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|. Monte Carlo

- perhaps the most useful application of probability theory

- it is a technique for approximately computing integrals (sums) that are
otherwise intractable

- to begin we suppose that for any probability model (Q), A, P) there is an
algorithm that can be used to generate
w1, W, ..., WN i'fi\'ld' P

for N as large as is necessary
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.1 Approximate Integration

Example 1.

- suppose it is required to compute | = fol f(x)dx = fol T dx

quadrature: one approach here is to use quadrature: let x; = i/ m for
m € IN and approximate / by the Riemann sum

1 & cosx;
f(Xi)(Xi_Xifl):;;ﬁﬁlasmﬁw

Im

s

I
=

- doing this for increasing m gives the following results

m I

10  0.6458649
102 0.679278
10 0.682568
10* 0.6828965
10°  0.6829294
10® 0.6829327
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- s0 it looks like with m = 10° we have 5 significant places in the answer

R code:
m=1000000

Im=0

f <- function(x) {
f=cos(x)/(1+x**2)
return(f)

}

# Riemann sum

for (i in 1:m){
Im=Im+f(i/m)
}

Im=Im/m

Im

[
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Monte Carlo: alternatively we can write

I = E(f(w))
where w ~ Uniform(0, 1)
- so generate wi, wy, ..., wy "~ Uniform(0, 1) and then the SLLN gives
1N wpl
IN:NEf(wi> = las N — oo

- also we have
Var(f(w)) = E((f(w) —1)%) = E(f*(w)) = I
Var(ly) = Var(f(w)/N
and Var(f(w)) can be estimated by (limit proved in PSPI)

1 N N

== i;(f(w,-) —Iy)? = ,b; F(wi) — I} "5 Var(f(w))
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- also the generalization of the CLT proved in PSPI gives

- so for large N

0.9973002

with virtual certainty

Iy — 1
Sn/VN

iN(O,l) as N — o0

D(3) — D(—3)~ P <—3 <=l 3)

Sn/VN

P (/N —3Sy/VN <1 < Iy +35N/\W)
and the interval (Iy — 3Sy/ VN, Iy + 35N/\/N) contains the value of /

- here are some results

N

10

102
103
10%
10°
100

In
0.6463478
0.6977411
0.6837775
0.6832828
0.6822196
0.683162

3Sn/ VN
0.23896600
0.07040631
0.02247795
0.007059335
0.002234954
0.0007068541
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- after N = 10 only 3 significant places, so in this case Monte Carlo is not
as accurate as quadrature

R code:

# Monte Carlo dimension 1
N=1000000
omega=runif(N,0,1)
IN=0

IN2=0

for (i in 1:N){
fun=f(omegali])
IN=IN+fun
IN2=IN2+fun**2

}

IN=IN/N
SN2=(IN2/N-IN**2)
error=3*sqrt(SN2/N)
IN

error
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- Monte Carlo has some advantages

1. There is a natural error estimate which isn’t as easy to obtain with
quadrature.

2. Quadrature suffers from a dimensional effect (not as bad for MC).
Example 2.

cos(xixp - - - x
| = 2(122 10) 2dx1---dx10
[0,1]10 ]- +X1 +X2 + tt +X10
- quadrature with m subdivisions on each axis requires m'® function
evaluations which is not feasible for even moderate m (m = 10 requires

1010 function evals ) MC gives

N Iy 3Sn/ VN

10 0.1501259 0.01105813
102 0.2674095 0.02947328
103 0.2451248 0.005641905
10* 0.2423392 0.001700063
10° 0.2434972 0.0005625282
106 0.2427743 0.0001752757
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R code:
# Monte Carlo dimension 10

N=1000000 IN=IN/N
omega=runif(N*10,0,1) SN2=(IN2/N-IN**2)
IN=0 error=3*sqrt(SN2/N)
IN2=0 IN

for (i in 1:N){ error

x=1

s=1

for (j in 1:10){
x=x*omega[10*(i-1)+]]
s=s+(omega[10*(i-1)+j])**2

fun=cos(x)/s
IN=IN+fun
IN2=IN2-fun**2

}
u
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3. Monte Carlo is flexible (but also one needs to be careful)

