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Abstract

We consider a vector-valued parameter of interest in the presence of a finite-

dimensional nuisance parameter, based on higher order asymptotic theory for

likelihood inference. We propose a directional test for the vector parameter

of interest, that is computed using one-dimensional integration. For discrete

responses this extends the development of Davison et al. (2006), and several ex-

amples below concern testing hypotheses in contingency tables. For continuous

responses the work extends the directional test of Cheah et al. (1994). Exponen-

tial family examples and simulations illustrate the high accuracy of the method,

which we compare with an adjusted likelihood ratio test of Skovgaard (2001). In

a high-dimensional covariance selection example the approach works essentially

perfectly, whereas its competitors fail catastrophically.
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1 Introduction

The likelihood ratio statistic is probably the most widely used approach to the com-

parison of nested parametric models—for example, deviance tests in generalized linear

models (McCullagh and Nelder, 1989) are of this type—and provides a general and

powerful framework for such comparisons. In large samples chi-squared approxima-

tions to the distribution of the likelihood ratio statistic may be used, but in certain

cases, for example in sparse contingency tables or covariance selection models, the ac-

curacy of these approximations may be poor. Thus it is of wide interest to consider

alternative potentially more accurate approaches.

In this paper we discuss a directional approach derived from higher order approxi-

mations for likelihood inference. For a scalar parameter of interest a pivotal quantity,

often called r∗, can be constructed, which follows a standard normal distribution with

relative error O(n−3/2), when the response y is continuous, and with relative error

O(n−1), when y is discrete. Since these approximations have bounded relative error

both in the centre of the distribution and in large deviation regions, they provide highly

accurate inferences well into the distribution tails. A review of this literature and sev-

eral examples are given in Brazzale et al. (2007) and Brazzale and Davison (2008); the

discrete case is considered in more generality in Davison et al. (2006).

A development for vector parameters of interest, parallel to that of r∗, was given

in Skovgaard (2001). The resulting test statistic has a distribution close to χ2 and was

derived analogously to r∗, so that the approximation is also accurate in large deviation

regions. The present paper provides an alternative highly accurate approximation

that improves on the usual likelihood ratio statistic, seems to be more accurate in

simulations than Skovgaard’s statistic, and is very easy to compute.

Our approach starts with a vector-valued measure of departure from the hypoth-

esis, and computes p-values based on the magnitude of this measure, conditional on

its direction, thus generalizing one-sided tests for a scalar parameter of interest. Di-

rectional tests for vector parameters of interest were proposed in Fraser and Massam

(1985) and Skovgaard (1988). For exponential family models, the sufficient statistic

for the parameter provides the starting point for this vector measure, as proposed by

Cheah et al. (1994), and the development is based on the saddlepoint approximation
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to the conditional distribution. The p-value is computed by one-dimensional numeri-

cal integration, evaluated conditionally on the direction of the variable; see (10) and

(11) below. In this paper we consider exponential family models where the parameter

of interest is linear in the canonical parameter. Not only does this encompass many

important models, but other approximations are available with which our approach

can be compared, thus giving a broad indication of its likely quality when extended

to more general settings. The examples below include multi-dimensional contingency

tables, binary regression, comparison of variances in normal models and rate parame-

ters in exponential models, and inference about the concentration matrix in graphical

models. In simulations the proposed approach is shown to be very accurate, even when

inference on the likelihood ratio statistic fails. The method also captures the structure

of the models, for example reproducing the F -test for comparing two means in Example

5.3.

2 Background

Suppose we have a parametric model f(y; θ), where y = (y1, . . . , yn) is a vector of

independent components and θ ∈ Rp. The maximum likelihood estimator θ̂ = θ̂(y)

maximizes the log-likelihood function `(θ; y) = log f(y; θ). We denote the observed

data point by y0, with associated maximum likelihood estimate θ̂0 = θ̂(y0).

