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I. Monte Carlo

- perhaps the most useful application of probability theory

- it is a technique for approximately computing integrals (sums) that are
otherwise intractable

- to begin we suppose that for any probability model (Ω,A,P) there is an
algorithm that can be used to generate

ω1,ω2, . . . ,ωN
i .i .d .� P

for N as large as is necessary
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I.1 Approximate Integration

Example 1.

- suppose it is required to compute I =
R 1
0 f (x) dx =

R 1
0
cos x
1+x 2 dx

quadrature: one approach here is to use quadrature: let xi = i/m for
m 2 N and approximate I by the Riemann sum

Im =
m

∑
i=1
f (xi )(xi � xi�1) =

1
m

m

∑
i=1

cos xi
1+ x2i

! I as m! ∞

- doing this for increasing m gives the following results

m Im
10 0.6458649
102 0.679278
103 0.682568
104 0.6828965
105 0.6829294
106 0.6829327
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- so it looks like with m = 106 we have 5 signi�cant places in the answer

R code:
m=1000000
Im=0
f <- function(x) {
f=cos(x)/(1+x**2)
return(f)
}
# Riemann sum
for (i in 1:m){
Im=Im+f(i/m)
}
Im=Im/m
Im
�
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Monte Carlo: alternatively we can write

I = E (f (ω))

where ω �Uniform(0, 1)
- so generate ω1,ω2, . . . ,ωN

i .i .d .� Uniform(0, 1) and then the SLLN gives

IN =
1
N

N

∑
i=1
f (ωi )

wp1! I as N ! ∞

- also we have

Var(f (ω)) = E ((f (ω)� I )2) = E (f 2(ω))� I 2

Var(IN ) = Var(f (ω)/N

and Var(f (ω)) can be estimated by (limit proved in PSPI)

S2N =
1
N

N

∑
i=1
(f (ωi )� IN )2 =

1
N

N

∑
i=1
f 2(ωi )� I 2N

wp1! Var(f (ω))
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- also the generalization of the CLT proved in PSPI gives
IN � I
SN/

p
N

d! N(0, 1) as N ! ∞

- so for large N

0.9973002 = Φ(3)�Φ(�3) � P
�
�3 < IN � I

SN/
p
N
< 3

�
= P

�
IN � 3SN/

p
N < I < IN + 3SN/

p
N
�

and the interval (IN � 3SN/
p
N, IN + 3SN/

p
N) contains the value of I

with virtual certainty
- here are some results

N IN 3SN/
p
N

10 0.6463478 0.23896600
102 0.6977411 0.07040631
103 0.6837775 0.02247795
104 0.6832828 0.007059335
105 0.6822196 0.002234954
106 0.683162 0.0007068541
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- after N = 106 only 3 signi�cant places, so in this case Monte Carlo is not
as accurate as quadrature

R code:
# Monte Carlo dimension 1
N=1000000
omega=runif(N,0,1)
IN=0
IN2=0
for (i in 1:N){
fun=f(omega[i])
IN=IN+fun
IN2=IN2+fun**2
}
IN=IN/N
SN2=(IN2/N-IN**2)
error=3*sqrt(SN2/N)
IN
error
�
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- Monte Carlo has some advantages

1. There is a natural error estimate which isn�t as easy to obtain with
quadrature.

2. Quadrature su¤ers from a dimensional e¤ect (not as bad for MC).

Example 2.

I =
Z
[0,1]10

cos(x1x2 � � � x10)
1+ x21 + x

2
2 + � � �+ x210

dx1 � � � dx10

- quadrature with m subdivisions on each axis requires m10 function
evaluations which is not feasible for even moderate m (m = 10 requires
1010 function evals ) MC gives

N IN 3SN/
p
N

10 0.1501259 0.01105813
102 0.2674095 0.02947328
103 0.2451248 0.005641905
104 0.2423392 0.001700063
105 0.2434972 0.0005625282
106 0.2427743 0.0001752757
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R code:
# Monte Carlo dimension 10
N=1000000 IN=IN/N
omega=runif(N*10,0,1) SN2=(IN2/N-IN**2)
IN=0 error=3*sqrt(SN2/N)
IN2=0 IN
for (i in 1:N){ error
x=1
s=1
for (j in 1:10){
x=x*omega[10*(i-1)+j]
s=s+(omega[10*(i-1)+j])**2
}
fun=cos(x)/s
IN=IN+fun
IN2=IN2+fun**2
}
�
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3. Monte Carlo is �exible (but also one needs to be careful)

- suppose there is a need to approximate, for some f : Rk ! R1, the
integral

I =
Z

Rk
f (x) dx < ∞

- suppose g is a pdf on Rk such that g(x) = 0 implies f (x) = 0 and we
can generate x1, . . . , xN

i .i .d .� g
- then

Eg

�
f (X)
g(X)

�
=

Z
Rk

f (x)
g(x)

g(x) dx =
Z

Rk
f (x) dx =I

Varg

�
f (X)
g(X)

�
= Eg

 �
f (X)
g(X)

� I
�2!

