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Abstract
We introduce a pricing model for equity options in which sample paths follow
a variance-gamma (VG) jump model whose parameters evolve according to a
two-state Markov chain process. As in GARCH type models, jump sizes are
positively correlated to volatility. The model is capable of justifying the
observed implied volatility skews for options at all maturities. Furthermore,
the term structure of implied VG kurtosis is an increasing function of the time
to maturity, in agreement with empirical evidence. Explicit pricing formulae,
extending the known VG formulae, for European options are derived. In
addition, a resummation algorithm, based on the method of lines, which
greatly reduces the algorithmic complexity of the pricing formulae, is
introduced. This algorithm is also the basis of approximate numerical
schemes for American and Bermudan options, for which a state dependent
exercise boundary can be computed.

1. Introduction
Several lines of research in pricing theory involve the extension
of the pioneering work of Black and Scholes (1973) and Merton
(1976). Black–Scholes and Merton had demonstrated that
the price of plain vanilla options could be reduced to the
estimation of a single quantity—the volatility of the underlying
stock, under the assumption that the underlying stock follows
a geometric Brownian process. Much effort has been put into
improving this basic model with the hope of removing three
inherent biases: volatility smiles, skewness and term structure
premiums. These biases indicate the market incongruity
with the assumption that the underlying stock follows a
geometric Brownian process. There are in essence three
distinct directions that researchers have followed: one line
postulates that the volatility parameter depends on stock prices
and attempts to capture the correlation between asset price
levels and volatility. Non-parametric specifications have been
investigated by Derman and Kani (1994) and Dupire (1994).
Closed form generalizations of the Black–Scholes formula

are based on the constant-elasticity-of-variance (CEV) model
by Cox and Ross (1976) or on the three-parameter family of
quadratic volatility models in the works of Ingersoll (1997) and
Rady (1997); the two five-parameter families recently found
by Albanese et al (2001a) are an alternative which include as
particular cases, and extend, both quadratic and CEV models.
A second line of research attempts to model the volatility as a
stochastic process correlated with stock price returns, either
through independent risk factors as in the models by Hull
and White (1987) or through a GARCH model as in Duan
(1996). A third line is based on the postulate that the underlying
follows a jump process, as in the variance-gamma (VG) model
introduced in Madan et al (1998). Jump models are able
to explain the skew of implied volatility but fail to capture
the term structure of implied kurtosis, a feature that is better
explained by stochastic volatility models. State dependent
volatility models exploit the correlation between volatility and
price movements and are well suited for providing real world
usable hedging strategies.
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The various families of pricing models are complementary
and capture different empirical aspects of stock price
processes. Combining the features of the various strands
of research under one framework is interesting but presents
technical challenges. In this paper we study a model which
combines jumps with stochastic volatility, and develop new
techniques that drastically reduce the complexity in the
calculation of prices to a practical and implementable level.

Konikov and Madan (2000) introduce an extension of
the VG model in which the parameters switch, according to
a two-state Markov chain, between two fixed sets of values
at infinitesimal time intervals. In this paper, we consider
a model defined in a similar manner, except that switching
occurs at finite time intervals, which in applications have
a typical duration of about 3–5 weeks. In this setting, it
is still possible to derive pricing formulae in closed form
for European options. However, the resulting expressions
have a complex combinatorial structure whose numerical
evaluation is not practically viable. To overcome this difficulty,
we introduce a resummation scheme that greatly reduces
the algorithmic complexity by exploiting systematic sign
cancellations between the many terms in the combinatorial
expression and reduces the computational complexity to an
acceptable level. Our algorithm is based on the model of
lines, introduced by the present authors (Albanese et al 2001b,
2001c) to streamline the pricing problem for the ordinary
VG model. The model of lines has the additional advantage
of allowing approximate solutions for the prices of barrier,
American and Bermudan options to be constructed. Since the
volatility is locally constant, a double boundary, one for each
state of the world, defines the optimal exercise policy. The
model contains seven parameters that allow the adjustment of
several moments of the return distributions and allows the term
structure of implied VG kurtosis to be matched.

2. The VG model
To begin, it is instructive to review some of the salient features
of the standard VG model (for further details the reader is
referred to Madan et al (1998)). The VG process is given by
a Brownian motion evaluated at a random time, driven by a
gamma process. The stock price process, in the risk-neutral
measure, is postulated to be

St = S0 exp{ωt + X�t (ν)(θ; σ)}
where Xτ(θ; σ) is a Brownian process evaluated at time τ with
drift θ and volatility σ ; �t(ν) is a gamma process evaluated
at time t with variance rate ν, mean rate unity and density
function given by

f�t (ν)(g) = g
t
ν
−1e− g

ν

�( t
ν
)ν

t
ν

.

