathbf{X}\| \geq M)
$$

there exists n_{ϵ} such that for all $n>n_{\epsilon}$ then $P\left(\left\|\mathbf{X}_{n}\right\| \geq M\right)<\epsilon$. Now choose $M^{\prime}>M$ and such that $P\left(\left\|\mathbf{X}_{n}\right\| \geq M^{\prime}\right)<\epsilon$ for $n=1, \ldots, n_{\epsilon}$. This implies that $\sup _{n} P\left(\left\|\mathbf{X}_{n}\right\|>M^{\prime}\right)<\epsilon$ and the result is proven.

Proposition II. 6 (The delta theorem) Suppose $r_{n}\left(\mathbf{X}_{n}-\mu\right) \xrightarrow{d} \mathbf{X}$ for some real sequence $r_{n} \rightarrow \infty$ and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\prime}$ is continuously differentiable at μ with derivative

$$
G(\mu)=\left(\left.\frac{\partial g_{i}(\mathbf{x})}{\partial x_{j}}\right|_{\mathbf{x}=\mu}\right) \in \mathbb{R}^{1 \times k},
$$

then $r_{n}\left(g\left(\mathbf{X}_{n}\right)-g(\mu)\right) \xrightarrow{d} G(\mu) \mathbf{X}$.
Proof: By Lemma II. 2 the sequence $r_{n}\left(\mathbf{X}_{n}-\mu\right)$ is bounded in probability and so for given $\delta>0$ there exists M such that $P\left(\left\|\mathbf{X}_{n}-\mu\right\|>M / r_{n}\right)<\delta$ for every n. This implies that $\lim _{n \rightarrow \infty} P\left(\left\|\mathbf{X}_{n}-\boldsymbol{\mu}\right\|>\epsilon\right)=0$ so $\mathbf{X}_{n} \xrightarrow{P} \boldsymbol{\mu}$. Since g is continuously differentiable at μ this implies $G\left(\mathbf{X}_{n}\right) \xrightarrow{P} G(\mu)$. Taking the first term of a Taylor expansion with remainder of g about μ gives

$$
g\left(\mathbf{X}_{n}\right)=g(\boldsymbol{\mu})+G\left(\boldsymbol{\mu}^{*}\left(\mathbf{X}_{\mathbf{n}}\right)\right)\left(\mathbf{X}_{n}-\boldsymbol{\mu}\right)
$$

for some point $\boldsymbol{\mu}^{*}\left(\mathbf{X}_{\mathbf{n}}\right)$ on the line segment joining \mathbf{X}_{n} to $\boldsymbol{\mu}$. Then $\left\|\boldsymbol{\mu}^{*}\left(\mathbf{X}_{\mathbf{n}}\right)-\boldsymbol{\mu}\right\| \leq\left\|\mathbf{X}_{n}-\boldsymbol{\mu}\right\|$ so

$$
P\left(\left\|\boldsymbol{\mu}^{*}\left(\mathbf{X}_{\mathbf{n}}\right)-\boldsymbol{\mu}\right\|>\epsilon\right) \leq P\left(\left\|\mathbf{X}_{\mathbf{n}}-\boldsymbol{\mu}\right\|>\epsilon\right) \rightarrow 0
$$

as $n \rightarrow \infty$, then $\boldsymbol{\mu}^{*}\left(\mathbf{X}_{\mathbf{n}}\right) \xrightarrow{P} \boldsymbol{\mu}$ which implies $G\left(\boldsymbol{\mu}^{*}\left(\mathbf{X}_{\mathbf{n}}\right)\right) \xrightarrow{P} G(\boldsymbol{\mu})$.
Therefore, by Slutsky's Theorem (generalized)

$$
r_{n}\left(g\left(\mathbf{X}_{n}\right)-g(\boldsymbol{\mu})\right)=G\left(\boldsymbol{\mu}\left(\mathbf{X}_{\mathbf{n}}\right)\right) r_{n}\left(\mathbf{X}_{n}-\boldsymbol{\mu}\right) \xrightarrow{d} G(\boldsymbol{\mu}) \mathbf{X} .
$$