=
Z

Rk

f 2(x)
g(x)

dx�I 2

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC632024.html ()Probability and Stochastic Processes II Lecture 1 2024 10 / 24



- by the SLLN

IN =
1
N

N

∑
i=1

f (xi )
g(xi )

wp1! I

S2N =
1
N

N

∑
i=1

�
f (xi )
g(xi )

� IN
�2
=
1
N

N

∑
i=1

�
f (xi )
g(xi )

�2
� I 2N

wp1! Varg

�
f (X)
g(X)

�
and so again the interval (IN � 3SN/

p
N, IN + 3SN/

p
N) contains I with

virtual certainty

- but g has to be chosen carefully: choose g such that
R

Rk
f 2(x)
g (x) dx is �nite

and as small possible

- this approach is known as importance sampling because you choose g so
that the values x generated from g lie in the region where f takes its
important values
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Example 3.

- consider I =
R ∞
�∞ f (x) dx =

R ∞
�∞

1
1+x 2 dx (proportional to a Cauchy

density)

- suppose we take g(x) = ϕ(x) the N(0, 1) density

- then Z ∞

�∞

f 2(x)
g(x)

dx =
p
2π
Z ∞

�∞

exp(x2/2)
(1+ x2)2

dx

= 2
p
2π
Z ∞

0

exp(x2/2)
(1+ x2)2

dx �
p
2π
Z ∞

0

x4/4
(1+ x2)2

dx = ∞

- so g = ϕ is a bad choice here �
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Theorem I.1 (Optimal importance sampler) For I =
R

Rk f (x) dx < ∞ the
importance sampler that minimizes the variance is

gf (x) =
jf (x)jR

Rk jf (x)j dx
with variance

�Z
Rk
jf (x)j dx

�2
�I 2.

Proof: Put c =
R

Rk jf (x)j dx so

Varg

�
f (X)
g(X)

�
=
Z

Rk

f 2(x)
g(x)

dx� I 2 = c2
Z

Rk

g2f (x)
g(x)

dx� I 2

= c2

0@ R
Rk

g 2f (x)�2g (x)gf (x)+g 2(x)
g (x) dx+R

Rk
2g (x)gf (x)�g 2(x)

g (x) dx

1A� I 2
= c2

 Z
Rk

(gf (x)� g(x))2

g(x)
dx+2

Z
Rk
gf (x) dx�

Z
Rk
g(x) dx

!
� I 2

= c2Eg

 �
gf (x)� g(x)

g(x)

�2!
+ c2 � I 2

and this is minimized as a function of g by taking g = gf . �
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notes

1. When f � 0 the optimal importance sampler has variance = 0.
2. The expression

Ew

 �
w(x)� g(x)

w(x)

�2!
is called the chi-squared distance between the distributions given by pdf�s
w and g and so we try to make this distance between gf and g as small as
we can in spite of the fact that we don�t know

R
Rk jf (x)j dx.

3. Basically we want a g that puts the bulk of its mass in the same region
where f does and the tails of g should not be shorter than the tails of f .
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4. A diagnostic for the failure of a given importance sampler is given by
the coe¢ cient of variation (ratio of standard deviation of estimate to
quantity being estimated) squared for estimating I =

R
Rk jf (x)j dx

CV 2g (IN ) =
1
NVarg (jf (X)j/g(X))

I 2
� 1
N
S2N
I 2N
=

N

∑
i=1
w2i �

1
N
where

wi =
jf (xi )j/g(xi )

∑N
j=1 jf (xj )j/g(xj )

so 0 � wi � 1 and ∑N
i=1 wi = 1

- since 0 � CV 2g (IN ) we have 1/N � ∑N
i=1 w

2
i � 1 and ∑N

i=1 w
2
i equals (or

is close to) 1 i¤ wi = 1 for some i (or several wi are close to 1) as this
indicates the i-th value jf (xi )j/g(xi ) (or just a few values) is dominating
the estimate

- note - ∑N
i=1 w

2
i � 1/N does not mean that the importance sampling has

succeeded!
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I.2 Generating Random Variables

- for a given density f an e¢ cient computer-based method is required to
be able to provide a value X � f
- there are many such methods but we discuss two

1. Inversion

- let F : R ! [0, 1] given by F (x) = P(X � x) denote the cdf of X
- the inverse cdf (quantile function) F�1 : [0, 1]! R is given by

F�1(u) = inffx : F (x) � ug

Theorem I.2 If U �Uniform(0, 1) then X = F�1(U) � F .
Proof: Note that u � F (x) i¤ F�1(u) � x and so

P(F�1(U) � x) = P(U � F (x)) = F (x).

