Stochastic Methods for Actuarial Science - Problem Set \#2

due Nov, 17 at 2 pm .
Hand in only questions marked with ${ }^{* *}$.
Grad students also hand in questions marked with ++

1. Suppose that W_{t} and Z_{t} are correlated Wiener processes with instantaneous correlation ρ. Find the mean and variance of each of the following random variables (T is fixed and positive):
(a) $W_{1}+W_{2}+\ldots+W_{N}$ for $N \in \mathbb{N}$.
(b) $\exp \left\{W_{T}\right\}$.
(c) $a W_{T}+b Z_{T}$.
(d) $\left[{ }^{* *}\right] \exp \left\{a W_{T}+b Z_{T}\right\}$.
(e) $W_{T} Z_{T}$.
(f) $[* *] \int_{0}^{T} W_{s} Z_{s} d s$.
2. Suppose that W_{t} and Z_{t} are standard correlated Wiener processes with instantaneous correlation ρ. Find the SDE which X_{t} solves:
(a) $X_{t}=W_{t}^{n}$
(b) $X_{t}=\cos \left(W_{t}\right)$
(c) $X_{t}=W_{t} Z_{t}$
(d) $X_{t}=\exp \left\{\alpha Z_{t}+\beta W_{t}\right\}$
3. In the following W_{t} and Z_{t} denote correlated Wiener processes with instantaneous correlation ρ. For each of the following (i) compute the mean and variance of Y_{t} and (ii) derive an integration by parts formulae:
(a) $Y_{t}=\int_{0}^{t} W_{s} d W_{s}$.
(b) $Y_{t}=\int_{0}^{t}\left(W_{s}\right)^{2} d W_{s}$.
(c) $Y_{t}=\int_{0}^{t} s W_{s} d W_{s}$.
(d) $Y_{t}=\int_{0}^{t} s W_{s}^{2} d W_{s}$.
(e) $Y_{t}=\int_{0}^{t} s^{2} W_{s}^{2} d W_{s}$.
(f) $Y_{t}=\int_{0}^{t} e^{-W_{s}} d W_{s}$.
(g) $\left[{ }^{* *}\right] Y_{t}=\int_{0}^{t} s e^{-W_{s}} d W_{s}$.
(h) $Y_{t}=\int_{0}^{t} W_{s} d Z_{s}$.
(i) $\left[{ }^{* *}\right] Y_{t}=\int_{0}^{t} s W_{s} d Z_{s}$.
4. Prove the following from first principals, i.e. using the fundamental definition of the Ito integral (Note: W_{t} and Z_{t} denote correlated Wiener processes with instantaneous correlation ρ.):
(a) $\int W_{s}^{2} d W_{s}=\frac{1}{3} W_{t}^{3}-\int_{0}^{t} W_{s} d s$
(b) $[++] \int_{0}^{t} W_{s} d Z_{s}+\int_{0}^{t} Z_{s} d W_{s}=W_{t} Z_{t}-\rho t$
5. Assume that the prices of two stocks S_{t} and U_{t} satisfy the following coupled SDEs:

$$
\begin{equation*}
\frac{d U_{t}}{U_{t}}=a_{t} d t+b_{t} d W_{t}^{U}, \quad \frac{d S_{t}}{S_{t}}=c_{t} d t+d_{t} d W_{t}^{S} \tag{1}
\end{equation*}
$$

where W_{t}^{U} and W_{t}^{S} denote two correlated Wiener processes with constant instantaneous correlation ρ and $a_{t}, b_{t}, c_{t}, d_{t}$ are deterministic functions only of time t.
(a) Compute each of the following:
i. $d \ln \left(S_{t}\right)$
ii. $d\left(S_{t} U_{t}\right)$
iii. $d\left(S_{t} / U_{t}\right)$
iv. [**] $d\left(\left(S_{t}\right)^{\alpha}\left(U_{t}\right)^{\beta}\right)$ for $\alpha \neq 0 ; \beta \neq 0$.
(b) Solve the system of SDEs (1).
(c) What is the distribution of $Y=U_{T} S_{T}$ for a fixed $T>0$?
6. Suppose X_{t} satisfies the SDE:

$$
d X_{t}=\kappa\left(\theta-X_{t}\right) d t+\sigma d W_{t}, \quad X_{0}=x
$$

show that the following is a solution

$$
X_{0}=\theta+(x-\theta) e^{-\kappa t}+\sigma \int_{0}^{t} e^{-\kappa(t-u)} d W_{u}
$$

