Some aspects of matching priors

Setting: parametric inference, using a model (＝ likelihood), prior and posterior

Require: posterior probability statements to have sampling validity (Lindley, 1956)

Goals: default priors for ‘routine’ use

- Bayesian/nonBayesian compromise
- compare priors developed otherwise

Advantages:

Frequentist: marginalization for elimination of nuisance parameters

Bayesian: default prior ‘should be’ widely accepted
Overview

1. Edgeworth expansions for posterior quantiles, and probability matching

2. No general solution

3. Saddlepoint type/Strong matching
model \quad f(y; \theta), \quad \theta \in \mathbb{R}^k \\
data \quad y = (y_1, \ldots, y_n) \\
likelihood \quad L(\theta) = L(\theta; y) = f(y; \theta)c(y) \\
log-likelihood \quad \ell(\theta) = \ell(\theta; y) = \log f(y; \theta) + a(y) \\
prior, posterior \quad \pi(\theta), \quad \pi(\theta|y) \propto L(\theta; y)\pi(\theta) \\
posterior quantile \quad \theta^{(1-\alpha)} \\
\Pr_{\theta|Y}\{\theta \leq \theta^{(1-\alpha)}|y\} = 1 - \alpha \\
matching \quad \Pr_{Y|\theta}\{\theta \leq \theta^{(1-\alpha)}(\pi, Y)\} = 1 - \alpha + \\
m.l.e. \quad \hat{\theta} : \sup_{\theta} \ell(\theta) = \ell(\hat{\theta}) \\
obs. info. \quad j(\hat{\theta})^{-1} = \text{asy. var. } \hat{\theta} \\
extp. info \quad i(\theta) = (1/n)E\{\ell'(\theta)^2\}
\[+o(n^{-1/2}) \]

draw sketch of posterior and indicate quantile

note that equivalently we ask that posterior cdf for \(\theta \) given \(Y \) be uniform under the sampling distribution, which is Welch and Peers approach

\[\pi(\theta|Y) \sim U(0, 1) \]

under \(f_Y(y; \theta) \)

also there exist other approaches to 'default' or 'noninformative' priors

goal is typically [often] 'good' performance in repeated sampling
1. Edgeworth expansions ...

Want: \(\Pr_{Y|\theta}\{\theta \leq \theta^{(1-\alpha)}(\pi, Y)\} = 1 - \alpha + o(n^{-1/2}) \)

- Step 1. Posterior density

\[
\pi(\theta|y) = \frac{\exp\{\ell(\theta)\}\pi(\theta)}{\int \exp\{\ell(\theta)\}\pi(\theta)d\theta}
\]

\[
= \exp\{\ell(\hat{\theta}) + (\theta - \hat{\theta})\ell'(\hat{\theta}) + \ldots\}\{\pi(\hat{\theta}) + \ldots\} /
\]

\[
= \ldots = \phi(w)\{1 + \frac{1}{\sqrt{n}}(I) + \frac{1}{n}(II) + \ldots\}
\]

\[
w = \frac{\pi'(\hat{\theta})}{\pi(\hat{\theta})}\frac{1}{\{j(\hat{\theta})\}^{1/2}} + \frac{1}{3}\frac{\ell'''(\hat{\theta})}{\{j(\hat{\theta})\}^{3/2}}w + (\ldots)w^3
\]

- Step 2. Posterior cdf

\[
\Pi(\theta|y) = \ldots = \Phi(w) + \phi(w)\left\{\frac{1}{\sqrt{n}}(I') + \frac{1}{n}(II') + \ldots\right\}
\]
\section*{1 Edgeworth expansions}

- Step 3. Posterior quantile

$$\Pi(\theta^{(1-\alpha)}(y)|y) = 1 - \alpha + o(n^{-1/2})$$

$$\theta^{(1-\alpha)}(y) = \hat{\theta} + z_\alpha j(\hat{\theta})^{-1/2} \frac{1}{\sqrt{n}} + j(\hat{\theta})^{-1/2} \frac{1}{n} \{ (z_\alpha^2 + 2) A_3(y) + A_1(y) \} + .$$

- Step 4. Frequentist coverage

$$\Pr_{Y|\theta}\{\theta^{(1-\alpha)}(Y) \geq \theta\} = \Pr\{ \frac{1}{\sqrt{n}} \phi(z_\alpha) T_1 + \frac{1}{n} z_\alpha \phi(z_\alpha) T_2 + \ldots \geq \theta\}$$

