Stochastic Methods for Actuarial Science - Problem Set #2 due <u>Nov, 17 at 2pm</u>. Hand in only questions marked with **. Grad students also hand in questions marked with ++

- 1. Suppose that W_t and Z_t are correlated Wiener processes with instantaneous correlation ρ . Find the mean and variance of each of the following random variables (T is fixed and positive):
 - (a) $W_1 + W_2 + \ldots + W_N$ for $N \in \mathbb{N}$.
 - (b) $\exp\{W_T\}$.
 - (c) $a W_T + b Z_T$.
 - (d) $[**] \exp\{a W_T + b Z_T\}.$
 - (e) $W_T Z_T$.

(f) [**]
$$\int_0^T W_s Z_s ds$$
.

- 2. Suppose that W_t and Z_t are standard correlated Wiener processes with instantaneous correlation ρ . Find the SDE which X_t solves:
 - (a) $X_t = W_t^n$
 - (b) $X_t = \cos(W_t)$
 - (c) $X_t = W_t Z_t$

(d)
$$X_t = \exp\{\alpha Z_t + \beta W_t\}$$

- 3. In the following W_t and Z_t denote correlated Wiener processes with instantaneous correlation ρ . For each of the following (i) compute the mean and variance of Y_t and (ii) derive an integration by parts formulae:
 - (a) $Y_t = \int_0^t W_s \, dW_s.$
 - (b) $Y_t = \int_0^t (W_s)^2 \, dW_s.$
 - (c) $Y_t = \int_0^t s W_s dW_s.$
 - (d) $Y_t = \int_0^t s W_s^2 dW_s.$
 - (e) $Y_t = \int_0^t s^2 W_s^2 dW_s.$
 - (f) $Y_t = \int_0^t e^{-W_s} dW_s.$
 - (g) **[**]** $Y_t = \int_0^t s \, e^{-W_s} \, dW_s.$
 - (h) $Y_t = \int_0^t W_s \, dZ_s.$
 - (i) [**] $Y_t = \int_0^t s W_s \, dZ_s.$

4. Prove the following from first principals, i.e. using the fundamental definition of the Ito integral (Note: W_t and Z_t denote correlated Wiener processes with instantaneous correlation ρ .):

(a)
$$\int W_s^2 dW_s = \frac{1}{3} W_t^3 - \int_0^t W_s \, ds$$

(b) $[++] \int_0^t W_s \, dZ_s + \int_0^t Z_s \, dW_s = W_t \, Z_t - \rho \, t$

5. Assume that the prices of two stocks S_t and U_t satisfy the following coupled SDEs:

$$\frac{dU_t}{U_t} = a_t dt + b_t dW_t^U , \qquad \frac{dS_t}{S_t} = c_t dt + d_t dW_t^S$$
(1)

where W_t^U and W_t^S denote two correlated Wiener processes with constant instantaneous correlation ρ and a_t, b_t, c_t, d_t are deterministic functions only of time t.

- (a) Compute each of the following:
 - i. $d \ln(S_t)$ ii. $d(S_t U_t)$ iii. $d(S_t/U_t)$ iv. $[**] d((S_t)^{\alpha} (U_t)^{\beta})$ for $\alpha \neq 0; \beta \neq 0$.
- (b) Solve the system of SDEs (1).
- (c) What is the distribution of $Y = U_T S_T$ for a fixed T > 0?
- 6. Suppose X_t satisfies the SDE:

$$dX_t = \kappa(\theta - X_t) dt + \sigma dW_t , \qquad X_0 = x .$$

show that the following is a solution

$$X_0 = \theta + (x - \theta) e^{-\kappa t} + \sigma \int_0^t e^{-\kappa(t - u)} dW_u$$