UNIVERSITY OF TORONTO

Faculty of Arts and Science

Final Examination December 14, 2009

ACT460H1 F / STA2502H F

DURATION - 3 hours

EXAMINER: Prof. S. Jaimungal

LAST NAME: \qquad

FIRST NAME: \qquad

STUDENT \#: \qquad

Each question is worth 10 points.
$\underline{\text { Please write clearly! }}$

AIDS: Calculators Only

PLEASE HAND IN AND WRITE YOUR ANSWERS IN THIS BOOKLET.

$$
\text { Exam Contains : } 30 \text { pages }
$$

1 [10]	$2[10]$	$3[10]$	$4[10]$	$5[10]$	$6[10]$	$7[10]$	$8[10]$	Total [80]

Formula Page

- Normal cdf: $\Phi(x):=\int_{-\infty}^{x} e^{-\frac{1}{2} x^{2}} \frac{d x}{\sqrt{2 \pi}}$.
- Moments of Normals: If Z is a normal r.v. with mean 0 and variance 1 , then the m.g.f. is $\mathbb{E}\left[e^{a Z}\right]=e^{\frac{1}{2} a^{2}}$ and the fourth moment is $\mathbb{E}\left[Z^{4}\right]=3$.
- 2-D Ito's Lemma: If W_{t} and Z_{t} are standard correlated Brownian motions with $d[W, Z]=\rho d t$ and X_{t} and Y_{t} satisfy the SDEs:

$$
d X_{t}=\mu_{t}^{X} d t+\sigma_{t}^{X} d W_{t}, \quad d Y_{t}=\mu_{t}^{Y} d t+\sigma_{t}^{Y} d Z_{t}
$$

and $U_{t}=f\left(X_{t}, Y_{t}, t\right)$, where $f(x, y, t)$ is twice differentiable in x and y and once differentiable in t, then

$$
\begin{aligned}
d U_{t}= & \partial_{x} f\left(X_{t}, Y_{t}, t\right) d X_{t}+\partial_{y} f\left(X_{t}, Y_{t}, t\right) d Y_{t} \\
& +\left(\frac{1}{2}\left(\sigma_{t}^{X}\right)^{2} \partial_{x x}+\frac{1}{2}\left(\sigma_{t}^{Y}\right)^{2} \partial_{y y}+\rho \sigma_{t}^{Y} \sigma_{t}^{X} \partial_{x y}\right) f\left(X_{t}, Y_{t}, t\right) d t \\
= & \left(\partial_{t}+\mu_{t}^{X} \partial_{x}+\mu_{t}^{Y} \partial_{y}+\frac{1}{2}\left(\sigma_{t}^{X}\right)^{2} \partial_{x x}+\frac{1}{2}\left(\sigma_{t}^{Y}\right)^{2} \partial_{y y}+\rho \sigma_{t}^{Y} \sigma_{t}^{X} \partial_{x y}\right) f\left(X_{t}, Y_{t}, t\right) d t \\
& +\sigma_{t}^{X} \partial_{x} f\left(X_{t}, Y_{t}, t\right) d W_{t}+\sigma_{t}^{Y} \partial_{y} f\left(X_{t}, Y_{t}, t\right) d Z_{t} .
\end{aligned}
$$

- Ito's Isometry: If W_{t} is a standard Brownian motion, then $E\left[\left(\int_{0}^{t} g_{s} d W_{s}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{t} g_{s}^{2} d s\right]$ for all \mathcal{F}_{t}-adapted processes g_{t}.
- Feynman-Kac: Suppose a function $f(y, t)$ satisfies the PDE:

$$
\left\{\begin{array}{c}
\left(\partial_{t}+a(y, t) \partial_{y}+\frac{1}{2} b^{2}(y, t) \partial_{y y}\right) f(y, t)=c(y, t) f(y, t) \\
f(y, T)=\varphi(y)
\end{array}\right.
$$

Then $f(y, t)$ admits the unique solution

$$
f(y, t)=\mathbb{E}^{\mathbb{M}}\left[e^{-\int_{t}^{T} c\left(Y_{s}, s\right) d s} \varphi\left(Y_{T}\right) \mid Y_{t}=y\right]
$$

where,

$$
d Y_{t}=a\left(Y_{t}, t\right) d t+b\left(Y_{t}, t\right) d W_{t}
$$

and W_{t} is a \mathbb{M}-standard Brownian motion.

1. Briefly explain each of the following concepts:
(a) [5] Arbitrage
(b) [5] A Brownian motion.
2. [10] Please indicate true or false (no explanations required).
+2 for correct answer; -0.5 for incorrect answer; 0 for no answer.
(a) $[\mathrm{T}] \quad[\mathrm{F}]$

An economy has the two traded assets shown below. This economy admits an arbitrage.

(b) $[\mathrm{T}] \quad[\mathrm{F}]$

You have sold a put option on XYZ shares and you are simultaneously delta-hedging the position. Suppose that important (unexpected) news arrives declaring poor sales of XYZ products resulting in a drop in share value. You must sell shares of XYZ to maintain your hedge.
(c) $[\mathrm{T}] \quad[\mathrm{F}]$

If $X_{t}=\mu t+W_{t}$ where $\mu>0$ and W_{t} is a standard Brownian motion, then the variance of X_{t} is equal to t.
(d) $[\mathrm{T}] \quad[\mathrm{F}]$

Delta hedging using a move-based approach always outperforms hedging using a time-based approach.
(e) $[\mathrm{T}] \quad[\mathrm{F}]$

Suppose that a call option struck at 10 is selling for 1 ; while a call option struck at 20 is selling for 2 . Both call options have the same maturity. This economy admits an arbitrage.
3. (a) [5] Consider the following portfolio: 4 long puts struck at 1 and one long call struck at 1. Sketch the delta of the portfolio (i) at maturity (ii) 1-year from maturity on the same graph below. Label any important points clearly.

