UNIVERSITY OF TORONTO

Faculty of Arts and Science

Term Test, October 19th, 2010

ACT 460 / STA 2502

DURATION - 120 minutes

EXAMINER: Prof. S. Jaimungal

COURSE CODE (circle one): ACT $460 \quad$ STA 2502

LAST NAME:

\qquad

FIRST NAME: \qquad

STUDENT \#: \qquad

Each question is worth 10 points

- NOT ALL QUESTIONS ARE OF THE SAME DIFFICULTY .

Please write clearly!

$1[10]$	$2[10]$	$3[10]$	$4[10]$	$5[10]$	$6[10]$	Total [60]

1. [10] Please indicate true or false. no explanations required
-1 for incorrect answer, +2 for correct answer, 0 for blank answer .
(a) $[\mathrm{T}] \xrightarrow[{[\mathrm{F}}]]{\mathrm{F}]}$

In an arbitrage-free economy, there exists a unique risk-neutral measure.
Cg. trinomial model with two traded assets
(b) $[T]$ [F]

The price of a put option always decreases with increasing volatility.

```
prices increase with val.
```

(c) [T) $[\mathrm{F}]$

In the one-period binomial model, if an economy has two distinct traded assets, then any contingent claim can be replicated.

S/C 2-d near system with 2 wnkmowis cum always be salved.
(d) $[\mathrm{T}]$ [F]

If the risk-free interest rate follows a multi-period binomial tree, then the risk-neutral branching probabilities are $\frac{1}{2}$.
4%

(e) $[\mathrm{T}]$ [F]

The price of a T-maturity call option, on an asset with no dividends with strike K, approaches the line $S-K e^{-r T}$ from below as the spot price increases to infinity.

2. Sketch the option price as a function of the current spot-level for maturities of $T=0, T=1$ month and $T=1$ year for
(a) [5] digital put option (which pays 1 if $S<K$ and 0 otherwise).
[draw the three curves on the same graph, clearly label them and any interesting points.]

(b) [5] A portfolio consisting of 1 long call struck at $\$ 1,2$ short calls struck at $\$ 2$ and 1 long call struck at $\$ 3$.
[draw the three curves on the same graph, clearly label them and any interesting points..]

3. [10] Consider an economy with the two traded assets below. State the formal conditions of an arbitrage strategy and construct one for this economy.
[As usual, all real-world branching probabilities are strictly positive.]

Asset A

Asset B

An arbitrage strategy with value V_{t} is one s.t.
a) $V_{0}=0$
b) \exists at st.
i) $\mathbb{P}\left(V_{t} \geq 0\right)=1$
ii) $\mathbb{P}\left(v_{t}>0\right)>0$

4. (a) [6] Consider the interest rate tree shown in the diagram below - each time step is 1-year. The rates correspond to effective discounting - e.g. discounting over the first period is $1 /\left(1+R_{0}\right)$. The probabilities shown are risk-neutral probabilities.

A one-year zero coupon bond on a notional of $\$ 100$ costs $\$ 91.1121$. As well, a 2-year coupon bearing bond with coupons of $\$ 10$ paid every year and notional of $\$ 100$ is valued at par (ie. is valued at $\$ 100$). Calibrate this model to the market prices, i.e. determine R_{0} and R_{d} such that the market prices are equal to the model prices.

$$
\begin{aligned}
& P_{0}(1)=91.1121=\frac{100}{1+R_{0}} \Rightarrow R_{0}=9.75 \% \\
& 2 \text {-yr coupon bond price is } \\
& 100=\frac{1}{1+R_{0}}\left\{\frac{1}{2} \times 101.67+\frac{1}{2} \times\left(\frac{110}{1+R_{d}}+10\right)\right\} \quad \frac{110}{1.20}+10<101.67 \\
& \Rightarrow \frac{110}{1+R_{d}}=200\left(1+R_{d}\right)-111.67=107.83
\end{aligned}
$$

(b) [4] You are given the following model (on the left) for a stock price:
[the extra tree on the right is include just for your convenience.]

Consider a 2-period barrier option which pays 10 the instant the asset touches the level 110, otherwise it pays 0 . Assume interest rates are 0 . Find the no-arbitrage bounds on the value of the Barrier option.

