The asymptotic theory outlined in the nuisance parameter notes leads to the following three pivotal quantities, in the case that $\theta = (\psi, \lambda)$ and $\psi \in \mathbb{R}$:

$$
\begin{align*}
 r_p(\psi) &= \text{sign}(\hat{\psi} - \psi)\sqrt{2\{\ell_p(\psi) - \ell_p(\hat{\psi})\}}^{1/2}, \\
 r_e(\psi) &= (\hat{\psi} - \psi)j_p(\hat{\psi})^{1/2}, \\
 r_u(\psi) &= \ell_p(\psi)j_p(\hat{\psi})^{-1/2},
\end{align*}
$$

and these are all approximately standard normal pivots, under the model $f(y; \psi, \lambda)$.

[Aside: the score based pivot is not often used, because the normal approximation seems to be poor in many settings. A version of the standardized score statistic that can be useful is the version given in (8) of the nuisance parameter notes:

$$
 w_u(\psi) = U_\psi(\psi, \hat{\lambda}_\psi)^T\{i_\psi(\psi, \hat{\lambda}_\psi)\}U_\psi(\psi, \hat{\lambda}_\psi),
$$

because this requires fitting only the model with ψ fixed. For example, if it were of interest to assess whether or not $\psi = 0$, i.e. whether or not the simpler model (without ψ) was just as good as the more complex model, then the score statistic only involves fitting the simpler model. This can be useful in some applications.]

The pivotal quantities r_p and r_e are illustrated in Figure 4.7 (lower) in SM (p.130), along with the profile log-likelihood function.

Here is some R code that fits a logistic regression to the Challenger shuttle data given in SM as Example 1.3. The model is $y_i \sim \text{Binomial}(m_i, p_i)$, where $m_i = 6$, and $\text{logit}(p_i) = \beta_0 + \beta_1\text{pressure}_i + \beta_2\text{temperature}_i$, $i = 1, \ldots, 23$.

```r
> library(SMPracticals)
> data(shuttle)
> head(shuttle)

   stability error sign wind magn vis use
 1       xstab    LX  pp head Light no auto
 2       xstab    LX  pp head Medium no auto
 3       xstab    LX  pp head Strong no auto
 4       xstab    LX  pp tail Light no auto
 5       xstab    LX  pp tail Medium no auto
 6       xstab    LX  pp tail Strong no auto
> ## wrong shuttle data

> data(shuttle, package = "SMPracticals")
> shuttle

   m  r temperature pressure
  1  6 0        66         50
  2  6 1        70         50
  3  6 0        69         50
  4  6 0        68         50
```
> attach(shuttle) # simplifies use of names for the next step
> shuttle.glm <- glm (cbind(r,m) ~ temperature + pressure, family = binomial)
> summary(shuttle.glm)

Call:
glm(formula = cbind(r, m) ~ temperature + pressure, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-0.9783 -0.6438 -0.5428 -0.1144 2.0898

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.696161 3.405617 0.498 0.6185
temperature -0.086153 0.043549 -1.978 0.0479 *
pressure 0.007937 0.007664 1.036 0.3004

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 21.012 on 22 degrees of freedom
Residual deviance: 14.600 on 20 degrees of freedom
AIC: 34.515

Number of Fisher Scoring iterations: 5

A p-value for testing that the coefficient of temperature is zero is given (approximately) by referring the Wald statistic \((\hat{\beta}_1 - 0) / \sqrt{\text{Var}(\hat{\beta}_1)} \) to a standard normal, and here is 0.048. Similarly the p-value for testing that \(\beta_2 = 0 \) is approximately 0.300. The likelihood ratio pivot for assessing \(\beta_1 = 0 \) is obtained by maximizing the log-likelihood function with, and without, that constraint.

> glm(cbind(r,m) ~ pressure, family=binomial)

Call: glm(formula = cbind(r, m) ~ pressure, family = binomial)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.371295 3.405617 -1.28 0.2044
pressure 0.009666 0.007664 1.28 0.2044

Degrees of Freedom: 22 Total (i.e. Null); 21 Residual
Null Deviance: 21.01
Residual Deviance: 18.78 AIC: 36.69
> 2*pnorm(sqrt((18.78-14.60)), lower.tail = F) # deviance has the "2 times" built in;
 # the outer 2 is for both tails
[1] 0.0409037

With a bit more work, it is possible to get confidence intervals based on the log-likelihood ratio pivot, and for this case the interval for \(\beta_1 \) is \((-0.1787, -0.0035)\), for the Wald pivot it is \((-0.1715, -0.0008)\).