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Intro to Markov Chain Monte Carlo

We wish to sample from some distribution for X ∈ S that has
density π. Obtaining independent draws is too hard.

We construct and run a Markov chain with transition
T (xold , xnew ) that leaves π invariant

∫

S
π(x)T (x , y)dx = π(y).

A number of initial realisations from the chain are discarded
(burn-in) and the remaining are used to estimate expectations
or quantiles of functions of X .
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Metropolis algorithms

The Metropolis sampler is one of the most used algorithms in
MCMC. It operates as follows:

Given the current state of the MC, x , a ”proposed sample” y is
drawn from a proposal distribution P(y |x) that satisfies symmetry,
i.e. P(y |x) = P(x |y).

The proposal y is accepted with probability min{1, π(y)/π(x)}.

If y is accepted, the next state is y , otherwise it is (still) x .

The random walk Metropolis is obtained when y = x + ǫ with
ǫ ∼ f , f symmetric, usually N(0,V ).

If P(y |x) = P(y) then we have the independent Metropolis

sampler (acceptance ratio is modified).
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Adapting the proposal

How to determine what is a good proposal distribution? This
is particularly difficult when S is a high dimensional space.

Many MCMC algorithms are ”adaptive” in some sense, e.g.
adaptive directional sampling, multiple-try Metropolis with
independent and dependent proposals, delayed rejection
Metropolis ...

Adaptive MCMC algorithms are designed to automatically
find the ”good” parameters of the proposal distribution (e.g.
variance V ).
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Adaptive Metropolis

Non-Markovian Adaptation (Haario, Saksman and Tamminen
(HST); Bernoulli, 2001). Learn the geography of the
stationary distribution ”on the fly”. Involves re-using the past
realisations of the Markov chain to modify the proposal
distribution of a random walk Metropolis (RWM) algorithm.

Suppose the random-walk Metropolis sampler is used for the
target π. The proposal distribution is q(y |x) = N(x ,Σ)

After an initialisation period, we choose at each time t the
proposal qt(y |xt) = N(xt ,Σt) where Σt ∝ SamVar(X̃t) and
X̃t = (X1, . . . ,Xt).

This choice is based on optimality results for the variance of a
RWM in the case of Gaussian targets. (Roberts and
Rosenthal, Stat. Sci., ’01; Bedard, ’07)
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Adaptive Metropolis (cont’d)

HST extend the idea to componentwise adaptation for MCMC
(Metropolis within Gibbs) as a remedy for slow adaptation in
large dimensional problems.

Gåsemyr (Scand. J. Stat., 2005) introduces an independent
adaptive Metropolis.

Andrieu and Robert (2002) and Andrieu and Moulines (Ann.
Appl. Prob., 2006) prove that the adaptation can be proved
correct via theory for stochastic approximation algorithms.

Roberts and Rosenthal (2005) introduce general conditions
that validate an adaptive scheme. They also introduce scary
examples where intuitively attractive adaptive schemes fail
miserably.

Giordani and Kohn (JCGS, 2006) use mixture of normals for
adaptive independent Metropolis.
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Theory for AMCMC

Consider an adaptive MCMC procedure, i.e. a collection of
chain kernels {Tγ}γ∈Γ each of which has π as a stationary
distribution. One can think of γ as being the adaption

parameter.

Simultaneous Uniform Ergodicity: For all ǫ > 0 there is
N = N(ǫ) such that ||TN

γ (x , ·) − π(·)||TV ≤ ǫ for all
x ∈ S, γ ∈ Γ.

Let Dn = supx∈S ||Tγn+1(x , ·) − Tγn(x , ·)||TV .
Diminishing Adaptation: limn→∞ Dn = 0 in probability.
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Theory of AMCMC - cont’d

Suppose that each Tγ is a Metropolis-Hastings algorithm with
proposal distribution Pγ(dy |x) = fγ(y |x)λ(dy).

