Probability and Stochastic Processes II Lecture 1

Michael Evans
University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC632024.html

2024

I. Monte Carlo

- perhaps the most useful application of probability theory
- it is a technique for approximately computing integrals (sums) that are otherwise intractable
- to begin we suppose that for any probability model (Ω, \mathcal{A}, P) there is an algorithm that can be used to generate

$$
\omega_{1}, \omega_{2}, \ldots, \omega_{N} \stackrel{i . i . d .}{\sim} P
$$

for N as large as is necessary

I.1 Approximate Integration

Example 1.

- suppose it is required to compute $I=\int_{0}^{1} f(x) d x=\int_{0}^{1} \frac{\cos x}{1+x^{2}} d x$ quadrature: one approach here is to use quadrature: let $x_{i}=i / m$ for $m \in \mathbb{N}$ and approximate $/$ by the Riemann sum

$$
I_{m}=\sum_{i=1}^{m} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)=\frac{1}{m} \sum_{i=1}^{m} \frac{\cos x_{i}}{1+x_{i}^{2}} \rightarrow I \text { as } m \rightarrow \infty
$$

- doing this for increasing m gives the following results

m	I_{m}
10	0.6458649
10^{2}	0.679278
10^{3}	0.682568
10^{4}	0.6828965
10^{5}	0.6829294
10^{6}	0.6829327

- so it looks like with $m=10^{6}$ we have 5 significant places in the answer

R code:
$\mathrm{m}=1000000$
Im=0
$\mathrm{f}<-$ function (x) \{
$\mathrm{f}=\cos (\mathrm{x}) /\left(1+\mathrm{x}^{* *} 2\right)$
return(f)
\}
\# Riemann sum
for (i in 1:m)\{
$\operatorname{lm}=\operatorname{lm}+\mathrm{f}(\mathrm{i} / \mathrm{m})$
\}
Im=Im/m
Im
\square

Monte Carlo: alternatively we can write

$$
I=E(f(\omega))
$$

where $\omega \sim \operatorname{Uniform}(0,1)$

- so generate $\omega_{1}, \omega_{2}, \ldots, \omega_{N} \stackrel{i . i . d .}{\sim} \operatorname{Uniform}(0,1)$ and then the SLLN gives

$$
I_{N}=\frac{1}{N} \sum_{i=1}^{N} f\left(\omega_{i}\right) \xrightarrow{w p 1} I \text { as } N \rightarrow \infty
$$

- also we have

$$
\begin{aligned}
\operatorname{Var}(f(\omega)) & =E\left((f(\omega)-I)^{2}\right)=E\left(f^{2}(\omega)\right)-I^{2} \\
\operatorname{Var}\left(I_{N}\right) & =\operatorname{Var}(f(\omega) / N
\end{aligned}
$$

and $\operatorname{Var}(f(\omega))$ can be estimated by (limit proved in PSPI)

$$
S_{N}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(f\left(\omega_{i}\right)-I_{N}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(\omega_{i}\right)-I_{N}^{2} \xrightarrow{w p 1} \operatorname{Var}(f(\omega))
$$

- also the generalization of the CLT proved in PSPI gives

$$
\frac{I_{N}-I}{S_{N} / \sqrt{N}} \xrightarrow{d} N(0,1) \text { as } N \rightarrow \infty
$$

- so for large N

$$
\begin{aligned}
0.9973002 & =\Phi(3)-\Phi(-3) \approx P\left(-3<\frac{I_{N}-I}{S_{N} / \sqrt{N}}<3\right) \\
& =P\left(I_{N}-3 S_{N} / \sqrt{N}<I<I_{N}+3 S_{N} / \sqrt{N}\right)
\end{aligned}
$$

and the interval $\left(I_{N}-3 S_{N} / \sqrt{N}, I_{N}+3 S_{N} / \sqrt{N}\right)$ contains the value of I with virtual certainty

- here are some results

N	I_{N}	$3 S_{N} / \sqrt{N}$
10	0.6463478	0.23896600
10^{2}	0.6977411	0.07040631
10^{3}	0.6837775	0.02247795
10^{4}	0.6832828	0.007059335
10^{5}	0.6822196	0.002234954
10^{6}	0.683162	0.0007068541