(b) [5] Sketch the gamma of an asset-or-nothing call option struck at 1 (i) at maturity (ii) 1-year from maturity on the same graph below. Label any important points clearly. [Recall that an asset-or-nothing call has a payoff of S_{T} if $S_{T}>K$, otherwise it pays 0.]

4. Consider a simple two-step binomial model of interest rates in which $r_{0}=R$, and $r_{n}=r_{n-1} \pm 1 \%$. (Treat these rates as per period discount rates - e.g. discounting over the first period is $1 /(1+R)$).
(a) [5] Determine R and the risk-neutral branching probabilities over the first period consistent with the following market prices:

- A 1 period zero coupon bond costs $\$ 95$.
- A 2 period zero coupon bond costs $\$ 90$.

Blank intentionally. Continue work here...
(b) [5] Suppose that $R=5 \%$ and the risk-neutral branching probabilities are $q=1 / 2$.

Consider a European call option on a 3 -period zero coupon bond with notional 100. The option matures at $t=2$ and the strike of the option is 95 . Determine the value of the option.

Blank intentionally. Continue work here...
5. Consider an asset-or-nothing call option in the Black-Scholes model with zero interest rates. Recall that an asset-or-nothing option pays $\varphi=S_{T} \mathbb{I}\left(S_{T}>K\right)$ at maturity T.
(a) [5] Show that the price of the option is

$$
V(S, t)=S \Phi\left(d_{+}\right), \quad d_{+}=\frac{\ln (S / K)}{\sigma(T-t)^{1 / 2}}+\frac{1}{2} \sigma(T-t)^{1 / 2}
$$

Blank intentionally. Continue work here...
(b) [5] Confirm that the price satisfies the Black-Scholes partial differential equation. [Hint: use the fact that $\Phi^{\prime \prime}(x)=-x \Phi^{\prime}(x)$]

Blank intentionally. Continue work here...
6. You are given that W_{t} and B_{t} are correlated Brownian motions with correlation ρ.
(a) [5] Obtain an integration by parts formula for $\int_{0}^{t} W_{s}^{2} d B_{s}$.

Blank intentionally. Continue work here...
(b) [5] Determine the mean and variance of $X_{t}=\int_{0}^{t}\left(W_{s}+B_{s}\right) d B_{s}$.

Blank intentionally. Continue work here...
7. Suppose that two stocks U_{t} and V_{t} satisfy the following SDEs:

$$
\frac{d U_{t}}{U_{t}}=\alpha d t+\sigma d X_{t}, \quad \frac{d V_{t}}{V_{t}}=\beta d t+\eta d Y_{t}
$$

where X_{t} and Y_{t} are \mathbb{P}-Wiener processes with correlation $d[X, Y]_{t}=\rho d t$ and $\alpha, \beta, \sigma, \eta$ are all constants. The risk-free rate is zero.
(a) [5] Determine the SDE which $G_{t}:=U_{t} / V_{t}$ satisfies and the distribution of G_{t} for a fixed t conditional on G_{0}.

Blank intentionally. Continue work here...

Blank intentionally. Continue work here...
(b) [5] Determine the price at time $t=0$ of an option which pays

$$
\varphi=\frac{V_{S}}{U_{T}} \mathbb{I}\left(V_{S}>\gamma\right)
$$

at the maturity date T and $T>S>0$. Here, γ is a positive constant.

Blank intentionally. Continue work here...

Blank intentionally. Continue work here...
8. Suppose that two stocks X_{t} and Y_{t} satisfy the following SDEs:

$$
\frac{d X_{t}}{X_{t}}=\alpha d t+\sigma d W_{t}^{X}, \quad \frac{d Y_{t}}{Y_{t}}=\beta d t+\eta d W_{t}^{Y}
$$

where W_{t}^{X} and W_{t}^{Y} are \mathbb{P}-Wiener processes with correlation $d\left[W^{X}, W^{Y}\right]_{t}=\rho d t$ and $\alpha, \beta, \sigma, \eta$ are all constants. The risk-free interest rate r is constant. Furthermore, an option written on the two stocks has a payoff at maturity of $\varphi\left(X_{T}, Y_{T}\right)$.
(a) [5] Through a dynamic hedging argument (analogous to what we covered in class), prove that the price of the option $g(x, y, t)$ satisfies the following PDE:

$$
\left\{\begin{aligned}
\left(\partial_{t}+r x \partial_{x}+r y \partial_{y}+\frac{1}{2} \sigma^{2} x^{2} \partial_{x x}+\frac{1}{2} \eta^{2} y^{2} \partial_{y y}+\rho \sigma \eta x y \partial_{x y}\right) g & =r g \\
g(x, y, T) & =\varphi(x, y)
\end{aligned}\right.
$$

Blank intentionally. Continue work here...

Blank intentionally. Continue work here...
(b) [5] Suppose that $\varphi(x, y)=x \mathbb{I}(y>\gamma)$. Assume that $g(x, y, t)$ can be written as $g(x, y, t)=$ $x f(y, t)$ for some function $f(y, t)$. Using the PDE from part (a), derive a PDE for $f(y, t)$ and solve for it using the Feynman-Kac result.

Blank intentionally. Continue work here...

Blank intentionally. Continue work here...

