Move based hedging

\[\Delta_k \text{ units of } S_{t_k} \]

\[t_{k-1} \quad t_k \]

\[\Delta_{k-1} \rightarrow \Delta_k \]

\[S_{k-1} \rightarrow S_k \]

\[f \text{ in bank at } t_k : \quad M_{k-1} e^{\Delta t_k} \]

\[@ t_k : \quad M_k = M_{k-1} e^{\Delta t_k} - (\Delta_k - \Delta_{k-1}) S_k \]

\[\text{trans cost} \]

Move based: times at which you trade \(t_k \) are random... but determined by \(\Delta \)
\[\Delta_t = \partial_s y_t \]

\[g(t, s) = g(t, s_t) + (s - s_t) \partial_s g(t, s_t) + \frac{1}{2} (s - s_t)^2 \partial_{ss} g(t, s_t) + \ldots \]

\[\Gamma_t = \partial_{ss} g(t, s_t) \text{ option's gamma} \]

\[\Delta_t - \text{Gamma Hedging} \]

\[\alpha_t \text{ write } y_t S_t \]

\[\beta_t \text{ write } y_t M_t \]
\[V(t, s) = \alpha_t \Delta h(t, s_t) + \beta_t \partial s h(t, s_t) + r_t h(t, s) \]

\[\Delta h(t, s_t) + (s - s_t) \frac{\partial s h(t, s_t)}{\partial s} \]

\[\frac{1}{2} (s - s_t)^2 \frac{\partial^2 s h(t, s_t)}{\partial s^2} + \ldots \]

\[\Delta g(t, s_t) + (s - s_t) \frac{\partial s g(t, s_t)}{\partial s} \]

\[\frac{1}{2} (s - s_t)^2 \frac{\partial^2 s g(t, s_t)}{\partial s^2} + \ldots \]
\[\gamma_t = \frac{\Gamma_t^g}{\Gamma_t^b} \]

\[\alpha_t = \Delta_t^g - \frac{\Gamma_t^g}{\Gamma_t^h} \Delta_t^h \]

\[v = \alpha_t s + \beta_t M_t + \gamma_t h(t, s) \]

\[\Delta_t^v = \alpha_t + \gamma_t \frac{\partial s}{\partial s} h(t, s) = \Delta_t^g \]

\[\Gamma_t^v = \Gamma_t^g - \frac{\partial s}{\partial s} h(t, s) = \Gamma_t^g \]

If \(t = 0 \) sold \(q \) get \(q_0 \),

need \(\alpha_0 = \Delta_0^g - \frac{\Gamma_0^g}{\Gamma_0^h} \Delta_0^h \) if \(S \)

\[\gamma_0 = \frac{\Gamma_0^g}{\Gamma_0^h} \] if \(h \)

in bank \(M_0 = g_0 - \alpha_0 S_0 - \gamma_0 h_0 \)
\[t = t_1 : \]

\[M_0 \rightarrow M_0 e^{\Delta t_1} \]

\[\alpha_0 \alpha_f^f S \rightarrow \alpha_0 \alpha_f^f S \]

\[(\alpha_0 S_0) \]

\[\gamma_0 \gamma_f^f h \rightarrow \gamma_0 \gamma_f^f h \]

\[(\gamma_0 h_0) \]

\[t = t_0 \]

\[t = t_1 \]

\[\text{(P) in general} \]

\[M_{N+1} = M_{N+1} e^{\Delta t_{N+1}} - (\alpha_{N+1} - \alpha_{N+1}^f) S_{N+1} \]

\[- (\gamma_{N+1} - \gamma_{N+1}^f) h_{N+1} \]

\[P_{N+1} = M_{N+1} e^{\Delta t_{N+1}} + \alpha_{N+1} S_{N+1} + \gamma_{N+1} h_{N+1} - \phi_{N+1}(S_T) \]

\[\text{Vega is sensitivity to vol:} \]

\[V_t = \partial \gamma g(t, S_t) \]
\[V_t = \partial_{\tau} g(t, s_t) \]
Options on Dividend Paying Assets

Tuesday, November 27, 2012
4:09 PM

Lecture 11 Page 8

Options on Asset with Dividends

\(S_t \) pays dividends \(\delta S_t \, dt \) at \(t \).

\[
\frac{dS_t}{S_t} = r \, dt + \sigma \, dW_t \quad \text{is risky asset} \quad \alpha_t
\]