We write ψ(θ) for the d-dimensional parameter of interest, and consider inference

for ψ by assessing the hypothesis Hψ : ψ(θ) = ψ. In several examples θ = (ψ, λ), i.e., ψ

is a component of the full parameter, possibly after re-parameterization. We let θ̂ψ

denote the constrained maximum likelihood estimator of θ under Hψ; in component

form θ̂ψ = (ψ, λ̂ψ).

To a first order of approximation, θ̂ follows a normal distribution with mean θ and

covariance matrix estimated by −1(θ̂), where (θ) = −∂2`(θ)/∂θ∂θ> is the observed

Fisher information function; an analogous result holds for θ̂ψ under Hψ (Cox and

Hinkley, 1974, Ch. 9.3). A parameterization-invariant measure of departure of θ̂ from

Hψ is given by the likelihood ratio

w(ψ) = 2{`(θ̂)− `(θ̂ψ)}. (1)
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Table 1: Retarded activity amongst psychiatric patients (Everitt, 1992, Table 3.3)

Affective disorders Schizophrenics Neurotics

Retarded 12 13 5

Not retarded 18 17 25

With relative error O(n−1), w(ψ) follows a χ2
d distribution, with degrees of freedom

d equal to the number of constrained parameters in Hψ. The apparent improvement

from O(n−1/2) for the distribution of the maximum likelihood estimator to O(n−1) for

the likelihood ratio statistic is somewhat artificial; if d = 1 the O(n−1/2) terms in the

error in each tail of the distribution cancel, but one-sided inferences do not improve.

Skovgaard (2001) attributes the exceptional accuracy of the r∗ approximation for

inference about a scalar interest parameter both to the relative error in the approxima-

tion and to its large deviation properties, and proposes an analogous version for vector

interest parameters designed to maintain accuracy in the tails of the distribution. The

resulting quantity

w∗(ψ) = w

(
1− w

log γ

)2

, (2)

uses a correction factor γ that compares w to an asymptotically equivalent quadratic

form. Skovgaard (2001) shows that in addition to having good large-deviation proper-

ties, w∗(ψ) is also easier to calculate than the Bartlett adjustment discussed in §6.

Like the likelihood ratio w(ψ), (2) gives an omnibus measure of departure; all

potential directions away from the hypothesis Hψ are averaged in the calculation of

p-values. We propose a measure of departure that incorporates information in the data

about the relevant direction of deviation from Hψ, by conditioning. Some comparison

of omnibus and directional tests is given in Fraser and Reid (2006).

We consider testing independence for the data in Table 1 to illustrate the ideas in

a context in which they can readily be visualized. The nuisance parameter, λ is four-

dimensional, consisting of the intercept, one row effect and two parameters for column

effects, which are eliminated from inference by conditioning on the table margins. The

full model has an additional two-dimensional parameter of interest, ψ, representing the
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interaction between rows and columns, and the hypothesis of independence is H0 : ψ =

0. Both models can easily be fitted using software for generalized linear models.

We measure departure from Hψ on a line in the sample space, indexed by t ∈ R.

As t varies from zero to its maximum possible value, the magnitude of departure varies

from the null hypothesis, through the observed table, and through other 2 × 3 tables

with the same margins. Four of these tables are indicated in the right-hand side of

Figure 1: the independence table, t = 0, an intermediate table, t = 0.5, the observed

table, t = 1, and the most extreme table consistent with the margins, t = 2. The

upper left panel shows the density h(t), given in (10) below, on this line, with points

t = 0, 0.5, 1, 2 indicated. The lower left panel shows the shape of the relative density

td−1h(t), for t > 0, used in (11) to compute the directional p-value.

The directional p-value (11) is computed using one-dimensional numerical integra-

tion and equals 0.050; the first-order p-value obtained using the asymptotic χ2
2 distri-

bution of the likelihood ratio statistic is 0.047. Skovgaard (2001)’s w∗ gives 0.048, and

a conditional simulation using the method of Kolassa and Tanner (1994) gives 0.051.

