$$
\begin{aligned}
& \text { Random Walk } \\
& \begin{array}{l}
\text { Tuesday, Octaber 23, } 2012 \\
\text { 2:33 PM }
\end{array} \\
& \text { 2:33 PM } \\
& S<\begin{array}{l}
S e^{\sigma \sqrt{\Delta t}} \\
S e^{-\sigma \sqrt{\Delta t}}
\end{array} \\
& r<\begin{array}{l}
r+\sigma \sqrt{\Delta t} \\
r-\sigma \sqrt{\Delta t}
\end{array} \\
& s e^{\sigma \omega} \quad \lambda \\
& \lambda \\
& r+\sigma W \\
& +\sqrt{\Delta t} \\
& \text { - } \sqrt{\Delta} t \\
& W \rightarrow \text { Broumian motion } \\
& W_{n \Delta t}=W_{(n-1) \Delta t}+\sqrt{\Delta t} x_{n} . \quad x_{1}, x_{2}, \ldots \text { are iid Bernoulli } \\
& \mathbb{P}\left(x_{k}= \pm 1\right)=1 / 2 \\
& w_{0}=0 \\
& W_{t} \stackrel{d}{=} Z \sqrt{t}, \quad \quad Z \underset{\mathbb{R}}{\sim} N(0,1) \\
& W_{N \Delta t}=\sqrt{\Delta t} \sum_{m=1}^{N} x_{m} \\
& \operatorname{N}\left[W_{N \Delta t}\right]=\sqrt{s t} \bar{\Sigma} \operatorname{EE}\left[x_{n}\right]=0 \\
& V\left[W_{N \Delta t}\right]=\Delta t \sum V\left[x_{m}\right]=\Delta t \sum\left[\mathbb{E}\left[x_{N}^{2}\right]-\left(\mathbb{E}\left[x_{m}\right]\right)\right)^{2} \\
& =\Delta t \sum(1-0)=\Delta t N=t
\end{aligned}
$$

$$
\text { by CLT } W_{t} \underset{\substack{N \rightarrow \infty \\ \text { by CLT }}}{\stackrel{d}{\rightarrow}} \sqrt{t} Z, \quad Z \sim N(0,1)
$$

$$
\begin{aligned}
& \\
& x_{1} x_{2} \cdots x_{N} \begin{array}{ccc}
y_{1} y_{2} \cdots y_{M} \\
x_{N+1} \cdots & x_{N+M}
\end{array} \quad \mathbb{P}\left(y_{k}= \pm 1\right)=\frac{1}{2}
\end{aligned} \quad\left[y_{k}=x_{N+k}\right)
$$

$$
\begin{aligned}
W_{t+s}-W_{t} & =\sum_{n=1}^{N+m} x_{m} \sqrt{\Delta t}-\sum_{n=1}^{N} x_{n} \sqrt{\Delta t} \\
& =\sum_{n=N+1}^{N+M} x_{n} \sqrt{\Delta t} \\
& =\sum_{n=1}^{M} y_{n} \sqrt{\Delta t}, \\
\text { by CLT } & \xrightarrow[M \Delta t=s]{d \rightarrow+\infty} \sqrt{s} Z_{1} \quad Z \sim N(0,1) \\
& \quad Z \mathbb{P}
\end{aligned}
$$

since $w_{t+5}-w_{t}$ does rat depende an w_{t} (or t) then W has stationary increments.

How about joint distributive of

$$
W_{t},\left(W_{t+s}-W_{t}\right)
$$

are independent (ever at finite Δt)

$$
\left(w_{s}-w_{t}\right) \perp\left(w_{v}-w_{u}\right)
$$

(independet incremects)

W has contimuou patrs

Brownian Motion \& Total Variation
Tuesday, October 23, 2012
3.28 PM
3:28 PM

- $W_{0}=0$
- $W_{t} \stackrel{d}{=} \sqrt{t} Z_{1} \quad Z \sim N(0,1)$
- W. has stationary + independent increments
- Wt has continuous pastis.

