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Formula Page

z —1a2 da
Normal cdf: ®(z) := [* ez \;lT?.

Moments of Normals: If Z is a normal r.v. with mean 0 and variance 1, then the m.g.f. is

E[e®Z] = ¢2** and the fourth moment is E[Z4] = 3.

2-D Tto’s Lemma: If W; and Z; are standard correlated Brownian motions with d[W, Z] = pdt and
X, and Y; satisfy the SDEs:

dX; = pX dt + o7 dW,,  dY,=p) dt + o) dZ,

and Uy = f(X4, Yy, t), where f(z,y,t) is twice differentiable in « and y and once differentiable in ¢,
then

dUt - ax f(Xt7 Y;fa t>dXt + ay f(Xt)}/t)t)dY;
1 1
+ (5(‘75)2 Oz + 5(02/)2 Oyy + poy i azy) (X, Yy, 1) dt

1 1
= <at + 417 O + Nfay + E(UQX)Q Oze + 5(02/)2 Oy + poy o 8ﬂcy) (X4, Yy, 1) dt

+ 050, (X4, Yy, t) AW, + o) 0, f(Xy, Yist) dZ; .
2
Ito’s Isometry: If W; is a standard Brownian motion, then F [(fot s dWs) } ) [fg g> ds} for all
Fi-adapted processes g;.

Feynman-Kac: Suppose a function f(y,t) satisfies the PDE:

(at + (l(y, t)ﬁy _'_ %bQ(yv t>ayy) f<y7 t) = C(y7 t) f(y7 t)
fy,T) =¢(y)

Then f(y,t) admits the unique solution
T
1) = B[ o091 o7 | Y; =)

where,

dY; = a(Yy, t)dt 4+ b(Y:, t)dW;

and W; is a Ml-standard Brownian motion.



1. Briefly explain each of the following concepts:

(a) [5] Arbitrage

(b) /5] A Brownian motion.



2. [10] Please indicate true or false (no explanations required ).

+2 for correct answer; —0.5 for incorrect answer; 0 for no answer.

(a) [T [F]

An economy has the two traded assets shown below. This economy admits an arbitrage.

20 50

2 4

(b) [T} [F]

You have sold a put option on XY7Z shares and you are simultaneously delta-hedging the
position. Suppose that important (unexpected) news arrives declaring poor sales of XYZ

products resulting in a drop in share value. You must sell shares of XYZ to maintain your

hedge.

(T]  [F]
If X; = pt + W, where u > 0 and W; is a standard Brownian motion, then the variance of X,

is equal to t.

[T] [F]
Delta hedging using a move-based approach always outperforms hedging using a time-based

approach.

[T} [F]
Suppose that a call option struck at 10 is selling for 1; while a call option struck at 20 is selling

for 2. Both call options have the same maturity. This economy admits an arbitrage.
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Sketch the delta of the portfolio (i) at maturity (ii) 1-year from maturity on the same graph

below. Label any important points clearly.

(a) [5] Consider the following portfolio: 4 long puts struck at 1 and one long call struck at 1.

3.
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(b) [5] Sketch the gamma of an asset-or-nothing call option struck at 1 (i) at maturity (ii)

l-year from maturity on the same graph below. Label any important points clearly. [Recall
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that an asset-or-nothing call has a payoff of St if St > K, otherwise it pays 0.]

T LR

ewuwen uondo

<€



4. Consider a simple two-step binomial model of interest rates in which rq = R, and r,, = r,_; £ 1%.

(Treat these rates as per period discount rates — e.g. discounting over the first period is 1/(1+ R)).

(a) [5] Determine R and the risk-neutral branching probabilities over the first period consistent

with the following market prices:

e A 1 period zero coupon bond costs $95.

e A 2 period zero coupon bond costs $90.



Blank intentionally. Continue work here...



(b) /5] Suppose that R = 5% and the risk-neutral branching probabilities are ¢ = 1/2.

Consider a European call option on a 3-period zero coupon bond with notional 100. The

option matures at ¢t = 2 and the strike of the option is 95. Determine the value of the option.



Blank intentionally. Continue work here...
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5. Consider an asset-or-nothing call option in the Black-Scholes model with zero interest rates. Recall

that an asset-or-nothing option pays ¢ = Srl(Sr > K) at maturity 7.

(a) [5] Show that the price of the option is

In(S/K) 1

V(S,t) = Se(dy), dy = o =2 2

o(T — )% .

11



Blank intentionally. Continue work here...
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(b) /5] Confirm that the price satisfies the Black-Scholes partial differential equation.
[Hint: use the fact that ®"(z) = —zd'(x)]

13



Blank intentionally. Continue work here...
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6. You are given that W; and B; are correlated Brownian motions with correlation p.

(a) /5] Obtain an integration by parts formula for [ W2 dB,.

15



Blank intentionally. Continue work here...
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(b) /5] Determine the mean and variance of X; = fOt(Ws + By) dB;.
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Blank intentionally. Continue work here...
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7. Suppose that two stocks U; and V; satisfy the following SDEs:

@:adt—i—adXt, %zﬁdt—l—ndﬁ,
U Vi

where X; and Y; are P-Wiener processes with correlation d[X,Y]; = pdt and «,3,0,n are all

constants. The risk-free rate is zero.

(a) [5] Determine the SDE which G, := U,/V; satisfies and the distribution of G, for a fixed ¢

conditional on Gj.

19



Blank intentionally. Continue work here...
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Blank intentionally. Continue work here...
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(b) /5] Determine the price at time ¢t = 0 of an option which pays
Vs
= 75 (v >
o =g Vs >7)

at the maturity date 7" and 7" > S > 0. Here, v is a positive constant.

22



Blank intentionally. Continue work here...
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8. Suppose that two stocks X; and Y; satisfy the following SDEs:

X Y,
&:adwadwfﬂ ﬁ:ﬁdthWtY,
Xi Y,

where WX and W} are P-Wiener processes with correlation d[W=*, WY, = pdt and «, 3, 0,7 are
all constants. The risk-free interest rate r is constant. Furthermore, an option written on the two

stocks has a payoff at maturity of (X7, Yr).

(a) /5] Through a dynamic hedging argument (analogous to what we covered in class), prove

that the price of the option g(z,y,t) satisfies the following PDE:

(O + ra0, + rydy, + 10222 Oy + I0?y2 0y + ponaydsy) g =rg ,
g(:L“, y7T) = @(%y) .
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(b) [5] Suppose that ¢(z,y) = xl(y > ). Assume that g(x,y,t) can be written as g(z,y,t) =
x f(y,t) for some function f(y,t). Using the PDE from part (a), derive a PDE for f(y,t) and

solve for it using the Feynman-Kac result.
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