�
- typically we need a closed form formula for F�1 or F for this to be useful
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Example 1. exponential rate (λ)

- f (x) = λe�λx for x > 0 so
F (x) =

R x
0 λe�λz dz = �e�λz

��x
0 = 1� e

�λx a 1-1 increasing function on
[0,∞)

- so for u 2 [0, 1] then u = 1� e�λx i¤ x = �λ�1 log(1� u) = F�1(u)
�
Example 2. mixtures

- consider a weighted mixture of a N(0, 1) and a Cauchy density, namely,

f (x) = 0.4f1(x) + 0.6f2(x) = 0.4ϕ(x) + 0.6/π(1+ x2)

F (x) =
Z x

�∞
f (z) dz = 0.4F1(x) + 0.6F2(x)

= 0.4Φ(x) + 0.6(arctan(x)/π + 0.5)

- there isn�t a closed form for Φ�1 but there are good computer algorithms
for it and tan(π(u � 0.5)) is the inverse cdf of the Cauchy
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- to generate X � F the following algorithm works

1. generate U1 �Uniform(0, 1)
2. if U1 � 0.4 put i = 1 otherwise put i = 2
3. generate U2 �Uniform(0, 1)
4.return X = F�1i (U2)

- then

P(X � x) TTP= P(i = 1)P(X � x j i = 1) + P(i = 2)P(X � x j i = 2)
= 0.4Φ(x) + 0.6(arctan(x)/π + 0.5) = F (x)

�
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- for a multivariate distribution on Rk with pdf f we have

f (x1, . . . , xk ) = f1(x1)f2(x2 j x1)f3(x3 j x1, x2) � � � fk (xk j x1, . . . , xk�1)

so x � f can sometimes be accomplished by using algorithms to generate
sequentially

x1 � f1
x2 j x1 � f2(� j x1)

...

xk j x1, . . . , xk�1 � fk (� j x1, . . . , xk�1)
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2. Rejection

- the following algorithm to generate from (unnormalized) pdf f on Rk is
known as rejection

Theorem I.3 If g is a pdf that can be generated from and c is a constant
such that f (x) � cg(x) for every x 2 Rk , then the following generates
X � f .
1. generate Y � g and U � Uniform(0, 1) stat. ind.,
2. if Ucg(Y) > f (Y) then go to 1, else return X = Y and stop.

Proof: The probability of accepting at step 2 is

p = P(Ucg(Y) � f (Y)) TTE= Eg (P(Ucg(Y) � f (Y) jY))

= Eg

�
P
�
U � f (Y)

cg(Y)
jY
��

= Eg

�
f (Y)
cg(Y)

�
=

R
Rk f (x) dx

c
.

Since p > 0, the probability of stopping after �nitely many steps is
∑∞
i=1(1� p)i�1p = p/(1� (1� p)) = 1 and so the algorithm stops with

probability 1 and returns X. For B 2 Bk , and recall that the (Ui ,Yi ) are
i .i .d .,
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P(X 2 B) =
∞

∑
i=1
P( algorithm stops at the i-th step and Yi 2 B)

=
∞

∑
i=1
P
�
U1 >

f (Y1)
cg(Y1)

, . . . ,Ui�1 >
f (Yi�1)
cg(Yi�1)

,Ui �
f (Yi )
cg(Yi )

,Yi 2 B
�

TTP
=

∞

∑
i=1
P
�
Ui �

f (Yi )
cg(Yi )

,Yi 2 B
���� U1 > f (Y1)

cg(Y1)
, . . . ,Ui�1 >

f (Yi�1)
cg(Yi�1)

�
�(1� p)i�1

=
∞

∑
i=1
P
�
U � f (Y)

cg(Y)
,Y 2 B

�
(1� p)i�1

= P
�
U � f (Y)

cg(Y)
,Y 2 B

� ∞

∑
i=1
(1� p)i�1

=
P
�
U � f (Y)

cg (Y) ,Y 2 B
�

p

and
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P
�
U � f (Y)

cg(Y)
,Y 2 B

�
TTE
= Eg

�
P
�
U � f (Y)

cg(Y)
,Y 2 B jY

��
= Eg

�
IB (Y)

f (Y)
cg(Y)

�
=

R
B f (x) dx
c

.

Therefore,

P(X 2 B) =
R
B f (x) dx
c

 R
Rk f (x) dx

c

!�1
=

R
B f (x) dxR

Rk f (x) dx

as required. �
- note the e¢ ciency of rejection is primarily determined by

p =

R
Rk f (x) dx

c

and we want this as close to 1 as possible and expected number of
iterations until acceptance is 1/p
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Example 3.

- suppose f (x) = (x + 3)2(x + 1) on [0, 1] is an unnormalized density

- max f occurs at x = 1 and max value is 32

- then if g is the Uniform(0, 1) density and c = 32 the conditions for
rejection are satis�ed and 1/p = 1.677 (mean of a geometric(p)
distribution) �
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Exercises

I.1 E&R 4.5.1

I.2 E&R 4.5.2

I.3 E&R 4.5.5

I.4 E&R 4.5.13

I.5 E&R 4.5.14

I.6 E&R 4.5.16

I.7 E&R 4.5.17

I.8 Suppose X � Nk (µ,Σ). Provide an algorithm for generating X. (Hint:
recall the relationship between such an X and Z � Nk (0,Σ) and �rst
discuss how you would generate Z based on generating from the N(0, 1)
distribution.)
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