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Formula Page

• Normal cdf: Φ(x) :=
∫ x
−∞ e

− 1
2
x dx√

2π
.

• Moments of Normals: If Z is a normal r.v. with mean 0 and variance 1, then the m.g.f. is

E[eaZ ] = e
1
2
a2

and the fourth moment is E[Z4] = 3.

• 2-D Ito’s Lemma: If Wt and Zt are standard correlated Brownian motions with d[W,Z] = ρ dt and

Xt and Yt satisfy the SDEs:

dXt = µXt dt+ σXt dWt , dYt = µYt dt+ σYt dZt

and Ut = f(Xt, Yt, t), where f(x, y, t) is twice differentiable in x and y and once differentiable in t,

then

dUt =

(
∂t + µXt ∂x + µYt ∂y +

1

2
(σXt )2 ∂xx +

1

2
(σYt )2 ∂yy + ρ σYt σ

X
t ∂xy

)
f(Xt, Yt, t) dt

+ σXt ∂xf(Xt, Yt, t) dWt + σYt ∂yf(Xt, Yt, t) dZt .

• Ito’s Isometry: If Wt is a standard Brownian motion, then E

[(∫ t
0
gs dWs

)2
]

= E
[∫ t

0
g2
s ds
]

for all

Ft-adapted processes gt.

• Ito’s Product and Quotient Rule:

d(Xt Yt)

Xt Yt
=
dXt

Xt

+
dYt
Yt

+
d[X, Y ]t
Xt, Yt

;
d(Xt/Yt)

Xt/Yt
=
dXt

Xt

− dYt
Yt

+
d[Y, Y ]t
Y 2
t

− d[X, Y ]t
Xt Yt

.

• Girsanov’s Theorem: Given two equivalent measures P1 and P2, there exists an Ft-adapted vector

process ~λt such that if ~Wt is a vector of P1-Wiener process, then ~W ∗
t , satisfying d ~W ∗

t = ~λt dt+d ~Wt,

is a P2-Wiener process.
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1. Briefly explain each of the following concepts:

(a) [5] Arbitrage.

(b) [5] A Brownian motion.
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2. [10] Please indicate true or false (no explanations required ).

+2 for correct answer; −0.5 for incorrect answer; 0 for no answer.

(a) [T] [F]

In an economy with three tradable assets, it is never possible to replicate contingent claims

written on one of the assets.

(b) [T] [F]

You have sold a put option on XYZ shares and you are simultaneously delta-hedging the

position. Suppose that important (unexpected) news arrives declaring poor sales of XYZ

products resulting in a drop in share value. You must sell shares of XYZ to maintain your

hedge.

(c) [T] [F]

If interest rates are modeled as drt = θ dt + σ dWt where Wt is a Brownian motion, then

interest rates mean-revert.

(d) [T] [F]

If the real-world evolution of share prices evolves with a vol of 20% and you delta-gamma

hedge a put option with a vol of 25% on a daily basis, then the net PnL will be symmetric.

(e) [T] [F]

Suppose that a put option struck at 1 is selling for 0.10; while a put option struck at 2 is

selling for 0.2. Both puts have the same maturity. This economy admits an arbitrage.
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3. (a) [5] Consider the following portfolio: long put struck at 80 and a long call struck at 100. Sketch

the delta of the portfolio (i) at maturity (ii) 1-month from maturity (iii) 1-year from maturity

all on the same graph. Label any important points clearly.

ion Delta Opti

A
ss
et
 P
ri
ce
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(b) [5] Sketch the gamma of a digital call option (i) at maturity (ii) 1-month from maturity

(iii) 1-year from maturity all on the same graph. Label any important points clearly. [Recall

that a digital call option pays 1 at maturity if the asset price exceeds the strike K otherwise it

pays nothing.]

on Gamma Optio

A
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et
 P
ri
ce
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4. Consider a simple two-step binomial model of interest rates in which r0 = 5%, and rn = rn−1±1%.

(Treat these rates as per period discount rates – e.g. discounting over the first period is 1/1.05).

(a) [5] Determine the risk-neutral branching probabilities consistent with a market price of 100

for a coupon bearing bond which pays 5 at t = 1 and 105 at t = 2.
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Blank intentionally. Continue work here...
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(b) [5] Suppose that the risk-neutral branching probabilities are q = 1/2.

Consider a European call option on a 3-period bond with notional 100. The option matures

at t = 2 and the strike of the option is 95. Determine the value of the option.
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Blank intentionally. Continue work here...
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5. Consider a digital call option in the Black-Scholes model with zero interest rates.

(a) [5] Show that the price of the digital call option is

V (S, t) = Φ(d−) , d− =
ln(S/K)

σ(T − t)1/2
− 1

2
σ(T − t)1/2 .
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Blank intentionally. Continue work here...
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(b) [5] Confirm that the price satisfies the Black-Scholes partial differential equation.

[Hint: use the fact that Φ′′(x) = −xΦ′(x)]
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Blank intentionally. Continue work here...
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6. You are given that Wt and Bt are correlated Brownian motions with correlation ρ.

(a) [5] Obtain an integration by parts formula for
∫ t

0
eWs dBs.
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Blank intentionally. Continue work here...
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(b) [5] Determine the mean and variance of Xt =
∫ t

0
Ws dBs −

∫ t
0
Bs dWs.
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Blank intentionally. Continue work here...
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7. [10] Suppose that two stocks Ut and Vt satisfy the following SDEs:

dUt
Ut

= α dt+ σ dXt ,
dVt
Vt

= β dt+ η dYt ,

where Xt and Yt are P-Wiener processes with correlation d[X, Y ]t = ρ dt and α, β, σ, η are all

constants. The risk-free rate is zero.

Determine the price at time t = 0 of an option which pays

ϕ = UT × IVS>γ

at the maturity date T and T > S > 0. Here, γ is a constant.
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Blank intentionally. Continue work here...
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Blank intentionally. Continue work here...
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8. [10] Prove that ∫ t

0

WsdZs +

∫ t

0

ZsdWs = Wt Zt − ρ t a.s.

Do not use Ito’s lemma, but rather use the fundamental definition of the stochastic integrals.
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Blank intentionally. Continue work here...
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Blank intentionally. Continue work here...
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9. Consider the Vasicek model for the short rate of interest:

drt = κ(θ − rt) dt+ σ dWt

where Wt is a Q-Wiener process. The solution to this SDE is

rs = θ + (rt − θ) e−κ (s−t) + σ

∫ s

t

e−κ(s−u)dWu for t ≤ s.

(a) [5] Show that the distribution of ITt =
∫ T
t
rs ds is normal with mean m and variance v with

m = θ((T − t)−B(T − t;κ)) +B(T − t;κ) rt ,

v =
σ2

κ2
((T − t) +B(T − t; 2κ)− 2B(T − t;κ))

where, B(τ ;κ) = 1
κ
(1− e−κτ ).
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(b) [5] Show that price of a T -maturity bond satisfies the SDE

dPt(T )

Pt(T )
= rt dt− σ B(T − t;κ) dWt .
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