Corollary II. 7 (Asymptotic normality) Suppose $r_{n}\left(\mathbf{X}_{n}-\boldsymbol{\mu}\right) \xrightarrow{d} \mathbf{X} \sim N_{k}(\mathbf{0}, \Sigma)$, then for g satisfying the delta theorem

$$
r_{n}\left(g\left(\mathbf{X}_{n}\right)-g(\boldsymbol{\mu})\right) \xrightarrow{d} N_{l}\left(\mathbf{0}, G(\boldsymbol{\mu}) \Sigma G^{t}(\boldsymbol{\mu})\right) .
$$

Example II. 2

- suppose X_{1}, \ldots, X_{n} is an i.i.d. sequence from a distribution with mean μ and variance σ^{2}
- then by the CLT $\sqrt{n}(\bar{X}-\mu) \xrightarrow{d} N\left(0, \sigma^{2}\right)$
- let $g(x)=\cos x$ so $G(x)=\sin x$ and by the delta theorem
$\sqrt{n}(\cos (\bar{X})-\cos (\mu)) \xrightarrow{d} N\left(0,(\sin \mu)^{2} \sigma^{2}\right)$
- or $g(x)=x^{2}$ with $G(x)=2 x$ so by the delta theorem
$\sqrt{n}\left(\bar{X}^{2}-\mu^{2}\right) \xrightarrow{d} N\left(0,4 \mu^{2} \sigma^{2}\right) \square$
- note - if $G(\boldsymbol{\mu})=\mathbf{0}$ the delta theorem is still valid but not very useful as the approximating distribution is degenerate
- in such a case an approximation can be worked out based on a higher order Taylor expansion, for example, in Example II. 2 with $\mu=0$, then $\sqrt{n}\left(\bar{X}^{2}-\mu^{2}\right)=\sqrt{n} \bar{X}^{2} \xrightarrow{d} 0$ but

$$
n \bar{X}^{2}=(\sqrt{n} \bar{X})^{2}=\sigma^{2}(\sqrt{n} \bar{X} / \sigma)^{2} \xrightarrow{d} \sigma^{2} W
$$

where W ~ chi-squared (1)
2. Convergence in Probability: $\mathbf{X}_{n} \xrightarrow{P} \mathbf{X}$ if for every $\epsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left\|\mathbf{X}_{n}-\mathbf{X}\right\|>\epsilon\right)=0
$$

where $\|\mathbf{x}\|=\left\{\sum_{i=1}^{k} x_{i}^{2}\right\}^{1 / 2}$ is the Euclidean norm on \mathbb{R}^{k}
Proposition II. $8 \mathbf{X}_{n} \xrightarrow{P} \mathbf{X}$ iff $X_{i n} \xrightarrow{P} X_{i}$ for each $i=1, \ldots, k$.
Proof: Suppose $\mathbf{X}_{n} \xrightarrow{P} \mathbf{X}$, then $P\left(\left|X_{i n}-X_{i}\right|>\epsilon\right) \leq P\left(\left\|\mathbf{X}_{n}-\mathbf{X}\right\|>\epsilon\right)$ which implies $X_{i n} \xrightarrow{P} X_{i}$. Now suppose $X_{i n} \xrightarrow{P} X_{i}$ for each $i=1, \ldots, k$. Then

$$
\begin{aligned}
& P\left(\left|\mid \mathbf{X}_{n}-\mathbf{X} \|>\epsilon\right) \leq P\left(\max \left\{\left|X_{1 n}-X_{1}\right|, \ldots,\left|X_{k n}-X_{k}\right|\right\}>\epsilon / \sqrt{k}\right)\right. \\
= & P\left(\cup_{i=1}^{k}\left\{\left|X_{i n}-X_{i}\right|>\epsilon / \sqrt{k}\right\}\right) \leq \sum_{i=1}^{k} P\left(\left|X_{i n}-X_{i}\right|>\epsilon / \sqrt{k}\right) \rightarrow 0
\end{aligned}
$$

$$
\text { as } n \rightarrow \infty .
$$

Proposition II. 9 (Continuous mapping theorem for convergence in probability) If $\mathbf{X}_{n} \xrightarrow{P} \mathbf{X}$ and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{l}$ is continuous, then $g\left(\mathbf{X}_{n}\right) \xrightarrow{P} g(\mathbf{X})$.