Mukerjee & Dey, 1993, Bka

$$T_1(\pi, \theta) = \left\{ \frac{\pi'(\theta)}{\pi(\theta)} - \frac{i'(\theta)}{2i(\theta)} \right\} i^{-1/2}(\theta)$$

$$T_1(\pi, \theta) = 0 \iff \pi(\theta) \propto i^{1/2}(\theta)$$

Welch & Peers, 1963, Bka
Note matching is for all $\alpha \in (0, 1)$

n.b. $i(\theta)$ is expected Fisher information in one observation

This all assumes scalar parameter θ, but the same steps are followed for a scalar parameter of interest and vector of nuisance parameters; details somewhat messier; next slide
...1 Edgeworth expansions \(\theta = (\theta_1, \ldots, \theta_k) \)

- Want:

\[
\Pr_{Y|\theta} \{ \theta_1 \leq \theta_1^{(1-\alpha)}(\pi, Y) \} = 1 - \alpha + o(n^{-1/2})
\]

- Edgeworth expansion for marginal posterior

\[
\pi_m(\theta_1|y) = \int \pi(\theta|y)d\theta_2 \ldots d\theta_k
\]

- Cornish-Fisher inversion leads to

\[
\theta_1^{(1-\alpha)} = \hat{\theta} + z_\alpha \hat{\sigma}_{11} + \ldots
\]

- Frequentist coverage

\[
= 1 \quad \alpha + \frac{1}{\sqrt{n}} \phi(z_\alpha)T_1(\pi, \theta)
+ \frac{1}{n} z_\alpha \phi(z_\alpha)T_2(\pi, \theta) + o(n^{-1})
\]
2. No general solution

\[T_1(\pi, \theta) = 0 \iff \]

\[\sum_j \frac{\partial}{\partial \theta_j} \left[\{i_{11}^{11}(\theta)\}^{-1/2} i_{1j}(\theta) \pi(\theta) \right] = 0 \quad (1) \]

Peers, 1965, Bka; Ghosh and Mukerjee, 1997

– in general has infinitely many solutions; e.g. suppose \(i_{1j}(\theta) = 0, j = 2, \ldots, k \):

\[\frac{\partial}{\partial \theta_1} \left\{ i_{11}^{1/2}(\theta) \pi(\theta) \right\} = 0 \]

\[\pi(\theta) \propto i_{11}^{1/2}(\theta) g(\theta_2, \ldots, \theta_k) \]

Tibshirani, 1989, Bka

– require (1) for each component in turn; leads to no solutions (in general)
2 No general solution

What about matching to a higher order? \(T_2 \)

Scalar parameter case: \(\pi(\theta) \propto \{i(\theta)\}^{1/2} \):

\[
T_2(\pi, \theta) = 0 \iff \frac{d}{d\theta} \left[\frac{E \left(\frac{\partial \ell}{\partial \theta} \right)^3}{\{i(\theta)\}^{3/2}} \right] = 0
\]

In the orthogonal parameter case, the analogous condition is

\[
\frac{1}{6} g(\theta(2)) D_1(i_{11}^{-3/2} i_{1,1,1}^3)
\]

\[
+ \sum_{v=2}^{k} \sum_{s=2}^{k} D_v \{i_{11}^{-1/2} i_{11s} i^{sv} g(\theta(2))\} = 0
\]

where \(i_{1,1,1} = E(\ell_1)^3 \) and \(i_{11s} = E(\ell_{11s}) \)

Mukerjee & Ghosh, 1997, Bka
...2 No general solution

Example: bivariate normal; $\theta_1 = \rho \mu_2 / \mu_1$

- First order $\pi(\theta) \propto g(\theta_2, \theta_3, \theta_4, \theta_5) \left(\frac{\theta_3}{\theta_2} \right)^{1/2}$

- Second order $\pi(\theta) \propto g(\theta_3, \theta_4, \theta_5) \theta_2^{-1}$

Other matching criteria

- distribution function matching

- match under local alternatives

- match tolerance limits or other functions $h(\theta)$

- match distribution function for Wald or LR statistic

- match prediction limits
df matching

\[E \Pr_{\theta|Y}\{\sqrt{n}(\theta_1 - \hat{\theta}_1)/\hat{\sigma}_{11} \leq w|Y\} \]

\[= \Pr_{Y|\theta}\{\sqrt{n}(\theta_1 - \hat{\theta}_1)/\hat{\sigma}_{11} \leq w\} + O(n^{-j}) \]
3 Saddlepoint-type expansions

1. Frequentist p-value for θ_1:

$$\Phi(r) + \phi(r) \left(\frac{1}{r} - \frac{1}{q} \right)$$

or

$$\Phi(r^*) = \Phi(r + \frac{1}{r} \log \frac{q}{r})$$

where

$$r = \pm [2\{\ell_p(\hat{\theta}_1) - \ell_p(\theta_1)\}]^{1/2}$$ likelihood root

$$q = \{\chi(\hat{\theta}) - \chi(\theta_1, \tilde{\theta}_2(2))\}^{-1/2}$$ type of Wald stat.