- after $N=10^{6}$ only 3 significant places, so in this case Monte Carlo is not as accurate as quadrature

R code:
\# Monte Carlo dimension 1
$\mathrm{N}=1000000$
omega=runif($\mathrm{N}, 0,1$)
$\mathrm{IN}=0$
IN2=0
for (i in $1: \mathrm{N}$) $\{$
fun $=f($ omega[i])
$\mathrm{IN}=\mathrm{IN}+$ fun
IN2 $=$ IN2 2 fun**2
\}
$\mathrm{IN}=\mathrm{IN} / \mathrm{N}$
SN2 $=\left(\mathrm{IN} 2 / \mathrm{N}-\mathrm{IN}^{* *} 2\right)$
error $=3$ *sqrt(SN2/N)
IN
error

- Monte Carlo has some advantages

1. There is a natural error estimate which isn't as easy to obtain with quadrature.
2. Quadrature suffers from a dimensional effect (not as bad for MC).

Example 2.

$$
I=\int_{[0,1]^{10}} \frac{\cos \left(x_{1} x_{2} \cdots x_{10}\right)}{1+x_{1}^{2}+x_{2}^{2}+\cdots+x_{10}^{2}} d x_{1} \cdots d x_{10}
$$

- quadrature with m subdivisions on each axis requires m^{10} function evaluations which is not feasible for even moderate m ($m=10$ requires 10^{10} function evals) MC gives

N	I_{N}	$3 S_{N} / \sqrt{N}$
10	0.1501259	0.01105813
10^{2}	0.2674095	0.02947328
10^{3}	0.2451248	0.005641905
10^{4}	0.2423392	0.001700063
10^{5}	0.2434972	0.0005625282
10^{6}	0.2427743	0.0001752757

R code:

\# Monte Carlo dimension 10
$\mathrm{N}=1000000$
omega $=\operatorname{runif}\left(N^{*} 10,0,1\right)$
$\mathrm{IN}=0$
IN2=0
for (i in $1: \mathrm{N}$) $\{$
$\mathrm{IN}=\mathrm{IN} / \mathrm{N}$
$\mathrm{SN} 2=(\mathrm{IN} 2 / \mathrm{N}-\mathrm{IN} * * 2)$
error $=3^{*}$ sqrt $(\mathrm{SN} 2 / \mathrm{N})$
IN
error
$\mathrm{x}=1$
$s=1$
for (j in 1:10) \{
$\mathrm{x}=\mathrm{x}^{*}$ omega[10* $\left.(\mathrm{i}-1)+\mathrm{j}\right]$
$\mathrm{s}=\mathrm{s}+(\text { omega }[10 *(\mathrm{i}-1)+\mathrm{j}])^{* *} 2$
\}
fun $=\cos (x) / s$
$\mathrm{IN}=\mathrm{IN}+$ fun
IN2 $=$ IN2 $2+$ fun ${ }^{*}$ *2
\}
3. Monte Carlo is flexible (but also one needs to be careful)

- suppose there is a need to approximate, for some $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{1}$, the integral

$$
I=\int_{\mathbb{R}^{k}} f(\mathbf{x}) d \mathbf{x}<\infty
$$

- suppose g is a pdf on \mathbb{R}^{k} such that $g(\mathbf{x})=\mathbf{0}$ implies $f(\mathbf{x})=0$ and we can generate $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \stackrel{\text { i.i.d. }}{\sim} g$
- then

$$
\begin{aligned}
E_{g}\left(\frac{f(\mathbf{X})}{g(\mathbf{X})}\right) & =\int_{\mathbb{R}^{k}} \frac{f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d \mathbf{x}=\int_{\mathbb{R}^{k}} f(\mathbf{x}) d \mathbf{x}=I \\
\operatorname{Var}_{g}\left(\frac{f(\mathbf{X})}{g(\mathbf{X})}\right) & =E_{g}\left(\left(\frac{f(\mathbf{X})}{g(\mathbf{X})}-I\right)^{2}\right)=\int_{\mathbb{R}^{k}} \frac{f^{2}(\mathbf{x})}{g(\mathbf{x})} d \mathbf{x}-I^{2}
\end{aligned}
$$