- suppose there is a need to approximate, for some f : R — R1, the
integral

/:/ F(x) dx < 0o
Rk

- suppose g is a pdf on R¥ such that g(x) = 0 implies f(x) = 0 and we
can generate X1,...,Xy iiid- g
- then
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_ by the SLLN

1 & (i) wpr
o= N,;g(x,-) -
= k() vk (6g) -5 v (5)

and so again the interval (/y — 3Sy/ VN, Iy + 3SN/\/N) contains / with
virtual certainty

- but g has to be chosen carefully: choose g such that f]R" ;2((:)) dx is finite

and as small possible

- this approach is known as importance sampling because you choose g so
that the values x generated from g lie in the region where f takes its
important values
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Example 3.

- consider | = [ f(x)dx= [, 1+1X2 dx (proportional to a Cauchy
density)

- suppose we take g(x) = ¢(x) the N(0,1) density

- then

/w PO g = /3 W/oo 76’('0(’(2/2) dx

—c0 g(X)
4/4

2
_ zf/ eXp /2)d >F/ Ty =

- so g = ¢ is a bad choice here B
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Theorem 1.1 (Optimal importance sampler) For | = fle x) dx < co the
importance sampler that minimizes the variance is

gr(x) —ka“ff( )‘| I with variance (/}Rk |f(x)] dx)2 —I?.

Proof: Put ¢ = [p, |f(x)] dx so

Varg (f(X)) = /IR () dx — 1> = ¢? @dx— 12

g(X) « g(x) R g(x)
o, o & ) f)f( x)+g°(x) dxt p
- ¢ [rop 20 0=g2() g B
IRk g(x)

2
. </}Rk (gf(xl_(_xf(’()) dx+2 /}Rk gr(x) dx— /]ng(X) dx> -1

= c%E, ((g,:(xé(;)g(x))j L2

and this is minimized as a function of g by taking g =.gr. W
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notes

1. When f > 0 the optimal importance sampler has variance = 0.

“((%:5))

is called the chi-squared distance between the distributions given by pdf's
w and g and so we try to make this distance between gr and g as small as
we can in spite of the fact that we don’t know [, |f(x)| dx.

2. The expression

3. Basically we want a g that puts the bulk of its mass in the same region
where f does and the tails of g should not be shorter than the tails of f.
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4. A diagnostic for the failure of a given importance sampler is given by
the coefficient of variation (ratio of standard deviation of estimate to
quantity being estimated) squared for estimating | = [, |f(x)| dx

LVar, (1F(X)|/g(X)) 183 X 1

N Varg 5 %NIT%’:;WI?—NWhere
[f(xi)]/g(xi)

L 1 (x)]/g(x))

so0<w;<land YV, w =1

- since 0 < CVZ(Iy) we have 1/N < YN, w? <1land ¥V, w? equals (or
is close to) 1 iff w; = 1 for some i (or several w; are close to 1) as this
indicates the i-th value |f(x;)|/g(x;) (or just a few values) is dominating
the estimate

CVZ(ly) =

Wi

- note - Z,’-V:l W,-2 ~ 1/ N does not mean that the importance sampling has
succeeded!
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I.2 Generating Random Variables

- for a given density f an efficient computer-based method is required to
be able to provide a value X ~ f

- there are many such methods but we discuss two

1. Inversion

- let F: R — [0, 1] given by F(x) = P(X < x) denote the cdf of X

- the inverse cdf (quantile function) F~1:[0,1] — R is given by
F~Y(u) = inf{x: F(x) > u}

Theorem 1.2 If U ~Uniform(0, 1) then X = F~1(U) ~ F.
Proof: Note that u < F(x) iff F~1(u) < x and so

P(F7Y(U) < x) = P(U < F(x)) = F(x).

