Probability and Stochastic Processes II Lecture 2

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

Michael Evans University of Toronto https://Probability and Stochastic Processes II Lectur

2024 1 / 18

- various modes of convergence, and their relationships, were discussed in PSPI and we review these here but for random vectors and establish some useful results

Suppose X_n is a sequence of random vectors and X is a random vector all defined wrt probability space (Ω, \mathcal{A}, P) mapping into \mathbb{R}^k .

1. Convergence in Distribution (weak convergence): $X_n \xrightarrow{d} X$ if $\lim_{n\to\infty} P_{X_n}(B) = P_X(B)$ for every continuity set $B \in \mathcal{B}^k$ of P_X (if $P_X(\partial B) = 0$ then B is a continuity set)

- for k = 1 then $\partial(a, b] = \{a, b\}$ and (a, b] is a continuity set of P_X when $P_X(\{a\}) = P_X(\{b\}) = 0$ so a and b are continuity points of F_X

- also $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ iff $F_{\mathbf{X}_n}(\mathbf{x}) \to F_{\mathbf{X}}(\mathbf{x})$ at all continuity points for $F_{\mathbf{X}}$ (see van der Vaart (1998) Asymptotic Statistics)

ヘロン 不聞と 不良と 不良とう 間

Proposition II.1 (Continuous mapping theorem for convergence in distribution) If $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$ and $g : \mathbb{R}^k \to \mathbb{R}^l$ is continuous, then $g(\mathbf{X}_n) \stackrel{d}{\to} g(\mathbf{X})$.

Proof: Suppose $B \in \mathcal{B}^{l}$ is a continuity set for the distribution of $g(\mathbf{X})$. Then

$$0 = P(g(\mathbf{X}) \in \partial B) = P(\mathbf{X} \in g^{-1}(\partial B)) \ge P(\mathbf{X} \in \partial g^{-1}B)$$

since $\partial g^{-1}B \subset g^{-1}(\partial B)$ for a continuous g (see below). Therefore $g^{-1}B$ is a continuity set for **X** which implies

 $\lim_{n\to\infty} P(g(\mathbf{X}_n) \in B) = \lim_{n\to\infty} P(\mathbf{X}_n \in g^{-1}B) = P(\mathbf{X} \in g^{-1}B) = P(g(\mathbf{X}) \in B)$ which establishes the result.

- if $x \in \partial g^{-1}B$, by definition for any open set O with $x \in O$, then $O \cap g^{-1}B \neq \phi$ and $O \cap (g^{-1}B)^c = O \cap g^{-1}B^c \neq \phi$

- so for any open ball $B_{\varepsilon}(g(x))$ then $B_{\varepsilon}(g(x)) \cap B \neq \phi$ since $g^{-1}(B_{\varepsilon}(g(x)) \cap B) = g^{-1}B_{\varepsilon}(g(x)) \cap g^{-1}B \neq \phi$ as $x \in g^{-1}B_{\varepsilon}(g(x))$ and $g^{-1}B_{\varepsilon}(g(x))$ is open, similarly $B_{\varepsilon}(g(x)) \cap B^{c} \neq \phi$ and so $g(x) \in \partial B$ which implies $x \in g^{-1}(\partial B)$ - CLT holds for random vectors, namely, $X_1, X_2, \dots \stackrel{i.i.d.}{\sim} P$ with mean μ and variance Σ , then

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}-\mu\right)\stackrel{d}{\rightarrow}\mathbf{X}\sim N_{k}\left(0,\Sigma\right)$$

Example II.1

- if $\mathbf{X}_n \xrightarrow{d} \mathbf{X} \sim N_k(\mu, \Sigma)$, then we know $g(\mathbf{X}_n)$ is approximately distributed like $g(\mathbf{X})$ but this doesn't tell us the approximate distribution (but we can simulate from the distribution of $g(\mathbf{X})$ if we can simulate from the distribution of \mathbf{X})

- recall from PSPI that
$$\mathbf{Y}_n \xrightarrow{d} \mathbf{c}$$
 iff $\mathbf{Y}_n \xrightarrow{P} \mathbf{c}$

Proposition II.2 If $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ and $\mathbf{W}_n \xrightarrow{P} \mathbf{0}$, then $\mathbf{W}_n + \mathbf{X}_n \xrightarrow{d} \mathbf{X}$.