- by the SLLN

$$
\begin{aligned}
I_{N} & =\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(\mathbf{x}_{i}\right)}{g\left(\mathbf{x}_{i}\right)} \stackrel{\text { wp1 }}{\rightarrow} I \\
S_{N}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(\frac{f\left(\mathbf{x}_{i}\right)}{g\left(\mathbf{x}_{i}\right)}-I_{N}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\frac{f\left(\mathbf{x}_{i}\right)}{g\left(\mathbf{x}_{i}\right)}\right)^{2}-I_{N}^{2} \xrightarrow{w p 1} \operatorname{Var}_{g}\left(\frac{f(\mathbf{X})}{g(\mathbf{X})}\right)
\end{aligned}
$$

and so again the interval $\left(I_{N}-3 S_{N} / \sqrt{N}, I_{N}+3 S_{N} / \sqrt{N}\right)$ contains I with virtual certainty

- but g has to be chosen carefully: choose g such that $\int_{\mathbb{R}^{k}} \frac{f^{2}(\mathbf{x})}{g(\mathbf{x})} d \mathbf{x}$ is finite and as small possible
- this approach is known as importance sampling because you choose g so that the values \mathbf{x} generated from g lie in the region where f takes its important values

Example 3.

- consider $I=\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$ (proportional to a Cauchy density)
- suppose we take $g(x)=\varphi(x)$ the $N(0,1)$ density
- then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{f^{2}(x)}{g(x)} d x=\sqrt{2 \pi} \int_{-\infty}^{\infty} \frac{\exp \left(x^{2} / 2\right)}{\left(1+x^{2}\right)^{2}} d x \\
= & 2 \sqrt{2 \pi} \int_{0}^{\infty} \frac{\exp \left(x^{2} / 2\right)}{\left(1+x^{2}\right)^{2}} d x \geq \sqrt{2 \pi} \int_{0}^{\infty} \frac{x^{4} / 4}{\left(1+x^{2}\right)^{2}} d x=\infty
\end{aligned}
$$

- so $g=\varphi$ is a bad choice here \square

Theorem I. 1 (Optimal importance sampler) For $I=\int_{\mathbb{R}^{k}} f(\mathbf{x}) d \mathbf{x}<\infty$ the importance sampler that minimizes the variance is

$$
g_{f}(\mathbf{x})=\frac{|f(\mathbf{x})|}{\int_{\mathbb{R}^{k}}|f(\mathbf{x})| d \mathbf{x}} \text { with variance }\left(\int_{\mathbb{R}^{k}}|f(x)| d \mathbf{x}\right)^{2}-l^{2} .
$$

Proof: Put $c=\int_{\mathbb{R}^{k}}|f(\mathbf{x})| d x$ so

$$
\left.\begin{array}{rl}
& \operatorname{Var}_{g}\left(\frac{f(\mathbf{X})}{g(\mathbf{X})}\right)=\int_{\mathbb{R}^{k}} \frac{f^{2}(\mathbf{x})}{g(\mathbf{x})} d \mathbf{x}-I^{2}=c^{2} \int_{\mathbb{R}^{k}} \frac{g_{f}^{2}(\mathbf{x})}{g(\mathbf{x})} d \mathbf{x}-I^{2} \\
= & c^{2}\left(\int_{\mathbb{R}^{k}} \frac{g_{f}^{2}(\mathbf{x})-2 g(\mathbf{x}) g_{f}(\mathbf{x})+g^{2}(\mathbf{x})}{g(\mathbf{x})} d \mathbf{x}+\right. \\
\int_{\mathbb{R}^{k}}^{\frac{2 g(\mathbf{x}) g_{f}(\mathbf{x})-g^{2}(\mathbf{x})}{g(\mathbf{x})}} d \mathbf{x}
\end{array}\right)-I^{2} .
$$

and this is minimized as a function of g by taking $g=g_{f}$.