If the adaptive MCMC algorithm satisfies Diminishing
Adaptation

and if λ is finite on S

and if fγ(y |x) is uniformly bounded

and if for each fixed y ∈ S the mapping (x , γ) → fγ(y |x) is
continuous

Then the adaptive algorithm is ergodic.
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What’s Next?

What Remains to Be Done

”Although more theoretical work can be expected, the existing
body of results provides sufficient justification and guidelines to
build adaptive MH samplers for challenging problems. The main
theoretical obstacles having been solved, research is now needed to
design efficient and reliable adaptive samplers for broad classes of
problems.” (Giordani and Kohn)
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Two Practical Issues

Multimodality is a never-ending source of headaches in
MCMC.

Adaptive algorithms are particularly vulnerable to this - quality
of initial sample is central to the performance of the sampler.

”Optimal” proposal may depend on the region of the current
state.

What to do if regions are not exactly known but they are
approximated.
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CLAWS: A simple example

Consider sampling from a mixture of two 10-dimensional
multivariate normals

π(x |µ1, µ2,Σ1,Σ2) = 0.5n(x ;µ1,Σ1) + 0.5n(x ;µ2,Σ2)

with µ1 − µ2 = 6, Σ1 = I10 and Σ2 = 4I10.

A RWM chain started in one of the modes needs to run for a
very long time before it visits the other mode. Even longer if
dimension is higher. Adaptive RWM cannot solve the problem
unless the chain visits both modes.

Idea: Handle Multimodality via Parallel Learning from
Multiple Chains.
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Inter-chain Adaptation (INCA)

Run multiple chains started from a initialising distribution that
is overdispersed w.r.t. π.

Learn about the geography of the stationary distribution from
all the chains simultaneously. Apply the changes to all the
transition kernels simultaneously.

At all times the parallel chains have the same transition
kernels. The only difference is the region of the space explored
by each chain.

Use the past history from all the chains to adapt the kernel.

This is different from using an independent chain for
adaptation only (R & R, 2006).
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INCA (cont’d)

Suppose we run in parallel K chains. After m realisations

{X
(i)
1 , . . . ,X

(i)
m : 1 ≤ i ≤ K} we assume that each chain runs

independently of the others using transition kernel Tm.

If we consider the K chains jointly, since the processes are
independently coupled, the new process has transition kernel

T̃m(x̃ , Ã) = Tm(x1,A1) ⊗ Tm(x2,A2) ⊗ . . . ⊗ Tm(xK ,AK ),

where Ã = A1 × . . . × AK and x̃ = (x1, . . . , xK ).
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INCA for RWM

RWM with Gaussian proposal of variance H.

Suppose K = 2. After an initialisation period of length m0 at
each m > m0 we update the proposal distribution’s variance

using Hm = Var(X
(1)
m ,X

(2)
m ), where X

(i)
m are all the realisations

obtained up to time m by the i -th process. The values for all
chains are used to compute the sample variance Hm.
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INCA for RWM

Show that if

Dm = sup
x∈S

||Tm+1(x , ·) − Tm(x , ·)||,

then Dm → 0 using an argument similar to that used by HST
or R&R since Hm+1 differs from Hm by O(m−1).

Joint adaptive ergodicity is implied by marginal adaptive
ergodicity since ∀x , y ∈ S

sup
A,B

||T̃m(x , y ;A × B) − π(A)π(B)|| =

= sup
A,B

||Tm(x ,A)Tm(y ,B) − π(A)π(B)|| ≤

≤ sup
A

||Tm(x ,A) − π(A)|| + sup
B

||Tm(y ,B) − π(B)|| → 0.



Brief Review Some Theoretical Tools Can’t Learn whAt We don’t See (CLAWS) ANTagonistic LEaRning (ANTLER) Conclusions

Example Revisited

π(x) = 0.5n10(x ;µ1,Σ1) + 0.5n10(x ;µ2,Σ2), N = 250, 000.
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Example Revisited
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Alternative Implementation: Collapsible INCA

0 5000 10000 15000 20000 25000
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Evolution of BGR statistics

Iteration

R

Once the BGR diagnostic statistic has stabilised around 1, we
could collapse all chains into one.