Only the thignighted paths result in payments of 10 (or use payoff in tree to the right)
and valuation is $\quad v_{0}=10\left(q_{1}+q_{2} q_{4}\right)$
now need ranges for $q_{1}, q_{2}+q_{4}$.

$$
\left.\begin{array}{rl}
q_{1} 110+q_{2} 100+q_{3} 90 & =100 \\
q_{1}+q_{2}+q_{3}=1
\end{array}\right\} \Rightarrow q_{1}=q_{3} \text { and } \quad q_{2}=1-2 q_{1}
$$

$$
\text { so, then } q_{1}>0, q_{2}>0 \& q_{3}>0 \Rightarrow \quad 0<q_{1}<\frac{1}{2}
$$

\unlhd

$$
\text { similany: } \quad \begin{gathered}
q_{4}=q_{6} \text { and } q_{5}=1-2 q_{4} \\
\\
0<q_{4}<\frac{1}{2}
\end{gathered}
$$

so $v_{0}=10\left(q_{1}+\left(1-2 q_{1}\right) q_{4}\right)$

This page left intentionally blank... continue work here...
now this is minimized what $q_{1}=q_{4}=0 \Rightarrow v_{0}>0$

$$
\text { and maximized whee } \begin{array}{rlrl}
\text { and } & q_{1} & =q_{4}=\frac{1}{2} \Rightarrow v_{0}<5 \\
\text { or } & q_{1} & =0 \\
q_{4} & =\frac{1}{2} \\
q_{1} & =\frac{1}{2} \\
q_{4} & =0
\end{array}
$$

5. Assume an equity price S_{t} is modeled as in the Black-Scholes model (i.e. the limiting case of the CRR model as $\Delta t \downarrow 0$ and interest rates are constant at r). For each of the following, write your answers terms of $\Phi(x) \triangleq \mathbb{Q}(Z<x)$ where Z is a standard normal random variable under the risk-neutral measure \mathbb{Q}.
(a) [5] Derive an expression for the $(t=0)$ price of an option with T-maturity payoff

$$
\varphi=\left(S_{T}\right)^{2} \mathbb{I}_{S_{T}>K}
$$

Here K is a constant and, as usual, \mathbb{I}_{ω} is the indicator function of the event ω, i.e. equals 1 if ω occurs and 0 if ω otherwise.

$$
\begin{aligned}
S_{T} & =\frac{d}{} S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z}, \quad Z \underset{a}{\sim} N(0,1) \\
V_{0} & =e^{-r T} \mathbb{E}^{\mathbb{Q}}\left[\left(S_{T}\right)^{2} \mathbb{I}_{S_{T}>k} u\right. \\
& \left.=e^{-r T} \int_{-\omega}^{\infty}\left(S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T}} 3\right)^{2} \frac{1}{z>3^{2}} \frac{e^{-\frac{1}{2} 3^{2}}}{\sqrt{2 \pi}} d\right\}
\end{aligned}
$$

$$
\text { where } 3^{*}=-\frac{\ln \left(S_{0} / K\right)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}
$$

$$
=e^{-r T} S_{0}^{2} e^{2\left(r-\frac{1}{2} \sigma^{2}\right) T} \int_{3^{*}}^{\infty} e^{2 \sigma \sqrt{T} 3-\frac{1}{2} 3^{2}} \frac{d\}}{\sqrt{2 \pi}}
$$

$$
=S_{0}^{2} e^{\left(r-\sigma^{2}\right) T} \int_{3^{*}}^{\infty} e^{-\frac{1}{2}(z-2 \sigma \sqrt{T})^{2}+\frac{1}{2}(2 \sigma \pi)^{2}} \frac{d z}{\sqrt{2 \pi}}
$$

$$
=S_{0}^{2} e^{\left(r+\sigma^{2}\right) T} \Phi\left(-3^{*}+2 \sigma \sqrt{T}\right)
$$

(b) [5] Derive an expression for the $(t=0)$ price of a forward starting option with T-payoff

$$
\varphi=\min \left(S_{T}-k S_{U}, A S_{U}\right) . A S_{u}
$$

$k S_{u}(A+k) S_{u}$
This is a long call strict e $k S_{u}$ Short call struct $e(A+k) S_{u}$
so $V_{0}=e^{-r T} \mathbb{E}^{\mathbb{Q}}\left[\left(S_{T}-k S_{u}\right)_{+}-\left(S_{T}-(A+h) S_{u}\right)_{+}\right]$
let's value

$$
\begin{aligned}
u_{0} & =e^{-r T} \mathbb{E}^{\mathbb{Q}}\left[\left(S_{T}-\alpha S_{u}\right)_{+}\right] \\
& =e^{-r T} \mathbb{E}^{\mathbb{Q}}[\underbrace{\left.\mathbb{Q}_{-}\right)}_{e^{r(T-u)}\left(S_{u} \Phi\left(d_{+}\right)-\alpha S_{u} e^{-r(T-u)} \Phi\left(S_{-}-\alpha S_{u}\right)_{+} \mid S_{u}\right]} \\
& =e^{r(T-u)} \beta(\alpha) S_{u},
\end{aligned}
$$

where: $\beta(\alpha)=\Phi\left(d_{+}\right)-\alpha e^{-r(T-u)} \Phi\left(d_{-}\right)=$const.
and $d_{ \pm}=\frac{\ln (S u) / \alpha(S))+\left(r \pm \frac{1}{2} \sigma^{2}\right)(T-4)}{\sigma \sqrt{T-u}}=$ const.

$$
\begin{aligned}
& \Rightarrow u_{0}=\beta(\alpha) e^{-r u} \mathbb{E}^{Q u}\left[S_{u}\right]=\beta(\alpha) S_{0} \\
& \Rightarrow V_{0}=(\beta(k)-\beta(A+k)) S_{0}
\end{aligned}
$$

6. Consider the modified CRR model of stock prices

$$
S_{n \Delta t}=S_{(n-1) \Delta t} \exp \left\{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t+\sigma \sqrt{\Delta t} x_{n}\right\}
$$

where x_{1}, x_{2}, \ldots are id r.v. with $\mathbb{P}\left(x_{1}=+1\right)=p$ and $\mathbb{P}\left(x_{1}=-1\right)=1-p$. Interest rates are constant so that the money-market account M_{t} evolves as

$$
M_{n \Delta t}=M_{(n-1) \Delta t} \exp \{r \Delta t\}
$$

(a) [4] Prove that, in this model, under the risk-neutral measure \mathbb{Q}, the up-branching probabilities as $\Delta t \downarrow 0$ are

$$
q=\frac{1}{2}\left[1+\frac{r-\mu}{\sigma} \sqrt{\Delta t}\right]+o(\sqrt{\Delta t})
$$

Recall that $o(\sqrt{\Delta t})$ is a term which goes to zero faster than $\sqrt{\Delta t}$.

$$
\begin{aligned}
S_{(\mu-1) \Delta t} & =e^{-r \Delta t} E^{Q}\left[S_{n \Delta t}\right] \\
\Rightarrow \quad e^{r \Delta t} & =q e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t+\sigma \sqrt{\Delta t}}+(1-q) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t-\sigma \sqrt{\Delta t}} \\
\Rightarrow \quad q & =\frac{e^{r \Delta t}-e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t-\sigma \sqrt{\Delta t}}}{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t+\sigma \sqrt{\Delta t}}-e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t-\sigma \sqrt{\Delta t}} \\
& =\frac{e^{\left(r-\mu+\frac{1}{2} \sigma^{2}\right) \Delta t}-\sigma \sqrt{\Delta t}}{e^{\sigma}-\sqrt{\Delta t}} \\
& =\frac{e^{\left.-1+\left(r-\mu+\frac{1}{2} \sigma^{2}\right) \Delta t\right)}-\left(1-\sigma \sqrt{\Delta t}+\frac{1}{2} \sigma^{2} \Delta t\right)+o(\Delta t)}{\left(1+\sigma \sqrt{\Delta t}+\frac{1}{2} \sigma^{2} \Delta t\right)-\left(1-\sigma \sqrt{\Delta t}+\frac{1}{2} \sigma^{2} \Delta t\right)+o(\Delta t)} \\
& =\frac{\sigma \sqrt{\Delta t}+(r-\mu) \Delta t+o(\Delta t)}{2} \\
& =\frac{1}{2}\left(1+\frac{r-\mu}{2} \sqrt{\Delta t)}+o(\sqrt{\Delta t)}\right.
\end{aligned}
$$

(b) [6] Prove that in the limit as $\Delta t \downarrow 0$, the joint distribution of the asset price at two points in time, T_{1} and T_{2} with $T_{2}>T_{1}$, can be written as follows:

$$
S_{T_{1}} \stackrel{d}{=} S_{0} e^{\hat{r} T_{1}+\sigma \sqrt{T_{1}} Z_{1}} \quad \text { and } \quad S_{T_{2}} \stackrel{d}{=} S_{0} e^{\hat{r} T_{2}+\sigma \sqrt{T_{2}} Z_{2}}
$$

where, Z_{1} and Z_{2} are \mathbb{Q}-bivariate standard normal random variables with correlation

$$
\rho=\sqrt{\frac{T_{1}}{T_{2}}}
$$

and $\hat{r}=r-\frac{1}{2} \sigma^{2}$.
let $\quad T_{2}=(M+N) \Delta t+\quad T_{1}=N \Delta t$

$$
\begin{aligned}
\Rightarrow \quad S_{T_{1}} & \left.=S_{0} \exp \left\{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t N+\sigma \sqrt{\Delta t} \sum_{n=1}^{N} x_{n}\right\}\right\} \\
S_{T_{2}} & \left.=S_{0} \exp \left\{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t(M+N)+\sigma \sqrt{\Delta t} \sum_{n=1}^{M+N} x_{n}\right)\right\}
\end{aligned}
$$