notes

1. When $f \geq 0$ the optimal importance sampler has variance $=0$.
2. The expression

$$
E_{w}\left(\left(\frac{w(\mathbf{x})-g(\mathbf{x})}{w(\mathbf{x})}\right)^{2}\right)
$$

is called the chi-squared distance between the distributions given by pdf's w and g and so we try to make this distance between g_{f} and g as small as we can in spite of the fact that we don't know $\int_{\mathbb{R}^{k}}|f(\mathbf{x})| d \mathbf{x}$.
3. Basically we want a g that puts the bulk of its mass in the same region where f does and the tails of g should not be shorter than the tails of f.
4. A diagnostic for the failure of a given importance sampler is given by the coefficient of variation (ratio of standard deviation of estimate to quantity being estimated) squared for estimating $I=\int_{\mathbb{R}^{k}}|f(x)| d \mathbf{x}$

$$
\begin{aligned}
C V_{g}^{2}\left(I_{N}\right) & =\frac{\frac{1}{N} \operatorname{Var}_{g}(|f(\mathbf{X})| / g(\mathbf{X}))}{I^{2}} \approx \frac{1}{N} \frac{S_{N}^{2}}{I_{N}^{2}}=\sum_{i=1}^{N} w_{i}^{2}-\frac{1}{N} \text { where } \\
w_{i} & =\frac{\left|f\left(\mathbf{x}_{i}\right)\right| / g\left(\mathbf{x}_{i}\right)}{\sum_{j=1}^{N}\left|f\left(\mathbf{x}_{j}\right)\right| / g\left(\mathbf{x}_{j}\right)}
\end{aligned}
$$

so $0 \leq w_{i} \leq 1$ and $\sum_{i=1}^{N} w_{i}=1$

- since $0 \leq C V_{g}^{2}\left(I_{N}\right)$ we have $1 / N \leq \sum_{i=1}^{N} w_{i}^{2} \leq 1$ and $\sum_{i=1}^{N} w_{i}^{2}$ equals (or is close to) 1 iff $w_{i}=1$ for some i (or several w_{i} are close to 1) as this indicates the i-th value $\left|f\left(\mathbf{x}_{i}\right)\right| / g\left(\mathbf{x}_{i}\right)$ (or just a few values) is dominating the estimate
- note - $\sum_{i=1}^{N} w_{i}^{2} \approx 1 / N$ does not mean that the importance sampling has succeeded!

I. 2 Generating Random Variables

- for a given density f an efficient computer-based method is required to be able to provide a value $X \sim f$
- there are many such methods but we discuss two

1. Inversion

- let $F: \mathbb{R} \rightarrow[0,1]$ given by $F(x)=P(X \leq x)$ denote the cdf of X
- the inverse cdf (quantile function) $F^{-1}:[0,1] \rightarrow \mathbb{R}$ is given by

$$
F^{-1}(u)=\inf \{x: F(x) \geq u\}
$$

Theorem I. 2 If $U \sim \operatorname{Uniform}(0,1)$ then $X=F^{-1}(U) \sim F$.
Proof: Note that $u \leq F(x)$ iff $F^{-1}(u) \leq x$ and so

$$
P\left(F^{-1}(U) \leq x\right)=P(U \leq F(x))=F(x)
$$

- typically we need a closed form formula for F^{-1} or F for this to be useful

Example 1. exponential rate (λ)

- $f(x)=\lambda e^{-\lambda x}$ for $x>0$ so
$F(x)=\int_{0}^{x} \lambda e^{-\lambda z} d z=-\left.e^{-\lambda z}\right|_{0} ^{x}=1-e^{-\lambda x}$ a 1-1 increasing function on $[0, \infty)$
- so for $u \in[0,1]$ then $u=1-e^{-\lambda x}$ iff $x=-\lambda^{-1} \log (1-u)=F^{-1}(u)$

Example 2. mixtures

- consider a weighted mixture of a $N(0,1)$ and a Cauchy density, namely,

$$
\begin{aligned}
f(x) & =0.4 f_{1}(x)+0.6 f_{2}(x)=0.4 \varphi(x)+0.6 / \pi\left(1+x^{2}\right) \\
F(x) & =\int_{-\infty}^{x} f(z) d z=0.4 F_{1}(x)+0.6 F_{2}(x) \\
& =0.4 \Phi(x)+0.6(\arctan (x) / \pi+0.5)
\end{aligned}
$$