- derived from p^* approximation

- accurate to $O(n^{-3/2})$

- approximates $Pr_{Y|\theta}\{R(\theta_1) \leq r(\theta_1)\}$
3 Saddlepoint-type

2. Bayesian p-value for θ_1:

$$\Phi(r) + \phi(r) \left(\frac{1}{r} - \frac{1}{q} \right)$$

where

$$r = \pm \left[2\{\ell_p(\tilde{\theta}_1) - \ell_p(\theta_1)\} \right]^{1/2}$$

likelihood root

$$q = \ell_1(\theta_1, \tilde{\theta}(2))\hat{\sigma}_{11}^{-1/2} \frac{\pi(\hat{\theta})}{\pi(\theta_1, \tilde{\theta}(2))}$$

type of score stat.

- derived from Laplace approximation to marginal posterior
- accurate to $O(n^{-3/2})$
- approximates $Pr_{\theta|Y}\{R \geq r(\theta_1)\}$
...3 Saddlepoint / strong matching

- Strong matching: \(q_f = q_B \), i.e. \(\iff \frac{\pi(\theta_1, \tilde{\theta}(2))}{\pi(\tilde{\theta})} = \ldots \)

- gives form of prior for \(\theta_1 \), but not \(\theta(2) \)

- depends on data

- not a very workable prescription as a 'default' prior

- but, does cast some light on the nature of matching priors:
...3 Strong matching

– frequentist p-value derived by finding an 'approximating exponential model' for $\ell(\theta)$, with canonical parameter $\varphi(\theta)$

– there is also an 'approximating location model', with location parameter $\beta(\theta)$

– the strong matching prior is flat in β: i.e. $\pi(\theta) \propto d\beta(\theta)$ in the scalar parameter case

– in the nuisance parameter case

$$
\pi(\theta_1, \tilde{\theta}_{(2)}) \propto \left| \frac{\partial \theta_1(\theta)}{\partial \beta'(\theta)} \right|^{-1}_{(\theta_1, \tilde{\theta}_{(2)})} \cdot \text{info adjustment}
$$

– If θ is a scalar then

$$
\beta(\theta) = \int_{\tilde{\theta}}^{\theta} -\frac{\ell_\theta(\theta)}{\varphi(\theta)} d\theta
$$
3 Strong matching/data-dependent priors

- strong matching to 2nd order leads to $|j_{\varphi\varphi}(\varphi)|^{1/2}$, a data-dependent Jeffreys’ prior

- data dependent priors may be inevitable

Pierce & Peters, 1994, Bka

- Example: Box-Cox model $y_i^{(\lambda)} = x_i^\prime \beta + \sigma e_i$; $\theta = (\beta, \sigma, \lambda)$

$$
\pi(\theta)d\theta \propto d\beta \frac{d\sigma}{\sigma} \frac{d\lambda}{(y^\lambda - 1)^k}
$$

Box & Cox, 1964, JRSSB
k is the dimension of β

\hat{y} is the geometric mean

in mixture $c(\theta; y)$ deletes from the likelihood function the sample that comes entirely from the first component of the mixture
3 Data dependent priors

- Example: mixture models

\[f(y; \theta) = \frac{1}{2} \phi(y) + \frac{1}{2} \phi(y - \theta) \]

- no fixed prior can match one-sided intervals to \(O(n^{-1}) \)

\[\pi(\theta) \propto \{i(\theta)\}^{1/2} c(\theta; y) \]

where

\[c(\theta; y) = 1 - \prod \left\{ 1 + \frac{\phi(y_i - \theta)}{\phi(y_i)} \right\} \]

Wasserman, 2000, JRSSB
4 Conclusions

– no easy fix to the problem of nuisance parameters

– data-dependent priors may be necessary, even in a Bayesian context

– higher order asymptotics helps to understand problems in inference

– many other approaches to default priors, e.g. reference prior maximizes the Kullback-Liebler distance between the prior and the posterior

– another approach: find 'the' likelihood for θ_1 (wip)