Only one of the K chains continues to run but its past history
is enriched using the K past histories.

BGR is not used here as a convergence indicator but rather as
a measure of the amount of information exchanged between
the parallel chains.
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Tempered INCA (TINCA)

Natural extension of the INCA idea: run parallel chains at
higher temperature T .

Perform Adaptation while simultaneously ”cooling off”.

Gradual learning can be sped-up at higher-than-normal
temperatures.
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Tempered distributions

Contour plot with T=1 
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Tempered dist’ns: πT (x) = π(x)1/T

.
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TINCA cont’d

Suppose we use tempered target distribution πη = π1/η ,
η ∈ {1, . . . ,T}.

Step I For each temperature η we run INCA until the BGR
diagnostic stabilises around 1.

Step II We decrease η to η − 1 and redo Step I.

The kernel learned at temperature η is assumed to be
”reasonable” for initial sampling at temperature η − 1.

This can be particularly effective when it is difficult to concoct
a reasonably good initial proposal.
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TINCA: Example Revisited
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Multi chain tempered adaptation

We used 5 chains and T ∈ {16, 8, 4, 2, 1}. Number of iterates
needed for R ≤ 1.1: 1200 + 420 + 1000 + 880 + 6300 ≈ 10000.
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Misleading?

OK ? ?
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Antagonistic Learning (ANTLER)

Consider sampling using RWM from a distribution π with
support in S ⊂ Rd .

Suppose S = S1 ⊎ S2 is such that depending on whether the
current value of the chain is in S1 or in S2 the optimal
variance of the RWM proposal is different.

We can construct examples where by collapsing the samples
from the two regions we adaptively evolve towards a variance
that is unsuitable for both S1 and S2.

What type of adaptive algorithms can we design to remedy
this problem?
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RAPT
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Regional Adaptation (RAPT)

Simplest scenario: assume that the regions S1,S2 are known.
Then we can perform regional adaptation within each region
(see also R & R).

Requires some care in designing the adaptive algorithm. If we
use proposal P1 in S1 and P2 in S2, respectively, then the
acceptance ratio is (see also R & R’s regional adaptation).

r(x , xnew ) =















π(xnew )
π(x) , if x , xnew ∈ Si

π(xnew )p1(x |xnew )
π(x)p2(xnew |x) , if x ∈ S2, xnew ∈ S1

π(xnew )p2(x |xnew )
π(x)p1(xnew |x) , if x ∈ S1, xnew ∈ S2.
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Regional Adaptation (RAPT)

Hard: find a way to determine the partition S = S1 ⊎ S2 (or
S = S1 ⊎ S2 ⊎ S3 ⊎ . . .)

Short of that, we can allow for some uncertainty regarding the
distribution to be used in each Si . i.e. we sample from a
mixture of proposals.

The mixture proportions are allowed to vary between regions
and are adaptively adjusted based on the past realisations.

In addition, the distributions entering the mixture are also
adapted based on past realisations.
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RAPT- Regions are approximated

In each region Sj we sample using the proposal

P̃(Xt , ·) =

2
∑

i=1

λ
(j)
i Pi (Xt , ·), j = 1, 2.

Each Pi is adapted using samples from Si .

The mixture weights λ
(j)
i (t) are also adapted.
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RAPT (con’d)

For instance, λ
(j)
i =

n
(j)
i

(t)
PK

h=1 n
(j)
h

(t)
and

n
(j)
i (t) = #{ accepted moves up to time t when

the proposal dist’n is Pi and

the state of the chain is in Sj}.