$$
\text { by } \operatorname{CLT}(X, y) \underset{m_{1} N x+w}{\rightarrow} N\left(\binom{m_{x}}{m_{y}} ;\left(\begin{array}{cc}
\Omega_{x_{x}} & \Omega_{x y} \\
\Omega_{y x} & \Omega_{y y}
\end{array}\right)\right)
$$

so meed $m_{n}, m_{y}, \Omega_{i j}$

$$
\begin{aligned}
m_{x} & =\sigma \sqrt{\Delta t} \mathbb{E}^{Q}\left[\sum_{n=1}^{N} x_{n}\right]=\sigma \sqrt{\Delta t} N \mathbb{E}^{Q}\left[x_{1}\right] \\
& =\sigma \sqrt{\Delta t} N(2 q-1)=(r-\mu) \Delta t N+o(\Delta t) \rightarrow(r-\mu) T_{1},
\end{aligned}
$$

similarly,

$$
m_{y}=\sigma \sqrt{\Delta t}(M+N)(2 q-1) \longrightarrow(r-\mu) T_{2}
$$

sine x_{n} id

$$
\begin{aligned}
\Omega_{x_{u}}= & \sigma^{2} \Delta t \mathbb{V}^{\mathbb{Q}}\left[\sum_{n=1}^{N} x_{n}\right]=\sigma^{2} \Delta t N \mathbb{V}^{\mathbb{Q}}\left[x_{1}\right] \\
= & \sigma^{2} \Delta t N\left(1-(2 q-1)^{2}\right)
\end{aligned}=\sigma^{2} T_{1}\left(1-\left(\frac{r-u}{\sigma}\right) \sqrt{\Delta} t+o(\sqrt{1} t)\right)
$$

This page left intentionally blank... continue work here...

Similunly,

$$
\Omega_{y y} \longrightarrow \sigma^{2} T_{2}
$$

these sums are

$$
\begin{aligned}
\Omega_{x y} & =\sigma^{2} \Delta t \mathbb{C}\left[\sum_{n=1}^{N} x_{m}, \sum_{n=1}^{M+N} x_{n}\right] \\
& =\sigma^{2} \Delta t\left(\mathbb{C}\left[\sum_{n=1}^{N} x_{n}, \sum_{n=1}^{N} x_{n}\right]+\mathbb{C}\left[\sum_{n=1}^{N} x_{n}, \sum_{n=N n}^{M} x_{n}\right]\right. \\
& =\sigma^{2} \Delta t N \mathbb{V}\left[x_{1}\right] \\
& =\sigma^{2} T_{1}\left(1-\frac{r-m}{\sigma} \sqrt{\Delta t}+o(\sqrt{\Delta t})\right) \longrightarrow \sigma^{2} T_{1}
\end{aligned}
$$

So, $\quad\binom{X}{y} \underset{\mathbb{G}}{\sim} N\left(\binom{(r-\mu) T_{1}}{(r-\mu) T_{2}} ;\left(\begin{array}{ccc}\sigma^{2} T_{1} & \sigma^{2} T_{1} \\ \sigma^{2} T_{1} & \sigma^{2} T_{2}\end{array}\right)\right)$

$$
\begin{aligned}
& \Rightarrow \quad X \stackrel{d}{=}(r-\mu) T_{1}+\sigma \sqrt{T_{1}} Z_{1} \\
& y \stackrel{d}{=}(r-\mu) T_{2}+\sigma \sqrt{T_{2}} Z_{2} \\
& \binom{Z_{1}}{Z_{2}} \sim N\left(\binom{0}{0} ;\left(\begin{array}{cc}
1 & \rho \\
\rho & 1
\end{array}\right)\right) \quad \text { and } \quad \rho=\sqrt{\frac{\sigma^{2} T_{1}}{\sigma^{2} T_{2}}}=\sqrt{\frac{T_{1}}{T_{2}}}
\end{aligned}
$$

so Her,

$$
\begin{aligned}
& S_{T_{1}} \stackrel{d}{=} S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) T_{1}+(r-\mu) T_{1}+\sigma \sqrt{T_{1}} Z_{1}} \\
&=S_{0} e^{\hat{r} T_{1}+\sigma \sqrt{T_{1}} Z_{1}} \\
& S_{T_{2}} \stackrel{d}{=} S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) T_{2}+(r-\mu) T_{2}+\sigma \sqrt{T_{2}} Z_{2}} \\
&=S_{0} e^{\hat{r} T_{2}+\sigma \sqrt{T_{2}} Z_{2}}
\end{aligned}
$$