Such a process is called a Browericen motion.

Total Variation:
$f(t)$. TV is defined as:

$$
\begin{aligned}
& T V_{t}=\lim _{\|\pi\| \downarrow 0} \sum_{k} \underbrace{\left|f\left(t_{k}\right)-f\left(t_{k \cdot 1}\right)\right|} \\
& \quad \Pi=\left\{t_{0}, t_{1}, \ldots, t_{N}\right\} \quad 0=t_{0}<t_{1}<\cdots<t_{N}=t
\end{aligned}
$$

$$
\|\pi\|=\max _{k}\left\{\left(t_{k}-t_{k-1}\right)\right\}
$$

$$
t_{0} l_{1} t_{2}
$$

$$
\left|F\left(t_{1}\right)-F\left(t_{0}\right)\right|
$$

$$
+|f(t z)-F(t, 1)|=2
$$

(1) f is differpatiable:

$$
\text { fix } \pi . \quad \sum_{k}\left|f\left(t_{k}\right)-f\left(t_{k-1}\right)\right|
$$

$$
\overbrace{u} \Delta F_{k}
$$

Fundemertal thm of calc

$$
\begin{aligned}
& \Rightarrow \exists t_{k}^{*} \in\left(t_{k-1}, t_{k}\right) \\
& \text { s.t. } F^{\prime}\left(t_{k}^{*}\right)=\frac{\Delta f_{k}}{\Delta t_{k}}
\end{aligned}
$$

$$
\Rightarrow \quad \Delta\left\{_{k}=f^{\prime}\left(t_{k}^{*}\right) \Delta t_{k}\right.
$$

so $\sum_{k}\left|\Delta f_{k}\right|=\sum_{k}\left|f^{\prime}\left(t_{k}^{*}\right)\right| \Delta t_{k}$

$$
\lim _{\|\pi\| J 0} \sum_{k}\left|f^{\prime}\left(t_{k}^{d}\right)\right| \Delta t_{k}=\int_{0}^{t}\left|f^{\prime}(s)\right| d s<+\infty
$$

(2) Brownian case: giver π

$$
\begin{aligned}
& \sum_{\sum_{k}|\underbrace{w_{t_{k}}-w_{t_{k-1}} \mid}_{\Delta w_{k} \stackrel{d}{=}}|}^{\left(\Delta t_{k}\right)^{1 / 2} z_{k}, \quad z_{1, z_{2} . .} \text { iid }} \\
& \text { N(0,1) } \\
& =\sum_{k}\left(\Delta t_{k}\right)^{1 / 2}\left|z_{k}\right| \\
& \sum_{k} \Delta t_{k}\left|z_{k}\right| \underset{\| \pi \mid \downarrow 0}{\longrightarrow} t \mathbb{E}[|z|] \text { a.s. } \\
& \text { L.L.N. } \mathbb{N}[.] \rightarrow *] \\
& V[\cdot] \rightarrow 0 \\
& \mathbb{E}_{k}\left[\sum_{k} \Delta t_{k}\left|z_{k}\right|\right]=\sum_{k} \Delta t_{k} \underbrace{\mathbb{E}\left[\left|z_{k}\right|\right]}_{\mid \mathbb{E}[|z|]}=\operatorname{EE}[|z|] \cdot t \\
& V\left[\sum_{k} \Delta t_{k}\left|z_{k}\right|\right]=\sum_{k} \Delta t_{k}^{2} \underbrace{V\left[\left|z_{k}\right|\right]}_{c} \\
& =c \sum_{r} \Delta t_{n}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq c \sum_{k}\|\pi\| \Delta t_{k} \\
& =c\|\pi\| \underbrace{\sum_{n} \Delta t_{R}}_{t} \xrightarrow[\|\pi\|_{\nu}]{\rightarrow} 0 \\
& \sum_{k}\left(\Delta t_{k}\right)^{1 / 2}\left|z_{k}\right| \geq \sum_{k} \frac{\Delta t_{k}}{\|\pi\|^{1 / 2}}\left|z_{k}\right| \\
& =\frac{1}{\|\pi\|^{1 / 2}} \underbrace{\sum_{k} \Delta t_{k}\left|z_{k}\right|} \\
& \longrightarrow t \text { 㤝[|z1] } \\
& \overrightarrow{\|\eta\| \downarrow 0}+\infty
\end{aligned}
$$