The sample size in this example is too large for the methods to give very different

p-values.

In the next section we give the details for the directional approximation, and in §4
illustrate its accuracy on some larger contingency tables.

3 Directional tests in linear exponential families

We assume that the model is an exponential family with canonical parameter ϕ = ϕ(θ)

and score variable, or sufficient statistic, u = u(y),

f(y; θ) = exp[ϕ(θ)>u(y)−K{ϕ(θ)}]h(y). (3)

Since u is sufficient for ϕ, the log-likelihood function is equivalently obtained from the

marginal density for u, and may be written as

`(θ;u) = ϕ(θ)>u−K{ϕ(θ)} = ϕ(θ)>(u− u0) + log f(u0; θ), (4)

where y0 is the observed value of the data, with maximum likelihood estimate θ̂0, and

observed sufficient statistic u0 = u(y0). It is convenient in what follows to use centered
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Figure 1: Directional inference for the data in Table 1. The conditional density h(t)

on the line indexed by t (top left) and the directed radial distance from the value

expected under independence, td−1h(t) (bottom left). The shaded area represents the

directional p-value. On the right side the expected data under the hypothesis (t = 0)

and the observed data (t = 1) are indicated, together with the expected data for an

intermediate case (t = 0.5) and the boundary case (t = tmax = 2).
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sufficient statistics, so we let s = u− u0, and write

`(θ; s) = ϕ(θ)>s+ `0(θ), (5)

where `0(θ) = `(θ; s = 0) = `(θ;u = u0). The function `(θ; s), which we call the tilted

log-likelihood function, is the key ingredient for the calculation of directional p-values,

and the centering means that the observed value of s is s0 = 0.

We further assume that both the parameter of interest, and the nuisance parameter

are linear in ϕ, so ϕ = θ = (ψ, λ), and thus write

`(ϕ; s) = ψ>s1 + λ>s2 + `0(ψ, λ), (6)

where ψ and s1 are d-dimensional. The constrained maximum likelihood estimate

under Hψ is ϕ̂ψ = (ψ, λ̂ψ), and when computed at y0 it is denoted by ϕ̂0
ψ. Derivatives

of `(·) are shown by subscripts; for example, `ϕ(ϕ; s) = ∂`(ϕ; s)/∂ϕ. Inference for ψ is

based on the conditional density for s1 given s2, and the saddlepoint approximation to

this can be expressed as

f̂(s;ψ) ds = c exp[`(ϕ̂0
ψ; s)− `{ϕ̂(s); s}]|ϕϕ{ϕ̂(s); s}|−1/2 ds, s ∈ L0, (7)

where c is a constant and L0 is a d-dimensional plane defined by setting s2 = 0, or

equivalently setting λ̂ψ = λ̂0
ψ. In (7) ϕ̂(s) is obtained from (5) or (6) as the solution of

s = −`0
ϕ{ϕ̂(s)}, and ϕϕ(ϕ; s) = −∂2`(ϕ; s)/∂ϕ∂ϕ>. Although it is more conventional

to write f̂(s1 | s2;ψ) or a similar expression for the saddlepoint approximation to the

conditional density, the conditioning is here implicitly accommodated by taking a ‘slice’

through the full density, i.e. constraining s to lie in L0. The saddlepoint approxima-

tion to the conditional density is derived in Barndorff-Nielsen and Cox (1979) and for

generalized linear models discussed in Davison (1988). A direct derivation and presen-

tation entirely in terms of likelihood is given in Fraser (2012), and generalized there

to inference for nonlinear functions of the canonical parameters, and to approximate

exponential models.