Proof: Let $\epsilon, \epsilon^{\prime}>0$. Since $\mathbf{X}_{n} \xrightarrow{P} \mathbf{X}$ we have $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ and so $\left\{\mathbf{X}_{n}\right\}$ is bounded in probability by Proposition II.2. So there exists M such that $P\left(\left\|\mathbf{X}_{n}\right\|>M\right)<\epsilon^{\prime} / 2$ for every n and $P(\|\mathbf{X}\|>M)<\epsilon^{\prime} / 2$. Now
$C=\{\mathbf{x}:\|\mathbf{x}\| \leq M\}$ is compact and so there exists $\delta>0$ s.t. $\|\mathbf{x}-\mathbf{y}\|<\delta$ implies $\|g(\mathbf{x})-g(\mathbf{y})\|<\epsilon$ for all $\mathbf{x}, \mathbf{y} \in C$. Therefore,

$$
\begin{aligned}
& P\left(\left\|g\left(\mathbf{X}_{n}\right)-g(\mathbf{X})\right\|>\epsilon\right) \\
= & P\left(\left\|g\left(\mathbf{X}_{n}\right)-g(\mathbf{X})\right\|>\epsilon \text { and } \mathbf{X}_{n}, \mathbf{X} \in C\right)+ \\
& P\left(\left\|g\left(\mathbf{X}_{n}\right)-g(\mathbf{X})\right\|>\epsilon \text { and } \mathbf{X}_{n} \text { or } \mathbf{X} \notin C\right) \\
\leq & \left.P\left(\| \mathbf{X}_{n}\right)-\mathbf{X} \| \geq \delta\right)+P\left(\left\|\mathbf{X}_{n}\right\|>M\right)+P(\|\mathbf{X}\|>M) \\
\leq & \left.P\left(\| \mathbf{X}_{n}\right)-\mathbf{X} \| \geq \delta\right)+\epsilon^{\prime} \\
\rightarrow & \epsilon^{\prime} \text { as } n \rightarrow \infty
\end{aligned}
$$

and this implies the result.
3. Convergence with Probability 1 (convergence almost surely): $\mathbf{X}_{n} \xrightarrow{w p 1} \mathbf{X}$ if $P\left(\lim _{n \rightarrow \infty} \mathbf{X}_{n}=\mathbf{X}\right)=1$

Proposition II. 10 (Continuous mapping theorem for convergence wp1) If $\mathbf{X}_{n} \xrightarrow{w p 1} \mathbf{X}$ and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\prime}$ is continuous, then $g\left(\mathbf{X}_{n}\right) \xrightarrow{\text { wp } 1} g(\mathbf{X})$.
4. Convergence in mean of order $r: \mathbf{X}_{n} \xrightarrow{r} \mathbf{X}$ (also denoted as $\mathbf{X}_{n} \xrightarrow{L^{r}}$
$\mathbf{X})$ if $\lim _{n \rightarrow \infty} E\left(\sum_{i=1}^{k}\left|X_{i n}-X_{i}\right|^{r}\right)=0$

- $r=1$ (convergence in mean) and $r=2$ (convergence in mean square) are the most important cases

Proposition II.11 For both convergence $w p 1$ and convergence in mean of order r convergence of \mathbf{X}_{n} to \mathbf{X} occurs iff $X_{i n}$ converges to X_{i} for all $i=1, \ldots, k$.

5. Relationships

- as for r.v.'s we have

$$
\begin{aligned}
& \mathbf{X}_{n} \xrightarrow{\text { wp } 1} \mathbf{X} \Longrightarrow \mathbf{X}_{n} \xrightarrow{P} \mathbf{X} \Longrightarrow \mathbf{X}_{n} \xrightarrow{d} \mathbf{X} \\
& r>s \text { then } \mathbf{X}_{n} \xrightarrow{r} \mathbf{X} \Longrightarrow \mathbf{X}_{n} \xrightarrow{s} \mathbf{X} \\
& \mathbf{X}_{n} \xrightarrow{1} \mathbf{X} \Longrightarrow \mathbf{X}_{n} \xrightarrow{P} \mathbf{X} \\
& \mathbf{X}_{n} \xrightarrow{d} \mathbf{X} \nRightarrow \mathbf{X}_{n} \xrightarrow{P} \mathbf{X} \nRightarrow \mathbf{X}_{n} \xrightarrow{\text { wp } 1} \mathbf{X} \\
& \mathbf{X}_{n} \xrightarrow{1} \mathbf{X} \nRightarrow \mathbf{X}_{n} \xrightarrow{\text { wp } 1} \mathbf{X}
\end{aligned}
$$

Example II. $3 \mathbf{X}_{n} \xrightarrow{P} \mathbf{X} \nRightarrow \mathbf{X}_{n} \xrightarrow{w p 1} \mathbf{X}$ and $\mathbf{X}_{n} \xrightarrow{1} \mathbf{X} \nRightarrow \mathbf{X}_{n} \xrightarrow{w p 1} \mathbf{X}$

- let $\omega \sim \operatorname{Uniform}(0,1)$
- define

$$
\begin{aligned}
& X_{1}=I_{[0,1 / 2]}(\omega), X_{2}=I_{(1 / 2,1]}(\omega) \\
& X_{3}=I_{[0,1 / 4]}(\omega), X_{4}=I_{(1 / 4,1 / 2]}(\omega), X_{5}=I_{(1 / 2,3 / 4]}(\omega), X_{6}=I_{(3 / 4,1]}(\omega)
\end{aligned}
$$

- then $P\left(\left|X_{n}-0\right|>\epsilon\right)=P\left(X_{n}>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ so $X_{n} \xrightarrow{P} 0$
- but $\lim _{n \rightarrow \infty} X_{n}(\omega)$ doesn't exist as for any $\omega \in[0,1]$ and N there is $n_{0}, n_{1}>N$ s.t. $X_{n_{0}}(\omega)=0, X_{n_{1}}(\omega)=1$ so convergence $w p 1$ doesn't hold
- also $E\left(\left|X_{n}-0\right|\right)=E\left(X_{n}\right)=P\left(X_{n}=1\right) \rightarrow 0$ as $n \rightarrow \infty \square$

Exercises

II. 1 Prove that if $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ then $F_{\mathbf{X}_{n}}(\mathbf{x}) \rightarrow F_{\mathbf{X}}(\mathbf{x})$ at all continuity points \mathbf{x} for $F_{\mathbf{X}}$.
II. 2 Prove that if $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}$ then $X_{i n} \xrightarrow{d} X_{i}$.
II. 3 Suppose X_{1}, \ldots, X_{n} is an i.i.d. sequence from a distribution with finite first 4 moments $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$. Prove that
$\sqrt{n}\binom{\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu_{1}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\mu_{2}} \xrightarrow{d} N_{2}\left(\binom{0}{0},\left(\begin{array}{cc}\mu_{2}-\mu_{1}^{2} & \mu_{3}-\mu_{1} \mu_{2} \\ \mu_{3}-\mu_{1} \mu_{2} & \mu_{4}-\mu_{2}^{2}\end{array}\right)\right)$.
Using the function $g(x, y)=y-x^{2}$ determine the asymptotic disribution of $S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}$ and express the asymptotic variance in terms of the 4th central moment.
II. 4 Prove Proposition II. 10.
II. 5 Prove Proposition II.11.