- typically we need a closed form formula for F~ or F for this to be useful
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Example 1. exponential ot (A)

- f(x) = Ae ™ for x > 0 so

F(x) = fox Ae M dz = —e*)‘z|g = 1— e ™ a 1-1 increasing function on
[0, )

-so for u € [0,1] then u=1— e M iff x = 2! log(1— u) = F~1(u)
[ |

Example 2. mixtures

- consider a weighted mixture of a N(0,1) and a Cauchy density, namely,

f(x) = 0.4f(x)+0.6H(x) =0.4¢(x)+0.6/7(1+ x?)
Fx) = / " (2) dz = 0.4F1(x) + 0.6F(x)

—o0

= 0.4P(x) + 0.6(arctan(x)/m + 0.5)

- there isn't a closed form for @1 but there are good computer algorithms
for it and tan(7t(u — 0.5)) is the inverse cdf of the Cauchy
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- to generate X ~ F the following algorithm works

1. generate U; ~Uniform(0, 1)

2. if Uy < 0.4 put i =1 otherwise put i = 2
3. generate U, ~Uniform(0, 1)

4.return X = F1(Uy)

- then

PX<x) ZPi=1)PX<x|i=1)+P(i=2)P(X <x|i=2

= 0.4P(x) + 0.6(arctan(x)/m+0.5) = F(x)

Michael Evans University of Toronto https:/ /Probability and Stochastic Processes Il Lectut



- for a multivariate distribution on R¥ with pdf f we have

f(xt, ..., xk) = A(x1) (x| x1)fB(xs | x1, x2) -« fie(xk | X1, -y Xk—1)

so x ~ f can sometimes be accomplished by using algorithms to generate
sequentially

x1 ~ f

xo|x1 ~ fh(-]x)

X | X, oo xk—1 o~ f( X, Xk1)
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2. Rejection

- the following algorithm to generate from (unnormalized) pdf f on R is
known as rejection

Theorem 1.3 If g is a pdf that can be generated from and c is a constant
such that f(x) < cg(x) for every x € R, then the following generates
X~ f.

1. generate Y ~ g and U ~ Uniform(0, 1) stat. ind.,
2. if Ucg(Y) > f(Y) then go to 1, else return X =Y and stop.

Proof: The probability of accepting at step 2 is
p = P(Ucg(Y) <f(Y)) = E(P(Ucg(Y) <f(Y)|Y))

- <P<U§ F(Y) ,Y>> :Eg<f(Y)>:f]Rk rx) dx

cg(Y) cg(Y) c

Since p > 0, the probability of stopping after finitely many steps is
Y2, (1—p)~tp=p/(1—(1-p))=1and so the algorithm stops with
probability 1 and returns X. For B € B¥, and recall that the (U;, Y;) are
i.i.d.,
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[ee]

P(X € B) =Y P( algorithm stops at the i-th step and Y; € B)

-y YD)y Y)Y
=y r <U1 > o U > oy U S g Vi€ B)
Y
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(Ug fY) ye B) "IF E, (P (Ug fY) ye B|Y>)
Is(

g
< > B fB f(x) dx
Therefore,

~ Jef(x)dx [ [pi f(x)dx _1_ [ f(x) dx
R e S I e

Y)

P )
_ F(Y)
= 5 cg(Y)

as required. W
- note the efficiency of rejection is primarily determined by
. Jrx f(x) dx
c

and we want this as close to 1 as possible and expected number of
iterations until acceptance is 1/p
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Example 3.
- suppose f(x) = (x +3)?(x + 1) on [0, 1] is an unnormalized density
- max f occurs at x = 1 and max value is 32

- then if g is the Uniform(0, 1) density and ¢ = 32 the conditions for
rejection are satisfied and 1/p = 1.677 (mean of a geometric(p)
distribution) Il
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Exercises

.1 E&R 4.5.1
.2 E&R 4.5.2
.3 E&R 4.5.5
.4 E&R 4.5.13
.5 E&R 4.5.14
1.6 E&R 4.5.16
.7 E&R 4.5.17

1.8 Suppose X ~ N (u,%). Provide an algorithm for generating X. (Hint:
recall the relationship between such an X and Z ~ N, (0, %) and first
discuss how you would generate Z based on generating from the N(0, 1)
distribution.)
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