Proof: Let $\epsilon > 0$ and **x** be a cty point for $F_{\mathbf{X}}$. Then

$$P(\mathbf{W}_{n} + \mathbf{X}_{n} \leq \mathbf{x})$$

$$= P(\mathbf{X}_{n} \leq \mathbf{x} - \mathbf{W}_{n}, ||\mathbf{W}_{n}|| \leq \epsilon) + P(\mathbf{X}_{n} \leq \mathbf{x} - \mathbf{W}_{n}, ||\mathbf{W}_{n}|| > \epsilon)$$

$$\leq P(\mathbf{X}_{n} \leq \mathbf{x} + \epsilon \mathbf{1}) + P(||\mathbf{W}_{n}|| > \epsilon) \text{ and}$$

$$P(\mathbf{X}_{n} \leq \mathbf{x} - \epsilon \mathbf{1}, ||\mathbf{W}_{n}|| \leq \epsilon)$$

$$= P(\mathbf{X}_{n} \leq \mathbf{x} - \epsilon \mathbf{1}) - P(\mathbf{X}_{n} \leq \mathbf{x} - \epsilon \mathbf{1}, ||\mathbf{W}_{n}|| > \epsilon)$$

$$\leq P(\mathbf{W}_{n} + \mathbf{X}_{n} \leq \mathbf{x}).$$

We can choose ϵ s.t. $\mathbf{x} \pm \epsilon \mathbf{1}$ are cty points of $F_{\mathbf{X}}$. Now $P(\mathbf{X}_n \leq \mathbf{x} - \epsilon \mathbf{1}, ||\mathbf{W}_n|| > \epsilon) \leq P(||\mathbf{W}_n|| > \epsilon) \rightarrow 0$ and so

$$\begin{array}{rcl} F_{\mathbf{X}}(\mathbf{x} - \epsilon \mathbf{1}) & \leq & \liminf P(\mathbf{W}_n + \mathbf{X}_n \leq \mathbf{x}) \\ & \leq & \limsup P(\mathbf{W}_n + \mathbf{X}_n \leq \mathbf{x}) \leq F_{\mathbf{X}}(\mathbf{x} + \epsilon \mathbf{1}) \end{array}$$

and since ϵ can be chosen arbitrarily small and **x** is a cty point of $F_{\mathbf{X}}$, the result is proved.

Proposition II.3 If $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ and $\mathbf{Y}_n \xrightarrow{d} \mathbf{Y}$ (i) it is not generally true that $(\mathbf{X}_n, \mathbf{Y}_n) \xrightarrow{d} (\mathbf{X}, \mathbf{Y})$ (ii) but if \mathbf{Y} is degenerate at \mathbf{c} then this is true. Proof: (i) If $(X, Y)^t \sim N_2(\mathbf{0}, I)$, then $X \sim N(0, 1), Y \sim N(0, 1)$. Now putting $X_n = X, Y_n = X$ for all n, then $X_n \xrightarrow{d} X, Y_n \xrightarrow{d} Y$ but for all n

$$\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \sim N_2 \left(\mathbf{0}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right) \neq N_2 \left(\mathbf{0}, I \right).$$

(ii) We have

$$P(||(\mathbf{X}_n, \mathbf{Y}_n) - (\mathbf{X}_n, \mathbf{c})|| > \epsilon) = P(||\mathbf{Y}_n - \mathbf{c}|| > \epsilon) \to \mathbf{0}$$