The drift parameter ω is chosen so that the discounted stock
price is a martingale, i.e. so that risk-neutrality, and hence put-
call parity, is maintained,

E[e−RF tSt | S0] = S0 ⇒ ω = RF +
1

ν
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Figure 1. Implied term structure of the variance rate for S&P500
options.

The characteristic function for the VG process can be written as
a convolution, by first conditioning on the gamma time change
and then integrating over all possible times weighted by the
gamma density,

φV Gt (σ,θ,ν)(p) = E[eipXt ] = (1 − iθνp + 1
2σ 2νp2)−

t
ν . (2)

Although the VG process is built on a diffusion process, it is
truly a pure jump process with infinite activity. This can be
verified by writing the characteristic function as a product of
two gamma process characteristic functions, one with positive
jumps and the other with negative jumps.

Just as the limitations of the Black–Scholes model are
reflected by the implied volatility skew, the limitations of the
VG model are reflected by the term structure of the implied
variance rate ν. In figure 1, the term structure of implied ν for
options on the S&P500 index is shown. In the following we
will demonstrate that this term structure can be explained by
the stochastic two-state extension of the VG model proposed
in this paper.

3. The two-state variance gamma model
The ability of the VG model to capture implied volatility skews
has made it the pricing tool of choice, and it is now widely used
in production by leading financial institutions. The model is,
however, limited in its ability to replicate the term structure
of implied volatility at fixed strike. It tends to predict a decay
rate which is substantially higher than the rate implied through
quoted option prices. There are many enhancements of the VG
model that can help to account for this discrepancy. Adding a
stochastic volatility component to the process stands out as an
economically meaningful one.

In this paper, we propose a model with two states of the
world, each characterized by its own set of VG parameters. In
a departure from the model by Konikov and Madan (2000),
the time-interval, �t , over which a single state of the world
prevails is postulated to be finite. In applications, �t would
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typically be between 3 and 5 weeks. The two possible states
are denoted with the subscripts + and −, corresponding to
highly volatile and tranquil periods. The volatility, skewness
and variance rate in the ± state are taken to be σ±, θ± and ν±
respectively. To incorporate an auto-regressive effect into the
model, the state probabilities are postulated to be contingent
on the current state of the world. Let q± denote the probability
that the ± state persists in the next time step. The stock price
process over the next period is therefore taken as

St+�t |± = Ste
X�t |±

contingent on the current state of the world ±. The density
functions for X�t |± are

fX�t |−(x) = q−fV G�t (σ−,θ−,ν−)(x − ω−�t)

+ (1 − q−)fV G�t (σ+,θ+,ν+)(x − ω+�t)

fX�t |+(x) = (1 − q+)fV G�t (σ−,θ−,ν−)(x − ω−�t)

+ q+fV G�t (σ+,θ+,ν+)(x − ω+�t).

(3)

The drifts ω± appearing in (3) are determined by enforcing
risk-neutrality for both states of the world individually and are
given by the expression in equation (1) with σ → σ±, θ → θ±
and ν → ν±.

Although the N -step distribution can be written as
a convolution, the auto-regressive nature of the process
introduces technical complications. Referring the reader
interested in the detailed calculations to the appendix, the
N -step characteristic function is recorded here,

φXN�t |−(p) =
N∑

n=0

αN
n (q−, q+)q

N−n
+ qn

−(eiω−�tpφ−(p))n

× (eiω+�tpφ+(p))N−n. (4)

The state of the world just prior to the next period inception was
assumed to be −; the characteristic function when that state is
+ follows by the replacement − ↔ + in equation (4). φ±(p)

denotes the conditional VG characteristic function and is given
by the expression in equation (2) with σ → σ±, θ → θ± and
ν → ν±. The effective combinatorial weights αN

n (q−, q+) are
defined as follows:

αN
n (q−, q+)

=




1, n = N

((N − 1)Q+ + 1)Q−, n = N − 1

1
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)(
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i − 2
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(
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1

Q+

) N
2 −| N

2 −n|∑
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(
N − n − 1

i − 1

)

×
(

n − 1

i − 1

)
(Q−Q+)

i +

N+1
2 −| N+1

2 −n|∑
i=2

(
N − n − 1

i − 2

)

×
(

n − 1

i − 1

)
(Q−Q+)

i−1 2 � n � N − 2

((N − 2)Q−Q+ + Q+ + 1)Q−, n = 1

Q−, n = 0

(5)

where the Q± are the probability ratios:

Q− ≡ (1 − q−)

q+
and Q+ ≡ (1 − q+)

q−
.

Note that when q− → 1−q+, the probability ratios Q−, Q+ →
1, and α reduces to the usual binomial combinatorial factor,(
N

m

)
. Consequently, Q± is a measure of auto-regression in the

model.

4. The pricing of contingent claims
4.1. European prices—characteristic function
method

To ensure the absence of arbitrage, the price of a European
style contingent claim is equal to the discounted expectation
of the terminal payoff, ϕ(ST ), under the risk-neutral measure
Q,

P(St ) = E
Q[e−RF (T −t)ϕ(ST ) | St ; ±].

The N -period characteristic function in (4) can be used
to obtain prices of European options within the two-state
extension of the VG model. In terms of the characteristic
function, the price function at time N�t is

P(St ) = e−RF N�t
N∑

n=0

αN
n (q−, q+)q

N−n
+ qn

−

×
∫ ∞

−∞
dy ϕ(Sey)

∫ ∞

−∞

dp

2π
e−ip(y+x

(N)
n )φn

−(p)φN−n
+ (p)

(6)

where

x(N)
n ≡ −(nω− + (N − n)ω+)�t. (7)

The integration over p can be performed as a power series
via contour integration when4 �t = ν+ = ν− = ν. Such a
choice also allows for an elegant solution to path-dependent
pricing problems as illustrated in the next section. In that case,
denoting the integral over p by f N

n (y), we find that

(σ 2
−ν−)n(σ 2

+ ν+)
N−n

2N
f N

n (y)

=




− eδ−(y+x
(N)
n )

n−1∑
k=0

(n − 1)!

k!
Cn,N−n

δ−,γ−,δ+,γ+
(k)(y + xN

n )k

− eδ+(y+x
(N)
n )

N−n−1∑
k=0

(N − n − 1)!

k!

× CN−n,n
δ+,γ+,δ−,γ−(k)(y + xN

n )k, y � −x(N)
n

eγ−(y+x
(N)
n )

n−1∑
k=0

(n − 1)!

k!
Cn,N−n

γ−,δ−,γ+,δ+
(k)(y + xN

n )k

+ eγ+(y+x
(N)
n )
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k=0

(N − n − 1)!

k!
;

× CN−n,n
γ+,δ+,γ−,δ−(k)(y + xN

n )k, y < −x(N)
n

4 This can be easily extended to the case when ν+ is an integer multiple of ν−
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the exponential decay rates are

γ± =
θ± +

√
θ2± + 2 σ 2±

ν

σ 2±
> 0

and

δ± =
θ± −

√
θ2± + 2 σ 2±

ν

σ 2±
< 0 (8)

and the series coefficients are

Cn1,n2
α,β,λ,κ (k) = (−1)k+n2

n1−1−k∑
l=0

n1−1−k−l∑
m=0

× (n1 + l − 1)!(n2 + m − 1)!(n2 + n1 − k − m − l − 2)!

l!m!(n1 − 1 − k − m − l)!(n1 − 1)!((n2 − 1)!)2

× (α − β)−(n1+l)(α − λ)−(n2+m)(α − κ)−(n1+n2−1−k−m−l).

Since the density functions f N
n (y) are polynomials times

an exponential weighting factor, the integration over the y-
variable in the pricing equation can be carried out explicitly for
piece-wise continuous payoffs that are polynomial functions of
the terminal stock price. This leads to the final pricing formula.

Although this is a complete closed form solution to the
pricing problem, it contains five summations, each of order
N , the number of ν time steps to maturity. Furthermore, if the
price with maturity n�t is known, this formula does not supply
an easy way to compute the price with maturity (n + 1)�t .
Hence, the algorithmic complexity for evaluating the implied
volatility surface is O(N6) polynomial evaluations, where N is
the number of ν time steps to maturity. If options of maturity
up to 2 years are being valued and ν is of the order of 1 month,
the algorithmic complexity is well beyond acceptable limits.

In the next section, we show that a variant of the model of
lines reduces the algorithmic complexity to O(N2) polynomial
evaluations, rendering calculations practically viable.

4.2. European prices—model of lines method
4.2.1. The model of lines. In Albanese et al (2001b, 2001c),
the authors developed the model of lines, which can be regarded
as the analogue of the binomial tree approximation for the VG
model. The model of lines provides closed form solutions for
VG prices for particular choices of model parameters, without
any approximation error. In this paper, we extend the model
of lines to the two-state stochastic volatility model introduced
in the previous section.

The price of a claim in the VG model which matures in
time �t = ν, with payoff ϕ(St+�t ), is shown in Albanese
et al (2001b, 2001c) to solve the following ordinary differential
equation:

− 1

�t
[P(St ) − e−RF �tϕ(eω�tSt )] + DSP (St ) = 0

where DS ≡ 1
2σ 2S2∂2

S + (θ + 1
2σ 2)S∂S (9)

which when applied recursively computes the price on the nth
line and constitutes what was termed the model of lines. Note
that a discount factor appears in front of the payoff function,
ensuring that bonds are correctly priced. The spot price in
the payoff function is scaled, so that when conditioning on

the financial time the stock drifts with rate θ . Finally, the
operator DS contains no constant term, i.e. the term −RF P (St )

is missing in the model of lines. On reflection it is clear
that such a term must be absent, because in financial time no
discounting occurs and risk neutrality holds only in real time.
The interested reader is referred to Albanese et al (2001b,
2001c) for further details, explanations and a proof of this
result.

It is possible to reformulate the model of lines to price
instruments in a two-state environment. Consider a European
option maturing in a single time step �t . At the current time,
only the present state of the world is known, and the future
state has not yet revealed itself. The two conditional prices
depending on the current state of the world are (see (3))

P−(S) = e−RF �t
E

Q[eX�t |− ] = q−p−(S) + (1 − q−)p+(S)

(10)

P+(S) = e−RF �t
E

Q[eX�t |+ ] = (1−q+)p−(S)+q+p+(S). (11)

Here, the pricing functions p±(S) ≡ PV G(S, �t, σ±, θ±, ν±,

RF ) denote prices conditional on the state of the world over
the next time step, and PV G(S, τ, σ, θ, ν, RF ) is the price of
the claim in the VG model with spot S, time to maturity τ ,
volatility σ , skewness θ , variance rate ν and risk-free rate RF .

If the variance rates ν± are both set equal to the time step
�t , the conditional prices p±(S) must satisfy a differential
equation of the form (9),

− 1

�t
[p±(S) − e−RF �tϕ(eω±�tS)] + D±

S p±(S) = 0 (12)

where D±
S denotes the differential operator appearing in (9)

with σ → σ± and θ → θ±. These prices can be used to obtain
the unconditional prices P±(S). The conditional prices on the
next line are then obtained recursively by applying (12) once
again with payoff equal to the current unconditional prices:
ϕ(S) = P±(S). This leads to the following system of ODEs
for the prices on the nth line (the prices are now measured in
units of the strike K):

D±
x p

(n)
± (x) = −�t−1e−RF �tP

(n−1)
± (x + ω±�t),

P
(n)
− (x) = q−p

(n)
− (x) + (1 − q−)p(n)

+ (x),

P (n)
+ (x) = (1 − q+)p

(n)
− (x) + q+p

(n)
+ (x),

P
(0)
± (x) = 1

K
ϕ(x)

(13)

where x ≡ ln(S/K) denotes the moneyness parameter and the
differential operators are defined as

D±
x ≡ 1

2σ 2
±∂2

x + θ±∂x − �t−1. (14)

A pictorial representation of this system is shown in figure 2.

4.2.2. The pricing function. The system in equation (13)
can be solved explicitly when the payoff is a piecewise
continuous polynomial in the terminal stock price. In
particular, suppose the payoff is that of a European put ϕ(x) =
(K − ex)+. Without restricting generality, we can assume that
ω+ < ω−. An ansatz which satisfies the differential-difference
system as well as the boundary conditions for the conditional
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prices is

p
(n)
−

=




n−1∑
m=0

{
a−(n)0

m e−γ+(x−x
(n)
1 ) + c−(n)0

m e−γ−(x−x
(n)
1 )

}
(x − x

(n)
1 )m,

x > x
(n)
1

u
−(n)
1 (e−RF n�t − ex) +

n−1∑
m=0

{(
a−(n)1

m e−γ+(x−xn
2)

+ b−(n)1
m e−δ+(x−x

(n)
2 )

)
+

(
c−(n)1
m e−γ−(x−x

(n)
2 )

+ d−(n)1
m e−δ−(x−x

(n)
2 )

)}
(x − x

(n)
2 )m,

x
(n)
2 < x � x

(n)
1

...

u
−(n)
n−1 (e−RF n�t − ex) +

n−1∑
m=0

{(
a−(n)n−1

m e−γ+(x−x
(n)
n )

+ b−(n)n−1
m e−δ+(x−x

(n)
n )

)
+

(
c−(n)n−1
m e−γ−(x−x

(n)
n )

+ d−(n)n−1
m e−δ−(x−x

(n)
n )

)}
(x − x(n)

n )m,

x(n)
n < x � x

(n)
n−1

e−RF n�t − ex +
n−1∑
m=0

{
b−(n)n

m e−δ+(x−x
(n)
n+1)

+ d−(n)n
m e−δ−(x−x

(n)
n+1)

}
(x − x

(n)
n+1)

m,

x � x(n)
n

(15)

and

p(n)
+

=




n−1∑
m=0

{
a+(n)0

m e−γ+(x−x
(n)
0 ) + c+(n)0

m e−γ−(x−x
(n)
0 )

}
(x − x

(n)
0 )m,

x > x
(n)
0

u
+(n)
1 (e−RF n�t − ex) +

n−1∑
m=0

{(
a+(n)1

m e−γ+(x−x
(n)
1 )

+ b+(n)1
m e−δ+(x−x

(n)
1 )

)
+
(
c+(n)1
m e−γ−(x−x

(n)
1 )

+ d+(n)1
m e−δ−(x−x

(n)
1 )

)}
(x − x

(n)
1 )m,

x
(n)
1 < x � x

(n)
0

...