Quadratic Variation:

$$
[F]_{t}=[F, F]_{t}=\lim _{\|\cap\| \nu 0} \sum_{k} \Delta F_{k}^{2}
$$

(1) F is differastichle

$$
\begin{aligned}
& \sum_{k} \Delta F_{k}^{2}=\sum_{k}\left(F^{\prime}\left(t_{k}^{\Delta}\right)\right)^{2} \Delta t_{k}^{2} \\
& L \Delta \Delta t_{k} \Delta t_{k} \leqslant \Delta t_{k}\|\eta\| \\
& \leqslant\left(\sum_{k}\left(f^{\prime}\left(t_{k}^{*}\right)\right)^{2} \Delta t_{k}\right)\|\pi\| \\
& \longrightarrow \int_{0}^{t}\left(f^{\prime}(s)\right)^{2} d s<c_{0} \\
& \xrightarrow[\|\pi\| \downarrow 0]{ } 0
\end{aligned}
$$

(2) B.mtn.

$$
\begin{aligned}
& Q=\sum_{k} \Delta w_{k}^{2} \\
& \mathbb{E}[Q]=\sum_{k} \mathbb{E}\left[\Delta w_{k}^{2}\right]=\sum_{k} \Delta t_{k}=t
\end{aligned}
$$

$$
\begin{aligned}
& \text { k } \\
& \mathbb{V}[Q]=\sum_{k} V\left[\Delta W_{k}^{2}\right]=\sum_{k} \Delta t_{k}^{2} V\left[Z^{2}\right] \\
& \rightarrow \mathbb{V}\left[\left(\Delta t_{k}^{1 / 2} z\right)^{2}\right] \\
& =V\left[\Delta t_{k} Z^{2}\right]=\Delta t_{k}^{2} \mathbb{V}\left[Z^{2}\right] \\
& \delta V\left[Z^{2}\right] \cdot\|\pi\| \underbrace{\sum_{k} \Delta t_{k}}_{t} \\
& \overrightarrow{\|\pi\| \downarrow 0} 0 \\
& \sum_{k} \Delta w_{k}^{2} \xrightarrow[n \eta \|_{20}]{ } t \quad \text { a.s. } \\
& {[W, W]_{t}=t \quad a \cdot s .}
\end{aligned}
$$

Stochastic Integral... First Steps
Tuesday, October 23, 2012
4:49 PM

$$
\begin{aligned}
& \int_{0}^{t} \underbrace{f(s) d f(s)}_{\frac{1}{2} d\left(f^{2}(s)\right)}=\frac{1}{2}^{\left(f^{2}(t)-f^{2}(0)\right)} \\
& \int_{0}^{t} w_{s} d w_{s}=\lim _{\| \prod M 0} \sum_{R} w_{t_{k-1}} \Delta w_{t_{k}} \\
& j=\frac{1}{2}\left(w_{t}^{2}-w_{0}^{2}\right)=\frac{1}{\varepsilon} w_{t}^{2} ? \\
& \frac{1}{2} w_{t}^{2}-\int_{0}^{d} w_{s} d w_{s}=\frac{1}{\varepsilon} t \\
& \int_{0}^{t} W_{s} d W_{s}=\frac{1}{2}\left(W_{t}^{2}-t\right)
\end{aligned}
$$