and so $\mathbf{W}_n = (\mathbf{X}_n, \mathbf{Y}_n) - (\mathbf{X}_n, \mathbf{c}) \xrightarrow{P} \mathbf{0}$ and clearly $(\mathbf{X}_n, \mathbf{c}) \xrightarrow{d} (\mathbf{X}, \mathbf{c})$. Therefore, by Prop. II.2 $(\mathbf{X}_n, \mathbf{Y}_n) = \mathbf{W}_n + (\mathbf{X}_n, \mathbf{c}) \xrightarrow{d} (\mathbf{X}, \mathbf{c})$. **Corollary II.4** (*Slutsky's Theorem*) If $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$ and $\mathbf{Y}_n \stackrel{d}{\to} \mathbf{c}$, then (i) $\mathbf{X}_n + \mathbf{Y}_n \stackrel{d}{\to} \mathbf{X} + \mathbf{c}$ (ii) $\mathbf{Y}_n^t \mathbf{X}_n \stackrel{d}{\to} \mathbf{c}^t \mathbf{X}$. (iii) If $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$ and $Y_n \stackrel{d}{\to} \mathbf{c}$, then provided $c \neq 0$, $\mathbf{X}_n / Y_n \stackrel{d}{\to} \mathbf{X} / c$. Proof: The functions $g(\mathbf{x}, \mathbf{y}) = \mathbf{x} + \mathbf{y}$, $g(\mathbf{x}, \mathbf{y}) = \mathbf{y}^t \mathbf{x}$ are continuous and $g(x, y) = \mathbf{x} / y$ is continuous provided $y \neq 0$. The continuous mapping theorem then gives the result. **Definition** A sequence $\{X_n : n \in \mathbb{N}\}$ of random vectors is *bounded in* probability if for every $\epsilon > 0$ there is a constant M such that

$$\sup_{n} P(||\mathbf{X}_{n}|| > M) < \epsilon.$$

Proposition II.5 If $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$, then $\{\mathbf{X}_n : n \in \mathbb{N}\}$ is bounded in probability.

Proof: Let $\epsilon > 0$. Choose M such that $P(||\mathbf{X}|| \ge M) < \epsilon/2$ and such that $\{||\mathbf{X}|| \ge M\}$ is a continuity set for $P_{\mathbf{X}}$. Then, since

$$\lim_{n\to\infty} P(||\mathbf{X}_n|| \ge M) = P(||\mathbf{X}|| \ge M),$$

there exists n_{ϵ} such that for all $n > n_{\epsilon}$ then $P(||\mathbf{X}_n|| \ge M) < \epsilon$. Now choose M' > M and such that $P(||\mathbf{X}_n|| \ge M') < \epsilon$ for $n = 1, ..., n_{\epsilon}$. This implies that $\sup_n P(||\mathbf{X}_n|| > M') < \epsilon$ and the result is proven.

Proposition II.6 (*The delta theorem*) Suppose $r_n(\mathbf{X}_n - \mu) \xrightarrow{d} \mathbf{X}$ for some real sequence $r_n \to \infty$ and $g : \mathbb{R}^k \to \mathbb{R}^l$ is continuously differentiable at μ with derivative

$$G(\boldsymbol{\mu}) = \left(\left. \frac{\partial g_i(\mathbf{x})}{\partial x_j} \right|_{\mathbf{x} = \boldsymbol{\mu}} \right) \in \mathbb{R}^{l \times k},$$

then $r_n(g(\mathbf{X}_n) - g(\boldsymbol{\mu})) \xrightarrow{d} G(\boldsymbol{\mu})\mathbf{X}.$

Proof: By Lemma II.2 the sequence $r_n(\mathbf{X}_n - \boldsymbol{\mu})$ is bounded in probability and so for given $\delta > 0$ there exists M such that $P(||\mathbf{X}_n - \boldsymbol{\mu}|| > M/r_n) < \delta$ for every n. This implies that $\lim_{n\to\infty} P(||\mathbf{X}_n - \boldsymbol{\mu}|| > \epsilon) = 0$ so $\mathbf{X}_n \xrightarrow{P} \boldsymbol{\mu}$. Since g is continuously differentiable at $\boldsymbol{\mu}$ this implies $G(\mathbf{X}_n) \xrightarrow{P} G(\boldsymbol{\mu})$. Taking the first term of a Taylor expansion with remainder of g about $\boldsymbol{\mu}$ gives

$$g(\mathbf{X}_n) = g(\boldsymbol{\mu}) + G(\boldsymbol{\mu}^*(\mathbf{X}_n))(\mathbf{X}_n - \boldsymbol{\mu})$$

for some point $\mu^*(X_n)$ on the line segment joining X_n to μ . Then $||\mu^*(X_n) - \mu|| \le ||X_n - \mu||$ so

