UNIVERSITY OF TORONTO

Faculty of Arts and Science

Term Test, October 20th, 2009

ACT 460 / STA 2502

DURATION - 120 minutes

EXAMINER: Prof. S. Jaimungal

COURSE CODE (circle one): ACT $460 \quad$ STA 2502

LAST NAME:

\qquad

FIRST NAME: \qquad

STUDENT \#:

\qquad

Each question is worth 10 points

- NOT ALL QUESTIONS ARE OF THE SAME DIFFICULTY .

Please write clearly!

$1[10]$	$2[10]$	$3[10]$	$4[10]$	$5[10]$	$6[10]$	Total [60]

1. [10] Please indicate true or false. no explanations required
-1 for incorrect answer, +2 for correct answer, 0 for blank answer .
(a) $[\mathrm{T}] \quad[\mathrm{F}]$

All two period, two state (binomial) economies are arbitrage free.
(b) $[\mathrm{T}] \quad[\mathrm{F}]$

The price of a call option always decreases with increasing volatility.
(c) $[\mathrm{T}] \quad[\mathrm{F}]$

If the branching probabilities are unique, then all contingent claims can be replicated.
(d) $[\mathrm{T}] \quad[\mathrm{F}]$

The risk-neutral return of the short rate of interest in a stochastic interest rate model is equal to r.
(e) $[\mathrm{T}] \quad[\mathrm{F}]$

Suppose interest rates are zero. An at-the-money put option is worth 0.80 and a call option with the same strike and maturity is worth 0.75 . This economy admits an arbitrage.
[At-the-money means the strike equals the spot.]
2. Sketch the option price as a function of the current spot-level for maturities of $T=0, T=1$ month and $T=1$ year for
(a) [5] digital call option (which pays 1 if $S>K$ and 0 otherwise).
[draw the three curves on the same graph, clearly label them and any interesting points.]

(b) [5] A portfolio of 4 long puts and 1 long call, both struck at $\$ 1$.
[draw the three curves on the same graph, clearly label them and any interesting points..]

3. [10] Consider an economy with the two traded assets below. Find the values of X such that the economy is free of arbitrage.

Asset A

Asset B

This page left intentionally blank... continue work here...
4. Consider the interest rate tree shown in the diagram below - each time step is 1-year. The rates correspond to effective discounting - e.g. discounting over the first period is $1 /(1+R)$. The probabilities shown are risk-neutral probabilities.

(a) [6] The price of a one-year bond on a notional of $\$ 100$ is $\$ 95.2381$. As well, a 2 -year coupon bearing bond with coupons of $\$ 5$ paid every year and notional of $\$ 100$ is valued at par. Calibrate this model to the market prices, i.e. determine R and q such that the market prices are equal to the model prices.

This page left intentionally blank... continue work here...
(b) [4] Now assume that $q=\frac{1}{2}$ and $R=5 \%$. As well, you can only trade using the 1 -year and 2-year zero coupon bonds with notionals of $\$ 100$ (i.e. 1-year zero coupon bond pays $\$ 100$ at year 1, and the 2 year zero coupon bond pays $\$ 100$ at year 2).

What is the replication strategy of an option which pays $\$ 100$ if the interest rate drops to $4 \% ?$

This page left intentionally blank... continue work here...
5. Assume an equity price S_{t} is modeled as in the Black-Scholes model (i.e. the limiting case of the CRR model as $\Delta t \downarrow 0$ and interest rates are constant at r). For each of the following, write your answers terms of $\Phi(x) \triangleq \mathbb{Q}(Z<x)$ where Z is a standard normal random variable under the risk-neutral measure \mathbb{Q}.
(a) [5] Derive an expression for the $(t=0)$ price of an option with T-maturity payoff

$$
\varphi=\min \left(S_{T} ; K\right)
$$

Here K is a constant.

This page left intentionally blank... continue work here...
(b) [5] Derive an expression for the $(t=0)$ price of a forward start option with T-maturity payoff

$$
\varphi=\min \left(S_{T} ; k S_{U}\right)
$$

Here, $0<U<T$ and k is a proportionality constant.

This page left intentionally blank... continue work here...
6. Consider the CRR model of stock prices

$$
S_{n \Delta t}=S_{(n-1) \Delta t} \exp \left\{\sigma \sqrt{\Delta t} x_{n}\right\}
$$

where x_{1}, x_{2}, \ldots are iid r.v. with $\mathbb{P}\left(x_{1}=+1\right)=p$ and $\mathbb{P}\left(x_{1}=-1\right)=1-p$. Interest rates are constant so that the money-market account M_{t} evolves as

$$
M_{n \Delta t}=M_{(n-1) \Delta t} \exp \{r \Delta t\}
$$

(a) [6] Prove that under the measure induced by using S as a numeraire asset (call this measure $\left.\mathbb{Q}_{S}\right)$, as $\Delta t \downarrow 0$ one has

$$
S_{T} \stackrel{d}{=} S \exp \left\{\left(r+\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z\right\}
$$

where $Z \stackrel{\mathbb{Q}_{S}}{\sim} \mathcal{N}(0,1)$.
[Note that the drift is $r+\frac{1}{2} \sigma^{2}$ and NOT $r-\frac{1}{2} \sigma^{2}$ as it is under the risk-neutral measure \mathbb{Q}.]

This page left intentionally blank... continue work here...

This page left intentionally blank... continue work here...
(b) [4] Using the measures \mathbb{Q}_{S} and \mathbb{Q}, show that the $(t=0)$ price of a T-maturity put option is

$$
K e^{-r T} \Phi\left(-d_{-}\right)-S \Phi\left(-d_{+}\right), \quad \quad d_{ \pm}=\frac{\ln (S / K)+\left(r \pm \frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}
$$

YOU ARE NOT ALLOWED TO COMPUTE INTEGRALS IN THIS QUESTION.

[Hint: Write the put payoff in terms of a digital option $K \mathbb{I}_{S_{T}<K}$ and an asset-or-nothing option $S_{T} \mathbb{I}_{S_{T}<K}$ and value each separately.]

This page left intentionally blank... continue work here...

This page left intentionally blank... continue work here...