\(\beta_t \) bank asset \(\frac{dB_t}{B_t} = r \, B_t \, dt \quad \beta_t
\]

value a claim on \(S_t \), \(g_t = g(t, S_t) \)
\[
g \in C^1,2
\]

\[
V_t = \alpha_t S_t + \beta_t B_t - g_t
\]

\[
V_0 = 0 \quad \text{start with nothing}
\]

\[
dV_t = \alpha_t \, dS_t + \beta_t \, dB_t - dg_t + \alpha_t \delta S_t \, dt
\]

self-financing

\[
= \alpha_t \left(\mu S_t \, dt + \sigma S_t \, dW_t \right)
\]

\[
+ \beta_t \, r B_t \, dt
\]

\[
- \left[\left(\frac{\partial g_t}{\partial t} + \mu \, g_t + \frac{1}{2} \sigma^2 S_t \, \delta g_t \right) \right] \, dt
\]
$$\alpha_t = \partial_s g_t$$

$$\Rightarrow dV_t = \int \left(\alpha_t (u + \delta) S_t + \beta_t B_t - (\sigma_t + \delta) g_t \right) dt$$

since

$$dV_t = \{ \cdot \} dt \quad (i.e., \frac{dV}{dt} \text{ is predictable})$$

$$\Rightarrow \{ \cdot \} = 0 \quad \text{to avoid arbitrage}$$

$$\Rightarrow dV_t = 0 \quad \text{since } V_0 = 0 \Rightarrow V_t = 0$$

$$\Rightarrow \alpha_t S_t + \beta_t B_t - g_t = 0$$

$$\Rightarrow \beta_t = g_t^{-1} \left(g_t - \alpha_t S_t \right)$$

now set $$\alpha_t + \beta_t$$ into $$\{ \cdot \} = 0$$

$$\Rightarrow \partial_s g_t \left(u + \delta \right) S_t + r \left(g_t - \partial_s g_t S_t \right)$$

$$- \left(\partial_t g_t + u S_t \partial_s g_t + \frac{1}{2} \sigma^2 S_t \partial_{ss} g_t \right) = 0$$

$$\Rightarrow \partial_t g_t + (r - \delta) S_t \partial_s g_t + \frac{1}{2} \sigma^2 S_t \partial_{ss} g_t = r g_t$$
\[\frac{\partial g}{\partial t} + \left(r - \delta \right) S \frac{\partial g}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 g}{\partial S^2} g(t, S) = r g(t, S) \]

\[g(T, S) = q(S) \]

Forward price of an asset

\[F_k(T) = \mathbb{E}^Q \left[e^{-r(T-t)} (S_T - K) \right] \]

Let signing \(F_{t_0}(T) = 0 \)

Sets \(\mathbb{N} \)

\[\Rightarrow \mathbb{N} = \mathbb{E}^Q \left[S_T \mid S_{t_0} \right] \]

\[= S_{t_0} e^{r(T-t)} \]

\(F_k(T) \) is the strike in a forward contract if contract is signed on day \(t_0 \).

\[F_k(T) = \mathbb{E}^Q \left[S_T \mid S_{t_0} \right] = S_{t_0} e^{r(T-t)} \]
F_t (T) = E \left[S_T \mid S_t \right] = S_t e^{r(T-t)}

Futures contracts are like forward contracts except the strike is adjusted each day and equal the forward price \(F_t (T) \), called the futures price.

\[$2 \rightarrow 1.8 \rightarrow 1.9 \rightarrow 1.85 \]

\[-0.2 \quad 10.1 \quad -0.05 \]

Costs nothing to enter/leave the contract.

But you pay the losses to reap the gains.
\[\frac{dS_t}{S_t} = \mu dt + \sigma dW_t \]

\[F_t(T) = S_t e^{r(T-t)} \]

\[dF_t(T) = dS_t e^{r(T-t)} - rS_t e^{r(T-t)} dt \]

\[\frac{dF_t(T)}{F_t(T)} = (\mu - r) dt + \sigma dW_t \quad e^{-\alpha t} \]

\[dB_t = rB_t dt \quad (\beta E) \]

- Claim: \(g_t = g(t, F_t(T)) \) \(g_{T_0} \sim \mathcal{N}(F_{T_0}(T)) \) \(\sim N \)

\[V_t = \beta_t B_t - g_t \]

\[dV_t = \beta_t dB_t - dg_t + \alpha_t dF_t(T) \quad \text{Self-financing} \]

\[= \beta_t rB_t dt - \left[(\beta_t + (a - r) F_t) \beta_t + \frac{1}{2} \sigma^2 F_t^2 \partial^2 F_t \right] g_t \]
\[\alpha_t = \partial_F g(t, F_t) \]

\[\Rightarrow \quad dV_t = \frac{1}{2} \cdot \frac{1}{2} \cdot dt \Rightarrow \quad \frac{1}{2} = 0 \quad \Rightarrow \quad dV_t \text{ is predictable} \]

\[\therefore \quad \beta_t B_t - g_t = 0 \quad \Rightarrow \quad \beta_t = B_t^{-1} g_t \]

\[\log \quad \Rightarrow \quad \log q_t - \left(\partial_t g_t + (\kappa - r) F_t \partial_F g_t + \frac{1}{2} \sigma^2 \partial_{FF} g_t \right) \]

\[+ \partial_F g_t (\mu - r) F_t \]

\[= 0 \]

\[\Rightarrow \quad \partial_t g_t + \frac{1}{2} \sigma^2 F_t \partial_{FF} g_t = \log q_t \]

\[\text{a penalty of } F_t \]
\[
\begin{aligned}
\frac{\partial}{\partial t} g(t, F) + \frac{1}{2} \sigma^2 F^2 \frac{\partial^2}{\partial F^2} g(t, F) &= r g(t, F) \\
q(T_0, F) &= \phi(F)
\end{aligned}
\]