
Administration
I Friday this week (1–2) in LM 158: fitting linear models in R
I Please check web page regularly for updates
I You should by now have a Cquest account, or have R or

Splus on your PC, or be planning to go your own route re
software

I Homework 1 coming next week
I Printing slides from web page (Acrobat: page setup

(horizontal); expand to fit)
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Linear Regression, à la HTF
inputs X = (X1, . . . , Xp): attributes, features, predictors,
covariates
output Y ∈ R: response
data (xi , yi), i = 1, . . . N: instances
linear model E(Y | X ) = β0 + Σp

j=1Xjβj

model for data: yi = β0 + β1xi1 + · · ·+ βpxip + εi , i = 1, . . . , N
εi independent, E(εi) = 0, varεi constant
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Learning the model : finding f (X ) to describe E(Y |X ), or other
properties of the distribution of Y
Here we assume f (X ) known up to p + 1 unknown parameters;
just need to estimate these parameters
Want ‘good’ estimates, possibly defined via a loss function on
the training data, possibly defined by prediction error on the test
data
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Least squares

minβ
∑N

i=1(yi − β0βzxi1 − · · · − βpxip)2

RSS(β) =
∑N

i=1(yi − β0βzxi1 − · · · − βpxip)2

= (y − Xβ)T (y − Xβ)

X is N × p + 1: X = (1, x1, . . . , xp)

β is p + 1 × 1: β = (β0, . . . , βp)T

solution is
β̂ = (X T X )−1X T y

assuming ...

fitted values (for training data)
ŷ = X β̂ = X (X T X )−1X T y = Hy
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Notes
ŷ = Hy : H is a projection matrix, projecting y(∈ RN) onto the
column space of X
if X T X is not invertible, then the column space has dimension
less than p + 1, but we can still project y onto this space
we can remove redundant columns, or equivalently use a
generalized inverse
most usual situation is when several columns of X serve to
code levels of a factor
most packages detect and remove redundant columns in this
case, but the convention for removing differs among packages
if X T X is only nearly singular, ...
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Properties of β̂

varβ̂ = σ2(X T X )−1 (under the assumptions)

σ̂2 = 1
N−(p+1)RSS(β̂)

= 1
N−(p+1)(y − ŷ)T (y − ŷ)

= 1
N−(p+1)(y − X β̂)T (y − X β̂)

= 1
N−(p+1)y

T (I − H)y

if ε ∼ N(0, σ2I) then β̂ ∼ N(β, σ2(X T X )−1)

β̂j − βj

σ̂(X T X )−1
jj

∼ tN−(p+1)
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> summary(pr.z.lm)

Call:
lm(formula = lpsa ˜ lcavol.z + lweight.z + age.z + lbph.z + svi.z +

lcp.z + gleason.z + pgg45.z, data = pr.z.train)

Residuals:
Min 1Q Median 3Q Max

-1.64870 -0.34147 -0.05424 0.44941 1.48675

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.47951 0.08963 27.665 < 2e-16 ***
lcavol.z 0.67953 0.12663 5.366 1.47e-06 ***
lweight.z 0.30494 0.11086 2.751 0.00792 **
age.z -0.14146 0.10134 -1.396 0.16806
lbph.z 0.21015 0.10222 2.056 0.04431 *
svi.z 0.30520 0.12360 2.469 0.01651 *
lcp.z -0.28849 0.15453 -1.867 0.06697 .
gleason.z -0.02131 0.14525 -0.147 0.88389
pgg45.z 0.26696 0.15361 1.738 0.08755 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7123 on 58 degrees of freedom
Multiple R-Squared: 0.6944,Adjusted R-squared: 0.6522
F-statistic: 16.47 on 8 and 58 DF, p-value: 2.042e-12

##much better is:
pr.std<-data.frame(cbind(apply(pr,2,std),pr$lpsa,pr$train))
names(pr.std)[9]<-"lpsa"
names(pr.std)[10]<-"train"
lm(lpsa˜.-train,subset=train==1,data=pr.std)
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> x=cbind(pr.z.test$lcavol.z,pr.z.test$lweight.z,pr.z.test$age.z,
+ pr.z.test$lbph.z, pr.z.test$svi.z,pr.z.test$lcp.z,pr.z.test$gleason.z,
+ pr.z.test$pgg45.z)
> dim(x)
[1] 30 8
> test.fitted = x %*% coef(pr.z.lm)
Error in x %*% coef(pr.z.lm) : non-conformable arguments
> coef(pr.z.lm)
(Intercept) lcavol.z lweight.z age.z lbph.z svi.z

2.47951205 0.67952814 0.30494116 -0.14146483 0.21014656 0.30520060
lcp.z gleason.z pgg45.z

-0.28849277 -0.02130504 0.26695576
> x=cbind(rep(1,30),x)
> dim(x)
[1] 30 9
> test.fitted = x %*% coef(pr.z.lm)
> sum((lpsa-test.fitted)ˆ2)
[1] 17.58988
> .Last.value/30
[1] 0.5863292
> sum((lpsa-2.47951205)ˆ2)/30
[1] 1.052896

#this can be done better using predict.lm
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Notes on example :
estimated coefficients in Table 3.2 of HTF
Each xk was centered and standardized (on the full data set )
to have mean 0, var 1
this makes interpretation very difficult, although emphasis here
is on prediction
standardizing x ’s is needed for subset selection methods in
Section 3.4
on the training data, β̂ has the smallest
variance among all unbiased estimators of β
two questions: Can we do better on training data by allowing
biased estimators?
Does this lead to better prediction error on test data?
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Geometric view of least squares fitting
β̂ = (X T X )−1X T y
β̂ = (β̂0, β̂1, . . . , β̂p)

β̂p can be obtained by a series of regressions
(projections) as outlined in algorithm 3.1 on p.52

regress x1 on 1, get coefficient γ̂01, form
residual z1 = x1 − x̂1

regress x2 on 1, z1, get coefs γ̂02, γ̂12,
form residual z2 = x2 − γ̂021 − γ̂12z1
...
regress xp on zp−1 to get zp − xp − x̂p

regress y on zp to get β̂p

obtain each β̂j by a similar process, hence
interpretation at top of p.53
note effect of correlations among columns of X
illustration on prostate training data
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