We now define a line L∗, in L0, joining the observed value of s, which is s0 = 0,

and its expected value sψ under Hψ; from (6)

sψ = −`0
ϕ(ϕ̂0

ψ) =

[
−`0

ψ(ϕ̂0
ψ)

0

]
; (8)
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note that the value of sψ depends on y0. We parameterize this line by t ∈ R,

s(t) = sψ + t(s0 − sψ) = (1− t)sψ; (9)

the maximum likelihood estimates φ̂(s) in (7) vary with s(t). As t increases they trace

out a curve in the parameter space that passes through the constrained maximum

likelihood estimate ϕ̂0
ψ when t = 0 and through the full maximum likelihood estimate

ϕ̂0 when t = 1.

The conditional density approximation (7) constrained to L∗ is simply

h(t;ψ) = f̂{s(t);ψ} = c exp
(
`{ϕ̂0

ψ; s(t)} − `[ϕ̂{s(t)}; s(t)]
)∣∣ϕϕ [ϕ̂{s(t)}; s(t)]

∣∣−1/2
.

(10)

This expression does not require an explicit parametrization of the nuisance parame-

ter for its computation, if we use the more general form ϕ̂0
ψ = arg supψ(ϕ)=ψ `

0(ϕ) to

define the constrained maximum likelihood estimator. This is useful for the examples

considered in §5.

Transforming the density for s on the plane L0 to the conditional density of ‖s‖,
given s/‖s‖, is a change from vector to spherical coordinates, so introduces a Jacobian

proportional to td−1 (Fraser and Massam, 1985); the relevant dimension is d because

s2 = 0 on L0; see the Supplementary Notes. The directional test computes the p-value

as the probability, from h(t;ψ), that s(t) is as far or farther from sψ than is the observed

value 0; this distribution is on the part of L∗ for which t > 0. The directed p-value is

thus

p(ψ) =

∫ tmax

1
td−1h(t;ψ) dt∫ tmax

0
td−1h(t;ψ) dt

, (11)

where t = 0 and t = 1 correspond respectively to s = sψ and to the observed value

s0 = 0. This is a refinement of the approach that uses 2 min{p(ψ), 1 − p(ψ)} in the

scalar parameter case, described for example in Cox and Hinkley (1974, Ch. 3). The

density h(t;ψ) and the function td−1h(t;ψ) are illustrated in Figure 1.

The upper limit of the integrals in (11) is the largest value of t for which the

maximum likelihood estimator corresponding to s(t) exists; for instance, tmax = 2 in

the example of Figure 1, though tmax may be infinite in some cases. Figure 2 shows

the log-likelihood function `[ϕ̂{s(t)}; s(t)] at four different values of t, including the
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observed table, t = 0, an intermediate case t = 0.5, the value under the hypothesis of

independence, t = 1, and the extreme case t = tmax. These log-likelihood functions

correspond to the four 3× 2 tables shown in the right column of Figure 1.

The theoretical accuracy of the approximation (11) stems from that of the renor-

malized saddlepoint approximation (7), so there is at worst a relative error of O(n−1)

(Butler, 2007, p. 112), even in large deviation regions, and in local deviation regions,

which are of most statistical interest, the relative error is O(n−3/2) for continuous re-

sponses. In some cases the accuracy may even be better, perhaps because of the ratio

of similar integrals in (11); for example, in the normal distribution settings of §5.1, the

approximation seems to be essentially exact.

4 Models with discrete responses

4.1 Contingency tables

The calculations are particularly straightforward for a generic contingency table, as in

the example in §2. Denote the observed cell frequencies by y0 = (y1, . . . , yC), where C

is the total number of cells in the table; for instance, C = IJ in a two-way contingency

table with I rows and J columns. With X and θ denoting the C × p design matrix

and the p × 1 parameter vector, we assume a log linear model for the cell frequencies

with expected value µ(θ) = exp(Xθ).

The model is a linear exponential family with canonical parameter ϕ = θ and

observed log-likelihood function

`0(ϕ) = ϕ>X>y0 − 1>Ce
Xