1. Consider each of the following options:

(a) digital call struck at 100
(b) digital put struck at 100
(c) put struck at 100
(d) call struck at 100
(e) strangle struck at 100
(f) straddle with \(K_1 = 95, K_2 = 115 \)
(g) bull spread with \(K_1 = 95, K_2 = 115 \)

Use the portfolio.xls file to explore the sensitive of prices, Deltas and Gammas to \(T, \sigma, \) and \(r \).

2. Derive the price, delta and gamma for an asset-or-nothing call option (which pays \(S_T \) if \(S_T > K \) at maturity \(T \), and pays 0 otherwise) using the Black-Scholes model. Plot the price, delta and gamma as a function of the spot price with the following parameters: \(S_0 = 1, K = 1, \sigma = 20\%, r = 2\% \) for maturities of \(T = 1/51, 1/12, 1/2 \) and 1 year.

3. Using the Black-Scholes model, determine the price, the delta and the gamma for all times \(t \in [0, T) \) of the following European options with payoffs at time \(T > 0 \):

(a) A forward-start digital call option, which pays 1 at \(T \) if the asset price at maturity is above a percentage \(\alpha \) of the asset price at time \(U \) (where \(t < U < T \)). That is, \(\phi = I(S_T > \alpha S_U) \).

(b) ** A forward-start asset-or-nothing option which pays the asset at \(T \) if the asset price at maturity is above a percentage \(\alpha \) of the asset price at time \(U \) (where \(t < U < T \)). That is, \(\phi = S_T I(S_T > \alpha S_U) \).

(c) A call option (maturing at \(V \)) on a forward-start asset-or-nothing option. The embedded forward-start asset-or-nothing option pays the asset at \(T > V \) if the asset price at \(T \) is above a percentage \(\alpha \) of the asset price at time \(U \) (where \(V < U < T \)). The strike of the call option is \(K \).

4. Suppose that the price of a stock is modeled as follows:

\[
\frac{dS_t}{S_t} = \mu_t \, dt + \sigma_t \, dW_t
\]
where μ_t and σ_t are functions only of time and where W_t is a \mathbb{P}-Wiener process. Furthermore, assume that the risk-free interest rate r_t is function only of time. Determine the price, the delta and the gamma for each of the following options:

(a) call option maturing at T strike of K.
(b) forward starting put option with strike set to αS_U at time U and maturing at T.

5. Suppose that interest rates follow the Ho-Lee model:

$$dr_t = \theta_t dt + \sigma_d W_t$$

where α_t is a deterministic function of time and W_t is a Q-Wiener process. Determine each of the following:

(a) ** Bond price at time t of maturity T.
(b) The SDE which the bond price satisfies in terms of W_t.
(c) The choice of θ_t which makes the model prices equal the market prices $P^*_t(T)$.

6. Suppose that two traded stocks have price processes X_t and Y_t. Assume they are jointly GBMs, i.e.

$$\frac{dX_t}{X_t} = \mu_x dt + \sigma_x dW^x_t, \quad \frac{dY_t}{Y_t} = \mu_y dt + \sigma_y dW^y_t,$$

where X_t and Y_t are correlated standard Brownian motions under the \mathbb{P}-measure with correlation ρ. Consider a contingent claim f written on the two assets with payoff $\varphi(X_T,Y_T)$ at time T.

(a) Use a dynamic hedging argument to demonstrate that to avoid arbitrage, the price of f must satisfy the following PDE:

$$\left\{ \begin{array}{l}
\frac{\partial f}{\partial t} + r x \frac{\partial f}{\partial x} + r y \frac{\partial f}{\partial y} + \frac{1}{2} \sigma^2_x x^2 \frac{\partial^2 f}{\partial x^2} + \frac{1}{2} \sigma^2_y y^2 \frac{\partial^2 f}{\partial y^2} + \rho \sigma_x \sigma_y x y \frac{\partial f}{\partial x \partial y}
\end{array} \right\} f(t,x,y) = r f(T,x,y) = \varphi(x,y).$$

(b) Suppose that the payoff is homogenous, so that $\varphi(x,y) = y g(x/y)$ for some function g. An example of such a payoff is the payoff from an exchange option which would have $\varphi(x,y) = (x - y)_+$. By assuming that $f(t,x,y) = y h(t,x/y)$, find the PDE which h satisfies and show that the price f can be written in the form

$$f(X_t,Y_t) = Y_t \mathbb{E}^Q_t[g(U_T)]$$

where, $U_t = X_t/Y_t$ and X_t satisfies an SDE of the form

$$\frac{dU_t}{U_t} = \sigma_U dW^*_t,$$

for some constant σ_U and W^*_t a Q^* Brownian motion.