- there isn't a closed form for Φ^{-1} but there are good computer algorithms for it and $\tan (\pi(u-0.5))$ is the inverse cdf of the Cauchy
- to generate $X \sim F$ the following algorithm works

1. generate $U_{1} \sim \operatorname{Uniform}(0,1)$
2. if $U_{1} \leq 0.4$ put $i=1$ otherwise put $i=2$
3. generate $U_{2} \sim \operatorname{Uniform}(0,1)$
4.return $X=F_{i}^{-1}\left(U_{2}\right)$

- then

$$
\begin{aligned}
& P(X \leq x) \stackrel{\text { TTP }}{=} P(i=1) P(X \leq x \mid i=1)+P(i=2) P(X \leq x \mid i=2) \\
= & 0.4 \Phi(x)+0.6(\arctan (x) / \pi+0.5)=F(x)
\end{aligned}
$$

- for a multivariate distribution on \mathbb{R}^{k} with pdf f we have

$$
f\left(x_{1}, \ldots, x_{k}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2} \mid x_{1}\right) f_{3}\left(x_{3} \mid x_{1}, x_{2}\right) \cdots f_{k}\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right)
$$

so $\mathbf{x} \sim f$ can sometimes be accomplished by using algorithms to generate sequentially

$$
\begin{aligned}
x_{1} & \sim f_{1} \\
x_{2} \mid x_{1} & \sim f_{2}\left(\cdot \mid x_{1}\right) \\
& \vdots \\
x_{k} \mid x_{1}, \ldots, x_{k-1} & \sim f_{k}\left(\cdot \mid x_{1}, \ldots, x_{k-1}\right)
\end{aligned}
$$

2. Rejection

- the following algorithm to generate from (unnormalized) pdf f on \mathbb{R}^{k} is known as rejection
Theorem I. 3 If g is a pdf that can be generated from and c is a constant such that $f(\mathbf{x}) \leq c g(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^{k}$, then the following generates $\mathbf{X} \sim f$.

1. generate $\mathbf{Y} \sim g$ and $U \sim \operatorname{Uniform}(0,1)$ stat. ind.,
2. if $\operatorname{Ucg}(\mathbf{Y})>f(\mathbf{Y})$ then go to 1 , else return $\mathbf{X}=\mathbf{Y}$ and stop.

Proof: The probability of accepting at step 2 is

$$
\begin{aligned}
p & =P(U c g(\mathbf{Y}) \leq f(\mathbf{Y})) \stackrel{T T E}{=} E_{g}(P(U c g(\mathbf{Y}) \leq f(\mathbf{Y}) \mid \mathbf{Y})) \\
& =E_{g}\left(P\left(\left.U \leq \frac{f(\mathbf{Y})}{c g(\mathbf{Y})} \right\rvert\, \mathbf{Y}\right)\right)=E_{g}\left(\frac{f(\mathbf{Y})}{\operatorname{cg}(\mathbf{Y})}\right)=\frac{\int_{\mathbb{R}^{k}} f(\mathbf{x}) d \mathbf{x}}{c}
\end{aligned}
$$

Since $p>0$, the probability of stopping after finitely many steps is $\sum_{i=1}^{\infty}(1-p)^{i-1} p=p /(1-(1-p))=1$ and so the algorithm stops with probability 1 and returns \mathbf{X}. For $B \in \mathcal{B}^{k}$, and recall that the $\left(U_{i}, \mathbf{Y}_{i}\right)$ are i.i.d.,

