Setup: define a test function $\phi(y)$ from \mathcal{Y} to $[0, 1]$

$\phi(Y) = \Pr(Y \in \mathcal{R})$

if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$

allows for the possibility of randomized tests

if $Y \sim f(y; \theta)$, then

$E_{\theta}\phi(Y) = \int \phi(y)f(y; \theta)dy$ = probability of rejection

under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error

under $H_1: \theta \in \Theta_1$, this is the power of the test

Goal: maximize

$$\beta_{\phi}(\theta) = E_{\theta}\phi(Y) \quad \forall \theta \in \Theta_1,$$

subject to

$E_{\theta}\phi(Y) \leq \alpha, \quad \forall \theta \in \Theta_0$
Neyman-Pearson lemma

- Suppose Θ_0 is the point θ_0, and similarly for Θ_1
- Assume the existence of densities f_0 and f_1 with respect to the same measure μ

1. Given $0 \leq \alpha \leq 1$, there exists a test function ϕ and a constant k such that

\[E_0 \phi(Y) = \alpha \]

and

\[\phi(y) = \begin{cases}
 1 & \text{when } f_1(y) > kf_0(y), \\
 0 & \text{when } f_1(y) < kf_0(y).
\end{cases} \]

2. If a test satisfies (1) and (2) for some k, then it is most powerful for testing f_0 against f_1 at level α

3. If ϕ is most powerful at level α for testing f_0 against f_1, then for some k it satisfies (2), a.e. μ, and satisfies (1) unless there exists a test of size $< \alpha$ and with power 1.
Proof 1.

- trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty$
- 1. define
 \[\alpha(c) = Pr_0\{f_1(Y) > cf_0(Y)\} = Pr\{f_1(Y)/f_0(Y) > c\} \]
- $1 - \alpha(c)$ is a cumulative distribution function
- so $\alpha(c)$ is non-increasing, right-continuous, $\alpha(-\infty) = 1, \alpha(\infty) = 0$

- Given $0 < \alpha < 1$, let c_0 be such that $\alpha(c_0) \leq \alpha \leq \alpha(c_0^-)$

\[\phi(y) = \begin{cases}
 1 & \text{when } f_1(y) > c_0 f_0(y) \\
 \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)} & \text{when } f_1(y) = c_0 f_0(y) \\
 0 & \text{when } f_1(y) < c_0 f_0(y)
\end{cases} \]

- $E_0 \phi(Y) = Pr_0 \left\{ \frac{f_1(Y)}{f_0(Y)} \right\} +$
... proof 2.

- Suppose ϕ is a test satisfying (1) and (2), and that ϕ^* is another test with $E_0\phi^*(Y) \leq \alpha$.

- Denote by S^+ and S^- the sets in \mathcal{Y} where $\phi(y) - \phi^*(y) > 0$ and < 0.

- In S^+, $\phi(y) > 0$ so $f_1(y) \geq kf_0(y)$, and

\[
\int (\phi - \phi^*)(f_1 - kf_0) d\mu = \int_{S^+ \cup S^-} (\phi - \phi^*)(f_1 - kf_0) d\mu \geq 0
\]

- Difference in power:

\[
\int (\phi - \phi^*)f_1 d\mu \geq k \int (\phi - \phi^*)f_0 d\mu \geq 0
\]
Let ϕ^* be MP level α, and ϕ satisfy (1) and (2).

On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$.

\[
\int_{S^+ \cup S^-} (\phi - \phi^*)(f_1 - kf_0) d\mu = \int_S (\phi - \phi^*)(f_1 - kf_0) d\mu > 0
\]

implies ϕ is more powerful than ϕ^*.

contradiction, hence $\mu(S) = 0$.

if ϕ^* had size $< \alpha$ and power < 1, could add points to rejection region until either $E_0\phi^*(Y) = \alpha$ or $E_1\phi^*(Y) = 1$.

test is unique if $\{y : f_1(y) = kf_0(y)\}$ has measure 0.
discreteness: e.g. $Y \sim \text{Bin}(n, p)$

MP test has rejection region R determined by $\{y > d_\alpha\}$

not all values of α attainable: e.g. CH Example 4.9

$Y \sim \text{Poisson}(\mu)$

$H_0 : \mu = 1, \quad H_1 : \mu = \mu_1 > 1$, MP test $Y \geq d_\alpha$

Table : attained significance levels

<table>
<thead>
<tr>
<th>y</th>
<th>$\Pr(Y > y; \mu = 1)$</th>
<th>y</th>
<th>$\Pr(Y > y; \mu = 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0.0189</td>
</tr>
<tr>
<td>1</td>
<td>0.632</td>
<td>5</td>
<td>0.0037</td>
</tr>
<tr>
<td>2</td>
<td>0.264</td>
<td>6</td>
<td>0.0006</td>
</tr>
<tr>
<td>3</td>
<td>0.080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if critical regions are nested, i.e. $R_{\alpha_1} \subset R_{\alpha_2}$, $\alpha_1 < \alpha_2$, then

$p_{\text{obs}} = \inf(\alpha ; y_{\text{obs}} \in R_\alpha)$

asymmetry:

$Y \sim \text{N}(\mu, 1), H_0 : \mu = 0, H_1 : \mu = 10$, $y_{\text{obs}} = 3$
Bayesian testing

see CH Example 10.12

- Simple H_0, simple H_1:
 \[
 \frac{\Pr(H_0 \mid y)}{\Pr(H_1 \mid y)} = \frac{\Pr(H_0) f_0(y)}{\Pr(H_1) f_1(y)}
 \]

- Similarly, with H_1, \ldots, H_k potential alternatives
 \[
 \frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\Pr(H_0) f_0(y)}{\sum_{j} \Pr(H_j) f_j(y)}
 \]

- Sharp null hypothesis: $H_0 : \theta = \theta_0$, $H_1 : \theta \neq \theta_0$
 \[
 \frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\pi_0}{(1 - \pi_0) \int \pi_1(\theta) f(y; \theta) d\theta}
 \]

- Nuisance parameters
 \[
 \frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\pi_0}{(1 - \pi_0) \int \int \pi(\psi, \lambda \mid H_1) f(y \mid \psi, \lambda) d\psi d\lambda}
 \]
... testing

- Bayes factor $B_{10} = \frac{\Pr(y \mid H_1)}{\Pr(y \mid H_0)}$

- typically $\Pr(y \mid h_i) = \int f(y \mid H_i, \theta_i) \pi(\theta_i \mid H_i) d\theta_i, \quad i = 0, 1$

11.2 · Inference

<table>
<thead>
<tr>
<th>B_{10}</th>
<th>$2 \log B_{10}$</th>
<th>Evidence against H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>0–2</td>
<td>Hardly worth a mention</td>
</tr>
<tr>
<td>3–20</td>
<td>2–6</td>
<td>Positive</td>
</tr>
<tr>
<td>20–150</td>
<td>6–10</td>
<td>Strong</td>
</tr>
<tr>
<td>> 150</td>
<td>> 10</td>
<td>Very strong</td>
</tr>
</tbody>
</table>

SM Ch. 11.2

- cannot be computed with improper priors
Nature, PNAS, AoS articles by Johnson

▶ developed an ‘objective’ Bayesian test for comparison to p-values
▶ “A p-value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are considered weak evidence to support a finding”
▶ “He advocates for scientists to use more stringent p-values of 0.005 or less”

▶ see also CH Example 10.12 and SM Example 11.15

▶ emphasis on point hypotheses drives most of these anomalous results
▶ e.g. $\Pr(\theta > 0 \mid y)$