u
+(n)
n−1(e

−RF n�t − ex) +
n−1∑
m=0

{(
a+(n)n−1

m e−γ+(x−x
(n)
n−1)

+ b+(n)n−1
m e−δ+(x−x

(n)
n−1)

)
+

(
c+(n)n−1
m e−γ−(x−x

(n)
n−1)

+ d+(n)n−1
m e−δ−(x−x

(n)
n−1)

)}
(x − x

(n)
n−1)

m,

x
(n)
n−1 < x � x

(n)
n−2

e−RF n�t − ex +
n−1∑
m=0

{
b+(n)n

m e−δ+(x−x
(n)
n )

+ d+(n)n
m e−δ−(x−x

(n)
n )

}
(x − x(n)

n )m, x � x
(n)
n−1

(16)

where the region boundaries, x
(n)
l , are given by (7). The

factors appearing in the exponentials, −γ± and −δ±, are the
positive and negative roots of the characteristic polynomials,
ch±(s) = 1

2σ 2
±s2+θ±s−�t−1, of the differential operators D±

x ,
and have already appeared in equation (8). There are three
main regions in the solution corresponding to the option being
in the money with respect to both states of the world (purple
region in figure 3), in the money with respect to one and
out of the money with respect to the other state of the world
(blue region in figure 3) and finally out of the money with
respect to both states of the world (red region in figure 3).
Furthermore, the prices p− and p+ have different upper and
lower region boundaries, while the interior ones overlap. There
are in general three typical kinds of behaviour for the region
boundaries themselves: if ω± > 0 then both boundaries
constantly decrease, if ω+ < 0 while ω− > 0 then the
upper boundary increases while the lower one decreases and if
ω± < 0 then both boundaries continually increase. In principle
any of the three kinds of behaviour is possible, and as such no
assumptions on the signs of ω± are made. Figure 3 depicts the
situation with ω+ < 0 and ω− > 0. The intermediate region
in this figure is reminiscent of the recombining binomial tree
in the CRR model (Cox et al 1979).

The corresponding ansätze for the unconditional prices,
P

(n)
± , are as follows:

P
(n)
± =




n−1∑
m=0

{
a±(n)0

m e−γ+(x−x
(n)
0 ) + c±(n)0

m e−γ−(x−x
(n)
0 )

}
(x − x

(n)

0 )m,

x > x
(n)

0

u
±(n)

1 (e−RF n�t − ex) +
n−1∑
m=0

{(
a±(n)1

m e−γ+(x−x
(n)
1 )

+ b±(n)1
m e−δ+(x−x

(n)
1 )

)
+

(
c±(n)1

m e−γ−(x−x
(n)
1 )

+ d±(n)1
m e−δ−(x−x

(n)
1 )

)}
(x − x

(n)

1 )m,

x
(n)

1 < x � x
(n)

0

...

u±(n)
n (e−RF n�t − ex) +

n−1∑
m=0

{(
a±(n)n

m e−γ+(x−x
(n)
n )

+ b±(n)n
m e−δ+(x−x

(n)
n )

)
+

(
c±(n)n

m e−γ−(x−x
(n)
n )

+ d±(n)n
m e−δ−(x−x

(n)
n )

)}
(x − x(n)

n )m,

x(n)
n < x � x

(n)

n−1

e−RF n�t − ex +
n−1∑
m=0

{
b±(n)n+1

m e−δ+(x−x
(n)
n+1)

+ d±(n)n+1
m e−δ−(x−x

(n)
n+1)

}
(x − x

(n)

n+1)
m,

x � x(n)
n .

(17)

Inserting the ansätze (15)–(17) into the differential-
difference system (13) forces the coefficients for the
conditional prices to satisfy the following set of recurrence
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Figure 2. A pictorial representation of the chain of pricing
functions in the two-state model of lines.

relations:

p−




a−(n)i
m = ψ−

m (a−(n)i , a−(n)i , γ+)

b−(n)i
m = ψ−

m (b−(n)i , b−(n)i , δ+)

c−(n)i
m = �−

m(c−(n)i , c−(n)i , γ−)

d−(n)i
m = �−

m(d−(n)i , d−(n)i , δ−)

u−(n)i
m = u−(n−1)i

m

(18)

p+




a+(n)i
m = �+

m(a+(n)i , a+(n)i , γ+)

b+(n)i
m = �+

m(b+(n)i , b+(n)i , δ+)

c+(n)i
m = ψ+

m(c+(n)i , c+(n)i , γ−)

d+(n)i
m = ψ+

m(d+(n)i , d+(n)i , δ−)

u+(n)i
m = u+(n−1)i

m

(19)

where the functions ψ and � are

ψ±
m (z(n), z(n), κ) = −

e−RF �t

�t
z

(n−1)
m−1 + 1

2m(m + 1)σ 2
±z

(n)
m+1

(θ± − σ 2±κ)m
,

1 � m � n − 1

�±
m(z(n), z(n), κ)

=




− 1

ch±(−κ)

[
(θ± − σ 2

±κ)(m + 1)z
(n)
m+1

+
1

2
(m + 1)(m + 2)σ 2

±z
(n)
m+2 +

e−RF �t

�t
z(n−1)

m

]
,

0 � m � n − 2

0, m = n − 1.

The coefficients of the unconditional prices are obtained
via relations of the form

a−(n)i
m =




(1 − q−)a+(n)0
m + q−e−γ+(x

(n)
0 −x

(n)
1 )

n−1∑
l=m

(
l

m

)
a

−(n)0
l

× (x
(n)
0 − x

(n)
1 )l−m, i = 0

(1 − q−)a+(n)i
m + q−a−(n)i−1

m , 1 � i � n

(20)

for a± and c±, while b± and d± are determined by relations

of the form

b−(n)i
m =




q−b−(n)i−1
m + (1 − q−)b+(n)i

m , 1 � i � n

q−b−(n)n
m + (1 − q−)e−γ+(x

(n)
n+1−x

(n)
n )

n−1∑
l=m

(
l

m

)
b

+(n)n
l

× (x
(n)
n+1 − x(n)

n )l−m, i = n + 1
(21)

and finally

u−(n)i
m =




q−u
−(n)
1 + (1 − q−)u

+(n)
1 , i = 1

q−u
−(n)
i−1 + (1 − q−)u

+(n)
i , 2 � i � n − 1

q−u
−(n)
n−1 + (1 − q−)u

+(n)
n−1, i = n

(22)
These recurrence relations are not sufficient to determine the
m = 0 coefficients obtained by using the function ψ . Rather,
those coefficients are determined by enforcing continuity in the
conditional pricing functions and their deltas at the boundaries
between solution regions. This leads to a simple linear system
which can be easily solved.

4.3. American option prices

American style options are priced by solving an optimal
stopping time problem. For example, the price of an American
put option is

P (S, T ) = sup
τ∈(0,T ]

E[e−RF τ (K − Sτ )+ | S0 = S]. (23)

The optimal exercise policy is usually described by a
monotonically decreasing boundary, SB(t). When the stock
level crosses this boundary, the option is exercised by a rational
investor. However, in the two-state extension of the VG model
two boundaries, SB±(t), exist. If the world is in the + state, then
it is optimal to exercise at the barrier SB+(t); while, if the world
is in the − state, it is optimal to exercise at the barrier SB−(t).
In the + state of the world there is a greater probability of
a downward price movement before maturity; consequently,
there is a higher probability that the option will be in the
money. The boundaries are therefore relatively ordered so
that SB+(t) � SB−(t) for all times t .

The solution of the optimal stopping problem (23) is
difficult in general, and an exact answer is not available. In
Albanese et al (2001c) we demonstrated that the model of
lines leads to an exact closed form solution when the optimal
exercise boundary is assumed to be constant between time
steps. However, with two volatility levels, the number of
regions quickly becomes unmanageable, and renders analytic
techniques computationally useless. Fortunately, a simple
numerical procedure combined with the analytic results for
the European put resolves this problem.

Just as in the case of European options, the sign of
ω±, which is predominantly determined by the skewness
parameters θ±, dictates different behaviour of the region
boundaries for the conditional American pricing functions.
The two main types of behaviour are (a) ω+ < 0, in which
case the upper boundary region is monotonically increasing,
and (b) ω+ > 0, in which case the upper boundary region
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Figure 3. The conditional prices for a European put option are split into n + 1 regions on the nth line, while the unconditional prices contain
n + 2 regions. This depicts the situation when ω+ < 0 < ω−.

is monotonically decreasing. In case (a) the upper boundary
will never cross the American exercise boundaries, while in
case (b) the exercise boundaries may lie below the upper
boundary at first, but then cross it and eventually remain above
the upper boundary. These scenarios are depicted in figure 4.
The strategy we follow is to use numerical solutions within
the region bounded by the optimal exercise boundary and the
upper boundary region (denoted by the blue lines with arrows
in figure 4), while using analytic solutions in the two outer
regions (denoted by the red and purple regions in 4). Once the
American boundary lies above the upper region, the solution
becomes entirely analytic. This general idea is now described
in some detail.

The methodology is to solve the system (13) with the
following boundary conditions:

lim
S→∞

p
(n)
± (S) = 0,

lim
S→S

(n)

B±
p

(n)
± (S) = K − S

(n)

B± ,

lim
S→S

(n)

B±
dSp

(n)
± (S) = −1.

At each step the two boundaries S
(n)

B± must be solved for,
and once they are obtained the price at the period inception,
before the state of the world reveals itself, is given by the
unconditional price as in (10) and (11).

By numerically integrating the ODE which determines
the conditional prices on the nth line in terms of the price on
the (n − 1)th line, equation (13), from the optimal exercise
boundaries, S

(n)

B± , where the prices are equal to the intrinsic
value of the option and the deltas must be equal to minus one,
up to the uppermost boundary region, x

(n)
0 for p+ and x

(n)
1 for

p−, the conditional prices and deltas at those points will be
known. Denote the numerically obtained prices and deltas at
the two upper boundaries by p

(n)
0± and �

(n)
0± respectively. Since

the in-the-money price of an American style option is equal

to the intrinsic value of the option, K − S, only the out-of-
the-money price remains to be calculated. The price functions
have the same form as the out-of-the-money European prices
found in equations (15)–(17), and the coefficients must still
satisfy the recurrence relations (18)–(21). The undetermined
m = 0 coefficients can be obtained in terms of the numerically
integrated results p

(n)
0± by forcing the continuity conditions on

the prices,

a
−(n)0
0 = p

(n)
0− − c

−(n)0
0 and c

+(n)0
0 = p

(n)
0+ − a

+(n)0
0 .

The recurrence relations together with the above two equations
fully determine the out-of-the-money price of the American
option up to the numerical constants p

(n)
0± , which, in addition

to the deltas, are fixed in terms of the numerical integration
from the exercise boundary. Since the conditional deltas must
also be continuous at both upper boundaries, the deltas must
also satisfy the following equations:

�
(n)
0− = γ+a

−(n)0
0 − a

−(n)0
1 + γ−c

−(n)0
0 − c

−(n)0
1

�
(n)
0+ = γ+a

+(n)0
0 − a

+(n)0
1 + γ−c

+(n)0
0 − c

+(n)0
1 .

For arbitrary choices of the exercise boundaries, S
(n)

B± , these
two equations will not be satisfied. The determination of the
optimal exercise boundaries can therefore be made by varying
them until the above continuity equations are satisfied.

We find that this combination of analytic results and a
numerical integration to solve for the exercise boundary leads
to an efficient and simple to implement algorithm. In figure 5
the optimal exercise boundaries for an option on a stock that
follows our two-state volatility model are illustrated.

The pricing of barrier options can be carried out much
along the same lines as the American case, except that now the
exercise boundaries are fixed and equal in both states of the
world. Analytical results for barriers are available; however,
the numerical/analytical scheme proves to be more versatile.
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Figure 4. The multiple regions that appear in the European case can be integrated over numerically to avoid complications for American
options.

5. Numerical results and conclusions
We find that the two-state extended VG model discussed in
this paper is able to explain both implied volatility skews and
the observed term structure for implied variance rate. This
is illustrated in figures 6 and 7, where the Black–Scholes
implied volatilities of the prices calculated within our model
are plotted against the strike K and the ratio log(F/K)/

√
T

respectively, where F is the forward price of the underlying
and T is the option maturity. In this example, the spot price
is $100, the continuously compounded interest rate is 5%, the
number of lines is 16, the number of days between lines and

the ν parameter is 28 days, the volatility can take the values
10% and 30% and the VG skewness parameter is set to 0 in
the plus state and −20% in the minus state.

The term structure of implied VG variance rate is given
in figure 8. Notice that the upward slope and almost linear
behaviour over a period of 16 months reflects the observed
features of market prices, as captured by the graph in figure 1.

When calibrating our model to market prices, one has
to address the issue of marking to market the spot value of
volatility. A reasonable way of accomplishing this task is to
adjust the probability amplitudes of the first period separately
from the ones in the following period, which can all be
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Figure 5. Double exercise boundary corresponding to volatilities
30% and 10% and biweekly switch rate.
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Figure 6. Implied Black–Scholes volatility of theoretical two-state
VG prices versus the strike price.

postulated to be equal. The criterion for the adjustment would
be to match the price of a short-dated at-the-money option. The
interpretation of this calibration procedure would be to express
a view about the current level of volatility by assigning the
probabilityq that the− state will be realized and the probability
1−q that the + state will occur. In our formalism this amounts
to choosing q+ = 1−q− = 1−q for the first period only. After
that, the volatility process retains its auto-regressive nature
with stationary transition probabilities.

Finally, the two American exercise boundaries in our
model are given in figure 5. The parameters in this example
are identical to those in figures 6 and 7.

In conclusion, in this paper we study the technical aspects
of a pricing model for equity options in which sample paths
follow a variance-gamma (VG) jump model whose parameters
evolve according to a two-state Markov chain. The main result
of the paper is a resummation algorithm based on the method
of lines, which greatly reduces the algorithmic complexity
of the pricing formulae. This algorithm is also the basis of
approximate numerical schemes for American and Bermudan
options, for which a state-dependent exercise boundary can
be computed. We also show that the model is capable of
justifying the observed implied volatility skews for options
at all maturities and the term structure of implied variance rate
appears to be an increasing function of the time to maturity, in
agreement with empirical evidence.
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Figure 7. Implied Black–Scholes volatility of two-state VG prices
versus the ratio log(F/K)/

√
T .
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Figure 8. Term structure of the implied VG variance-rate as a
function of the option’s maturity.
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Appendix
This appendix contains the derivation of the N -step
characteristic function given in equation (4).

Assume that the current state of the world is −, then the
paths of the stochastic variables can be characterized in four
ways:

(a) over the next step the world is in the + state and the world
ends in the + state;

(b) over the next step the world is in the + state and the world
ends in the − state;

(c) over the next step the world is in the − state and the world
ends in the − state and

(d) over the next step the world is in the − state and the world
ends in the + state.

Enumerate the states of the world by collecting how many
+ states are in a row and how many − states, and so on. For
example, suppose the state of world takes the following path:

− | + + + + + − − − + + − − − − + − ++
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where the vertical line indicates the current time. This path
falls within category 1, and it is enumerated as

− | [5][3][2][4][1][1][2].

The numbers in the brackets indicate the number of + states
and − states alternately. In general, the states, from category
1, can therefore be enumerated as follows:

− | [p1][m1][p2][m2][p3][m3][p4][m4]...[pi−1][mi−1][pi];

the probability weight for this configuration will therefore be

P1 = (1−q−)[(1−q−)i−1q
m1+···+mi−1−i+1
− (1−q+)

i−1q
p1+···+pi−i
+ ].

Of course there are constraints on i, {p1, . . . , pi} and
{m1, . . . , mi−1}:
pj � 1, j = 1, . . . , i

mj � 1, j = 1, . . . , i − 1

(p1 + · · · + pi) + (m1 + · · · + mi−1) = N

1 � i � N + 1

2
.

Since only the sums p = p1 + · · ·+pi and m = m1 + · · ·+mi+1

appear in the probability and constraints, it is convenient to
rewrite the measure in terms of these variables. However, all
i partitions of p and (i − 1) partitions of m must be accounted
for. It is easy to show that the multiplicity factors are

(
p−1
i−1

)
and(

m−1
i−2

)
respectively. Consequently, all category 1 paths have the

following characteristic function:

φ1(p) = (1 − q−)qN−1
+ (eiω+�tpφ+(p))N

+
(N+1)/2∑

i=2

{
(1 − q−)i(1 − q+)

i−1

×
N−i∑

m=i−1

(
N − m − 1

i − 1

)(
m − 1

i − 2

)

× qN−m−i
+ qm−i+1

− (eiω−�tpφ−(p))m(eiω+�tpφ+(p))N−m

}
.

The first term in this expression is responsible for the boundary
case in which the world switches into state + and never switches
after that (i.e. i = 1).

An enumeration of category 2, 3 and 4 paths is similarly
given by the following:

− | [p1][m1][p2][m2] · · · [pi][mi]

− | [m1][p1][m2][p2] · · · [mi−1][pi−1][mi]

− | [m1][p1][m2][p2] · · · [mi][pi].

These paths occur with probabilities

P2 = (1 − q−)[(1 − q−)i−1q
m1+···+mi−i
− (1 − q+)

iq
p1+···+pi−i
+ ]

P3 = q−[(1 − q−)i−1q
m1+···+mi−i
− (1 − q+)

i−1q
p1+···+pi−1−i+1
+ ]

P4 = q−[(1 − q−)iq
m1+···+mi−i
− (1 − q+)

i−1q
p1+···+pi−i
+ ]

respectively. The constraints are analogous to the category
1 case, with obvious adjustments. Their contributions to the

probability density follow straightforwardly,

φ2(x) =
N/2∑
i=1

{
(1 − q−)i(1 − q+)

i

×
N−i∑
m=i

(
N − m − 1

i − 1

)(
m − 1

i − 1

)

× qN−m−i
+ qm−i

− (eiω−�tpφ−(p))m(eiω+�tpφ+(p))N−m

}

φ3(x) = qN
− (eiω−�tpφ−(p))N

+
(N+1)/2∑

i=2

{
(1 − q−)i−1(1 − q+)

i−1

×
N−i+1∑
m=i

(
N − m − 1

i − 2

)(
m − 1

i − 1

)
qN−m−i+1

+

× qm−i+1
− (eiω−�tpφ−(p))m(eiω+�tpφ+(p))N−m

}

φ4(x) =
N/2∑
i=1

{
(1 − q−)i(1 − q+)

i−1

×
N−i∑
m=i

(
N − m − 1

i − 1

)(
m − 1

i − 1

)

× qN−m−i
+ qm−i+1

− (eiω−�tpφ−(p))m(eiω+�tpφ+(p))N−m

}
.

It is also possible to reorder the summation over the number
of partitions, i, and the number of encountered states of the
world. Such a reordering leads to the form of the characteristic
function given in equation (4).
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