$$
\begin{aligned}
& P(\mathbf{X} \in B)=\sum_{i=1}^{\infty} P\left(\text { algorithm stops at the } i \text {-th step and } \mathbf{Y}_{i} \in B\right) \\
= & \sum_{i=1}^{\infty} P\left(U_{1}>\frac{f\left(\mathbf{Y}_{1}\right)}{c g\left(\mathbf{Y}_{1}\right)}, \ldots, U_{i-1}>\frac{f\left(\mathbf{Y}_{i-1}\right)}{c g\left(\mathbf{Y}_{i-1}\right)}, U_{i} \leq \frac{f\left(\mathbf{Y}_{i}\right)}{c g\left(\mathbf{Y}_{i}\right)}, \mathbf{Y}_{i} \in B\right) \\
& \stackrel{T T P}{=} \sum_{i=1}^{\infty} P\left(U_{i} \leq \frac{f\left(\mathbf{Y}_{i}\right)}{c g\left(\mathbf{Y}_{i}\right)}, \mathbf{Y}_{i} \in B \left\lvert\, U_{1}>\frac{f\left(\mathbf{Y}_{1}\right)}{c g\left(\mathbf{Y}_{1}\right)}\right., \ldots, U_{i-1}>\frac{f\left(\mathbf{Y}_{i-1}\right.}{c g\left(\mathbf{Y}_{i-}\right.}\right. \\
= & \sum_{i=1}^{\infty} P(1-p)^{i-1} \\
= & P\left(U \leq \frac{f(\mathbf{Y})}{c g(\mathbf{Y})}, \mathbf{Y} \in B\right)(1-p)^{i-1} \\
= & \left.\frac{P\left(U \leq \frac{f(\mathbf{Y})}{c g(\mathbf{Y})}, \mathbf{Y} \in B\right) \sum_{i=1}^{\infty}(1-p)^{i-1}}{p}, \mathbf{Y} \in B\right) \\
= &
\end{aligned}
$$

$$
\begin{aligned}
& P\left(U \leq \frac{f(\mathbf{Y})}{c g(\mathbf{Y})}, \mathbf{Y} \in B\right) \stackrel{T T E}{=} E_{g}\left(P\left(U \leq \frac{f(\mathbf{Y})}{c g(\mathbf{Y})}, \mathbf{Y} \in B \mid \mathbf{Y}\right)\right) \\
= & E_{g}\left(I_{B}(\mathbf{Y}) \frac{f(\mathbf{Y})}{c g(\mathbf{Y})}\right)=\frac{\int_{B} f(\mathbf{x}) d \mathbf{x}}{c} .
\end{aligned}
$$

Therefore,

$$
P(\mathbf{X} \in B)=\frac{\int_{B} f(\mathbf{x}) d \mathbf{x}}{c}\left(\frac{\int_{\mathbb{R}^{k}} f(\mathbf{x}) d \mathbf{x}}{c}\right)^{-1}=\frac{\int_{B} f(\mathbf{x}) d \mathbf{x}}{\int_{\mathbb{R}^{k}} f(\mathbf{x}) d \mathbf{x}}
$$

as required.

- note the efficiency of rejection is primarily determined by

$$
p=\frac{\int_{\mathbb{R}^{k}} f(\mathbf{x}) d \mathbf{x}}{c}
$$

and we want this as close to 1 as possible and expected number of iterations until acceptance is $1 / p$

Example 3.

- suppose $f(x)=(x+3)^{2}(x+1)$ on $[0,1]$ is an unnormalized density
- $\max f$ occurs at $x=1$ and max value is 32
- then if g is the Uniform $(0,1)$ density and $c=32$ the conditions for rejection are satisfied and $1 / p=1.677$ (mean of a geometric (p) distribution) ■

Exercises

I.1 E\&R 4.5.1
I. 2 E\&R 4.5.2
I. 3 E\&R 4.5.5
I. 4 E\&R 4.5.13I. 5 E\&R 4.5.14I. 6 E\&R 4.5.16I. 7 E\&R 4.5.17I. 8 Suppose $\mathbf{X} \sim N_{k}(\boldsymbol{\mu}, \Sigma)$. Provide an algorithm for generating \mathbf{X}. (Hint:recall the relationship between such an \mathbf{X} and $\mathbf{Z} \sim N_{k}(\mathbf{0}, \Sigma)$ and firstdiscuss how you would generate \mathbf{Z} based on generating from the $N(0,1)$distribution.)