Will tend to favor proposals with high acceptance rates; these
are usually the ones creating ”small jumps” and thus not
necessarily the best for our purpose.
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RAPT (con’d)

Alternatively,

λ
(j)
i =

d
(j)
i (t)n

(j)
i (t)

∑K
h=1 d

(j)
h (t)n

(j)
h (t)

where,

d
(j)
i (t) = average square root jump distance up to time t

when the proposal dist’n is Pi and

the state of the chain is in Sj .

One could create more complicated weights based also on the
”landing place” of the proposal, e.g. whether modes have
been switched, how often, etc.
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ANTLER: A simple example

π(x) = 0.5n3(x |µ,Σ) + 0.5n3(x |µ
′,Σ′) with µ = (4, 2, 3)T ,

µ′ = (−4,−2,−3)T and Σii = 0.5, Σij = 0.3, Σ′
ii = 1, Σ′

ij = −0.4.
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Example Revisited: Regions are known

Define S1 = {(x1, x2, x3) : x1 < 0} and S2 = S̄1.

Global Adaptation Regional Adaptation
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After 250,000 iterations the regional adaptation algorithm has
produced

Σ̂ =





0.506 0.303 0.303
0.303 0.499 0.301
0.303 0.301 0.498



 , Σ̂′ =





0.974 −0.389 −0.392
−0.389 0.982 −0.395
−0.392 −0.395 0.986



 .

The non-regional one:

Σ̂ =





8.454 3.990 5.982
3.990 2.529 3.018
5.982 3.018 5.044



 .
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Simulation Results - Approximate Regional Adaptation

• Define S1 = {(x1, x2, x3) : x1 < 1.5} and S2 = S̄1.
• Use the acceptance ratio based mixture weights.
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Independent Sampling
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Approximate Regional Adaptive Sampling
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Simulation Results

Using the acceptance ratio-based weights after 506, 000 samples
the two sample variances in the two regions are:

Σ̂ =





0.502 0.299 0.304
0.299 0.506 0.304
0.304 0.304 0.507



 , Σ̂′ =





0.956 −0.393 −0.354
−0.393 1.017 −0.417
−0.354 −0.417 0.971



 .

λ
(1)
1 = 0.96,

λ
(2)
1 = 0.76.
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Simulation Results - Approximate Regional Adaptation

• Define S1 = {(x1, x2, x3) : x1 < 1.5} and S2 = S̄1.
• Use the acceptance ratio & square root mean jump distance
mixture weights.
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Independent Sampling
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Approximate Regional Adaptive Sampling
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Simulation Results

Weights based on the acceptance proportion & square root mean
square jump, N = 506, 000, the two sample variances in the two
regions are:

Σ̂ =





0.504 0.300 0.300
0.300 0.499 0.300
0.300 0.299 0.497



 , Σ̂′ =





1.010 −0.405 −0.402
−0.405 1.003 −0.398
−0.402 −0.398 1.012



 .

λ
(1)
1 = 0.48,

λ
(2)
1 = 0.12.
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Conclusions & Discussion

INCA can be used not only for Random Walk Metropolis but
also for other MCMC algorithms, e.g. Independence
Metropolis.

INCA can also be implemented with other adaptive schemes,
such as the kernel method of Giordani and Kohn (2006).

RAPT should be used in combination with INCA as
adaptation within each region does not ensure good traffic
between regions.

One possible approach is to augment the mixture to include
an additional kernel who is adapted using realisations from all
the regions.

INCA and RAPT could and probably should be used together
for improved efficiency.

More complex examples need to be studied to better
understand the strengths and weaknesses of the methods
proposed here.


	Brief Review
	Super-short Intro to MCMC
	Adaptive Metropolis

	Some Theoretical Tools
	Some (NOT ALL!) Theory for Adaptive MCMC (AMCMC)

	Can't Learn whAt We don't See (CLAWS)
	The Problem
	INter-Chain Adaptation (INCA)
	Tempered INCA (TINCA)

	ANTagonistic LEaRning (ANTLER)
	The Problem
	Regional AdaPTation (RAPT)

	Conclusions
	Discussion


