UNIVERSITY OF TORONTO

Faculty of Arts and Science

Term Test, October 7th, 2008

$$
\text { ACT } 460 \text { / STA } 2502
$$

DURATION - 150 minutes

EXAMINER: Prof. S. Jaimungal

COURSE CODE (circle one): ACT 460 STA 2502

LAST NAME:

\qquad FIRST NAME: \qquad

STUDENT \#:

\qquad

Each question is worth 10 points

- NOT ALL QUESTIONS ARE OF THE SAME DIFFICULTY .

Please write clearly!

$1[10]$	$2[10]$	$3[10]$	$4[10]$	$5[10]$	$6[10]$	$7[10]$	Total [70]

1. [10] Please indicate true or false. no explanations required
-1 for incorrect answer, +2 for correct answer, 0 for blank answer .
(a) $[\mathrm{T}] \quad[\mathrm{F}]$

If an economy admits a strategy which costs nothing and at a future time has strictly positive values with probability greater than zero, then this economy admits an arbitrage.
(b) $[\mathrm{T}] \quad[\mathrm{F}]$

The price of a put option always increases with volatility.
(c) $[\mathrm{T}] \quad[\mathrm{F}]$

In a one-period economy, the risk-neutral branching probabilities are always uniquely determined.
(d) $[\mathrm{T}] \quad[\mathrm{F}]$

If S_{t} is the price of a traded stock, then in the Black-Scholes economy, the risk-neutral expected rate of return of S_{t}^{2} is equal to $2 r+\sigma^{2}$.
(e) $[\mathrm{T}] \quad[\mathrm{F}]$

A put option struck at $\$ 100$ trades at $\$ 10$, while a put option struck at $\$ 110$ trades at $\$ 11$. Both puts have the same time to maturity. This economy admits an arbitrage.
[Hint: Consider 11 units of the first put and 10 units of the second put]
2. Sketch the option price as a function of the current spot-level for maturities of $T=0, T=1$ month and $T=1$ year for
(a) [5] call option
[draw the three curves on the same graph, clearly label them and any interesting points.]

(b) [5] bear spread option. This option can be viewed as a long put struck at K_{2} and a short put struck at $K_{1}\left(0<K_{1}<K_{2}<\infty\right)$
[draw the three curves on the same graph, clearly label them and any interesting points..]

3. [10] Consider an economy with the three traded assets below. Construct an arbitrage strategy.

Asset A

Asset B

Asset C

This page left intentionally blank... continue work here...
4. Consider the interest rate tree shown in the diagram below. The rates correspond to effective discounting - e.g. discounting over the first period is $1 /(1+0.04)$. The probabilities shown are risk-neutral probabilities.

(a) [6] Consider a 2-year coupon bearing bond with coupons of $\$ 5$ paid every year and notional of $\$ 100$. Determine the rate R such that the bond is valued at par (i.e. has value $\$ 100$ now).

This page left intentionally blank... continue work here...
(b) [4] Determine the price of a call option maturing at $t=1$ written on the coupon bearing bond with strike equal to today's price of the bond. Note: the option holder will not receive the coupon due at $t=1$.

This page left intentionally blank... continue work here...
5. Consider an economy with a defaultable stock and bond (interest rates are 0 in all states of the world):

Defaultable Stock price tree

Defaultable Bond price tree
(a) [5] Show that the risk-neutral default probabilities shown in the diagram are as follows:

$$
\lambda=\lambda_{d}=\lambda_{u}=\frac{1}{20}, \quad q=\frac{29}{38}, \quad q_{d}=\frac{14}{19}, \quad q_{u}=\frac{15}{19} .
$$

This page left intentionally blank... continue work here...
(b) [5] Value an American put option with the stock as underlier, strike of 100 and maturity of two periods.

This page left intentionally blank... continue work here...
6. (a) [5] Assuming the Black-Scholes model, derive an expression for a "forward start digital call option". A forward start digital call is an option which pays 1 at the maturity date T if the stock price at time T is larger than the stock price at time U. $U<T)$ Write your answer in terms of $\Phi(x):=\mathbb{Q}(Z<x)$ where Z is a standard normal random variable under the measure \mathbb{Q}.

This page left intentionally blank... continue work here...
(b) [5] Assuming the Black-Scholes model, derive an expression for a contingent claim which pays the geometric average of the asset price at two points in time. That is, the claim pays $\left(S_{T_{1}} S_{T_{2}}\right)^{\frac{1}{2}}$ at maturity T_{2} where $0<T_{1}<T_{2}$.

This page left intentionally blank... continue work here...
7. Suppose you model stock prices in a CRR like fashion. However, you assume that

$$
S_{n}=S_{n-1} \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right) \Delta t+\sigma \sqrt{\Delta t} x_{n}\right\}
$$

where x_{1}, x_{2}, \ldots are iid r.v. with $\mathbb{P}\left(x_{1}=+1\right)=p$ and $\mathbb{P}\left(x_{1}=-1\right)=1-p$.
(a) [5] Prove that if we force

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[S_{T}\right] & =S_{0} e^{\mu T}, \\
\mathbb{V}^{\mathbb{P}}\left[\ln \left(S_{T} / S_{0}\right)\right] & =\sigma^{2} T
\end{aligned}
$$

in the limit as $\Delta t \downarrow 0$ while $T=n \Delta t$ is held fixed. Then,

$$
p=\frac{1}{2}\left(1+\frac{\mu-r}{\sigma} \sqrt{\Delta t}\right)+O(\Delta t)
$$

This page left intentionally blank... continue work here...
(b) [5] Prove that, in the limit as $\Delta t \downarrow 0$ while $T=n \Delta t$ is held fixed, the risk neutral probability in this model is (with constant rate of interest r)

$$
q=\frac{1}{2}+O(\Delta t)
$$

This page left intentionally blank... continue work here...

