1. Profile log-likelihood. Suppose $Y = (Y_1, \ldots, Y_n)$ is a vector of independent, identically distributed random variables from the density $f(y; \psi, \lambda)$, where $\psi \in \mathbb{R}$ is the parameter of interest and $\lambda \in \mathbb{R}$ is a nuisance parameter. The profile log-likelihood is defined as $\ell_p(\psi) = \ell(\psi, \hat{\lambda}_\psi)$, where $\hat{\lambda}_\psi$ is assumed to satisfy the score equation $\partial \ell(\psi, \lambda)/\partial \lambda = 0$.

(a) Show that the estimator of ψ that satisfies the profile score equation $\partial \ell_p(\psi)/\partial \psi = 0$ is the same as the maximum likelihood estimator of ψ.

(b) Show that the profile information function $j_p(\psi) = -\partial^2 \ell_p(\psi)/\partial \psi \partial \psi^T$ satisfies
\[
\{j_p(\psi)\}^{-1} = j^{\psi\psi}(\psi, \hat{\lambda}_\psi),
\]
where $j^{\psi\psi}(\theta)$ is the (ψ, ψ) block of $j^{-1}(\theta)$, the inverse of the observed Fisher information from the log-likelihood function $\ell(\psi, \lambda)$.

(c) Use Taylor series expansion to show that
\[
\hat{\lambda}_\psi - \hat{\lambda} = -j^{-1}_{\lambda\lambda}(\psi, \hat{\lambda})j_{\lambda\psi}(\psi, \hat{\lambda})(\psi - \hat{\psi}) + O_p(n^{-1}).
\]

(d) Expand $\ell_p(\psi)$ about ψ and use the results of (b) and (c) to show that
\[
w_p(\psi) = 2\{\ell_p(\hat{\psi}) - \ell_p(\psi)\} = (\psi - \hat{\psi})^2 j_p(\hat{\psi}) + o_p(1),
\]
and hence that the limiting distribution of $w_p(\psi)$ is χ^2_1, under the model.
2. *BNC, Exercise 3.6.* Based on observations y_1, \ldots, y_n independently normally distributed with unknown mean and variance, obtain the profile log-likelihood for $Pr(Y > a)$, where a is an arbitrary constant, and compare inference based on this with the exact answer from the non-central t-distribution.

3. *Adapted from BNC, Ex. 2.24.*

(a) Suppose Y_1, \ldots, Y_n are independent, identically distributed as Poisson with mean θ. Show that the conditional distribution of Y_1, \ldots, Y_n, given $S = \Sigma Y_i$, is Multinomial(S, π) where $\pi = (1/n, \ldots, 1/n)$. This distribution can in principle be used to assess goodness of fit of the Poisson model, but if n is much bigger than 2 or 3 it will be difficult to determine which directions in the sample space to examine.

(b) A summary statistic that could be used to see whether data are consistent with the moment properties of the Poisson is $T = \Sigma (Y_i - \bar{Y})^2/\{(n - 1)\bar{Y}\}$. Show that

\[
E(T \mid S = s) = 1, \quad \text{var}(T \mid S = s) = \frac{2(1 - 1/s)}{n - 1},
\]

and thus that, conditionally on $S = s$, $(n - 1)sT/(s - 1)$ has the same first two moments as a $\chi^2_{(n-1)s/(s-1)}$.

(c) Explore the extension of this to assessing goodness of fit for a Poisson regression, where $y_i \sim Po(\theta_i)$, and $\log \theta_i = \alpha + \beta x_i$.

4. *SM, Problem 4.9.1.* The logistic density is a location-scale family with density function

\[
f(y; \mu, \sigma) = \frac{\exp\{(y - \mu)/\sigma\}}{\sigma[1 + \exp\{(y - \mu)/\sigma\}]}, \quad -\infty < y < \infty, -\infty < \mu < \infty, \sigma > 0.
\]

(a) When $\sigma = 1$, show that the expected Fisher information about μ in y is $1/3$.

(b) If instead of observing y, we observe $z = 1$ if $y > 0$, otherwise $z = 0$. When $\sigma = 1$ show that the maximum expected Fisher information about μ in z is $3/4$, achieved at $\mu = 0$.

2
5. **Saddlepoint approximation.** Suppose X_1, \ldots, X_n are independent and identically distributed on \mathbb{R}, with density function $f(x)$ and moment generating function $M_X(t) = E\{\exp(tX)\}$ assumed to exist for t in an open interval about 0, and cumulant generating function $K_X(t) = \log M_X(t)$. The saddlepoint approximation to the density of $\bar{X} = n^{-1} \sum X_i$ is given by

$$f_{\bar{X}}(\bar{x}) \doteq \frac{1}{\sqrt{2\pi}} \left\{ \frac{n}{K_X''(\hat{\phi})} \right\}^{1/2} \exp\{nK_X(\hat{\phi}) - n\hat{\phi}\bar{x}\},$$

where $\hat{\phi} = \hat{\phi}(\bar{x})$ satisfies the equation $K_X'(\hat{\phi}) = \bar{x}$.

(a) Show that if Y_1, \ldots, Y_n are independent and identically distributed from a scalar parameter exponential family

$$f(y; \theta) = \exp\{\theta y - c(\theta) - d(y)\}$$

that the saddlepoint approximation to the density of $\hat{\theta}$ is given by

$$f_{\hat{\theta}}(\hat{\theta}; \theta) \doteq \frac{1}{\sqrt{2\pi} j^{1/2}(\hat{\theta})} \exp\{\ell(\theta) - \ell(\hat{\theta})\}.$$

(b) If y_1, \ldots, y_n are independent and identically distributed from a scalar parameter location family

$$f(y; \theta) = f_0(y - \theta),$$

then we showed in class that the exact density of the maximum likelihood estimator $\hat{\theta}$, given a, where $a_i = y_i - \hat{\theta}, i = 1, \ldots, n$, is

$$f_{\hat{\theta}|A}(\hat{\theta} \mid a; \theta) = \frac{\exp\{\ell(\theta; y)\}}{\int \exp\{\ell(\theta; y)\} d\theta},$$

where in the right hand side we recall that $y_i = \hat{\theta} + a_i$. By expanding $\ell(\theta)$ in the denominator in a Taylor series about $\hat{\theta}$, show that the exact conditional density can be approximated by

$$f_{\hat{\theta}|A}(\hat{\theta} \mid a; \theta) \doteq \frac{1}{\sqrt{2\pi} j^{1/2}(\hat{\theta})} \exp\{\ell(\theta) - \ell(\hat{\theta})\}.$$

Both these approximations have similar versions for p-dimensional parametric models, with slight changes in notation. Both approximations have relative error $O(n^{-1})$, and when re-normalized to integrate to 1 have relative error $O(n^{-3/2})$.

3