2024 9 / 18

$$\begin{split} P(||\boldsymbol{\mu}^*(\mathbf{X}_n) - \boldsymbol{\mu}|| > \boldsymbol{\epsilon}) &\leq P(||\mathbf{X}_n - \boldsymbol{\mu}|| > \boldsymbol{\epsilon}) \to 0\\ \text{as } n \to \infty, \text{ then } \boldsymbol{\mu}^*(\mathbf{X}_n) \xrightarrow{P} \boldsymbol{\mu} \text{ which implies } G(\boldsymbol{\mu}^*(\mathbf{X}_n)) \xrightarrow{P} G(\boldsymbol{\mu}).\\ \text{Therefore, by Slutsky's Theorem (generalized)} \end{split}$$

$$r_n(g(\mathbf{X}_n) - g(\boldsymbol{\mu})) = G(\boldsymbol{\mu}(\mathbf{X}_n))r_n(\mathbf{X}_n - \boldsymbol{\mu}) \xrightarrow{d} G(\boldsymbol{\mu})\mathbf{X}_n$$

.

Corollary II.7 (Asymptotic normality) Suppose $r_n(\mathbf{X}_n - \boldsymbol{\mu}) \xrightarrow{d} \mathbf{X} \sim N_k(\mathbf{0}, \boldsymbol{\Sigma})$, then for g satisfying the delta theorem

$$r_n(g(\mathbf{X}_n) - g(\boldsymbol{\mu})) \xrightarrow{d} N_l(\mathbf{0}, G(\boldsymbol{\mu})\Sigma G^t(\boldsymbol{\mu})).$$

Example II.2

- suppose X_1, \ldots, X_n is an *i.i.d.* sequence from a distribution with mean μ and variance σ^2

- then by the CLT $\sqrt{n}(\bar{X}-\mu) \xrightarrow{d} N(\mathbf{0},\sigma^2)$

- let
$$g(x) = \cos x$$
 so $G(x) = \sin x$ and by the delta theorem
 $\sqrt{n}(\cos(\bar{X}) - \cos(\mu)) \xrightarrow{d} N(0, (\sin \mu)^2 \sigma^2)$
- or $g(x) = x^2$ with $G(x) = 2x$ so by the delta theorem
 $\sqrt{n}(\bar{X}^2 - \mu^2) \xrightarrow{d} N(0, 4\mu^2 \sigma^2) \blacksquare$

- note - if $G(\mu) = \mathbf{0}$ the delta theorem is still valid but not very useful as the approximating distribution is degenerate

- in such a case an approximation can be worked out based on a higher order Taylor expansion, for example, in Example II.2 with $\mu = 0$, then $\sqrt{n}(\bar{X}^2 - \mu^2) = \sqrt{n}\bar{X}^2 \xrightarrow{d} 0$ but

$$n\bar{X}^2 = (\sqrt{n}\bar{X})^2 = \sigma^2(\sqrt{n}\bar{X}/\sigma)^2 \xrightarrow{d} \sigma^2 W$$

where $W \sim \text{chi-squared}(1)$

- ◆ 臣 → - ◆ 臣 → - -

2. Convergence in Probability: $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$ if for every $\epsilon > 0$

$$\lim_{n\to\infty} P(||\mathbf{X}_n-\mathbf{X}||>\epsilon)=0$$

where $||\mathbf{x}|| = \left\{\sum_{i=1}^{k} x_i^2\right\}^{1/2}$ is the Euclidean norm on \mathbb{R}^k

Proposition II.8 $X_n \xrightarrow{P} X$ iff $X_{in} \xrightarrow{P} X_i$ for each i = 1, ..., k.

Proof: Suppose $\mathbf{X}_n \xrightarrow{P} \mathbf{X}_i$ then $P(|X_{in} - X_i| > \epsilon) \le P(||\mathbf{X}_n - \mathbf{X}|| > \epsilon)$ which implies $X_{in} \xrightarrow{P} X_i$. Now suppose $X_{in} \xrightarrow{P} X_i$ for each i = 1, ..., k. Then

$$P(||\mathbf{X}_n - \mathbf{X}|| > \epsilon) \le P(\max\{|X_{1n} - X_1|, \dots, |X_{kn} - X_k|\} > \epsilon/\sqrt{k})$$
$$= P(\bigcup_{i=1}^k \{|X_{in} - X_i| > \epsilon/\sqrt{k}\}) \le \sum_{i=1}^k P(|X_{in} - X_i| > \epsilon/\sqrt{k}) \to 0$$

as $n \to \infty$.

Proposition II.9 (Continuous mapping theorem for convergence in probability) If $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$ and $g : \mathbb{R}^k \to \mathbb{R}^l$ is continuous, then $g(\mathbf{X}_n) \xrightarrow{P} g(\mathbf{X})$.

Proof: Let $\epsilon, \epsilon' > 0$. Since $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$ we have $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ and so $\{\mathbf{X}_n\}$ is bounded in probability by Proposition II.2. So there exists M such that $P(||\mathbf{X}_n|| > M) < \epsilon'/2$ for every n and $P(||\mathbf{X}|| > M) < \epsilon'/2$. Now $C = \{\mathbf{x} : ||\mathbf{x}|| \le M\}$ is compact and so there exists $\delta > 0$ s.t. $||\mathbf{x} - \mathbf{y}|| < \delta$ implies $||g(\mathbf{x}) - g(\mathbf{y})|| < \epsilon$ for all $\mathbf{x}, \mathbf{y} \in C$. Therefore,

$$P(||g(\mathbf{X}_n) - g(\mathbf{X})|| > \epsilon)$$

$$= P(||g(\mathbf{X}_n) - g(\mathbf{X})|| > \epsilon \text{ and } \mathbf{X}_n, \mathbf{X} \in C) +$$

$$P(||g(\mathbf{X}_n) - g(\mathbf{X})|| > \epsilon \text{ and } \mathbf{X}_n \text{ or } \mathbf{X} \notin C)$$

$$\leq P(||\mathbf{X}_n) - \mathbf{X}|| \ge \delta) + P(||\mathbf{X}_n|| > M) + P(||\mathbf{X}|| > M)$$

$$\leq P(||\mathbf{X}_n) - \mathbf{X}|| \ge \delta) + \epsilon'$$

$$\rightarrow \epsilon' \text{ as } n \to \infty$$

and this implies the result.

3. Convergence with Probability 1 (convergence almost surely): $\mathbf{X}_n \xrightarrow{wp1} \mathbf{X}$ if $P(\lim_{n \to \infty} \mathbf{X}_n = \mathbf{X}) = 1$

Proposition II.10 (*Continuous mapping theorem for convergence wp1*) If $\mathbf{X}_n \stackrel{wp1}{\to} \mathbf{X}$ and $g : \mathbb{R}^k \to \mathbb{R}^l$ is continuous, then $g(\mathbf{X}_n) \stackrel{wp1}{\to} g(\mathbf{X})$.

4. Convergence in mean of order $r : \mathbf{X}_n \xrightarrow{r} \mathbf{X}$ (also denoted as $\mathbf{X}_n \xrightarrow{L'} \mathbf{X}$) if $\lim_{n \to \infty} E\left(\sum_{i=1}^k |X_{in} - X_i|^r\right) = 0$

- r = 1 (convergence in mean) and r = 2 (convergence in mean square) are the most important cases

Proposition II.11 For both convergence wp1 and convergence in mean of order r convergence of X_n to X occurs iff X_{in} converges to X_i for all i = 1, ..., k.

5. Relationships

- as for r.v.'s we have

$$\begin{array}{c} \mathbf{X}_{n} \stackrel{wp1}{\to} \mathbf{X} \Longrightarrow \mathbf{X}_{n} \stackrel{P}{\to} \mathbf{X} \Longrightarrow \mathbf{X}_{n} \stackrel{d}{\to} \mathbf{X} \\ r > s \text{ then } \mathbf{X}_{n} \stackrel{r}{\to} \mathbf{X} \Longrightarrow \mathbf{X}_{n} \stackrel{s}{\to} \mathbf{X} \\ \mathbf{X}_{n} \stackrel{1}{\to} \mathbf{X} \Longrightarrow \mathbf{X}_{n} \stackrel{P}{\to} \mathbf{X} \\ \mathbf{X}_{n} \stackrel{d}{\to} \mathbf{X} \not \Rightarrow \mathbf{X}_{n} \stackrel{P}{\to} \mathbf{X} \\ \mathbf{X}_{n} \stackrel{1}{\to} \mathbf{X} \not \Rightarrow \mathbf{X}_{n} \stackrel{P}{\to} \mathbf{X} \not \Rightarrow \mathbf{X}_{n} \stackrel{wp1}{\to} \mathbf{X} \\ \mathbf{X}_{n} \stackrel{1}{\to} \mathbf{X} \not \Rightarrow \mathbf{X}_{n} \stackrel{wp1}{\to} \mathbf{X} \end{array}$$

Michael Evans University of Toronto https://Probability and Stochastic Processes II Lectur

-

< 🗇 🕨 < 🖃 🕨

Example II.3 $\mathbf{X}_n \xrightarrow{P} \mathbf{X} \Rightarrow \mathbf{X}_n \xrightarrow{wp1} \mathbf{X}$ and $\mathbf{X}_n \xrightarrow{1} \mathbf{X} \Rightarrow \mathbf{X}_n \xrightarrow{wp1} \mathbf{X}$

- let $\omega \sim {\rm Uniform}({\rm 0,1})$
- define

$$X_{1} = I_{[0,1/2]}(\omega), X_{2} = I_{(1/2,1]}(\omega)$$

$$X_{3} = I_{[0,1/4]}(\omega), X_{4} = I_{(1/4,1/2]}(\omega), X_{5} = I_{(1/2,3/4]}(\omega), X_{6} = I_{(3/4,1]}(\omega)$$

$$\vdots$$

- then
$$P(|X_n-0|>\epsilon)=P(X_n>\epsilon) o 0$$
 as $n o\infty$ so $X_n o 0$

- but $\lim_{n\to\infty} X_n(\omega)$ doesn't exist as for any $\omega \in [0, 1]$ and N there is $n_0, n_1 > N$ s.t. $X_{n_0}(\omega) = 0, X_{n_1}(\omega) = 1$ so convergence *wp*1 doesn't hold

- also
$$E(|X_n - 0|) = E(X_n) = P(X_n = 1) \rightarrow 0$$
 as $n \rightarrow \infty$

Exercises

II.1 Prove that if $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ then $F_{\mathbf{X}_n}(\mathbf{x}) \to F_{\mathbf{X}}(\mathbf{x})$ at all continuity points \mathbf{x} for $F_{\mathbf{X}}$.

II.2 Prove that if $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$ then $X_{in} \xrightarrow{d} X_i$.

II.3 Suppose X_1, \ldots, X_n is an *i.i.d.* sequence from a distribution with finite first 4 moments $\mu_1, \mu_2, \mu_3, \mu_4$. Prove that

$$\sqrt{n} \left(\begin{array}{cc} \frac{1}{n} \sum_{i=1}^{n} X_{i} - \mu_{1} \\ \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \mu_{2} \end{array}\right) \xrightarrow{d} N_{2} \left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{c} \mu_{2} - \mu_{1}^{2} & \mu_{3} - \mu_{1}\mu_{2} \\ \mu_{3} - \mu_{1}\mu_{2} & \mu_{4} - \mu_{2}^{2} \end{array}\right) \right).$$

Using the function $g(x, y) = y - x^2$ determine the asymptotic disribution of $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$ and express the asymptotic variance in terms of the 4th central moment.

II.4 Prove Proposition II.10.

II.5 Prove Proposition II.11.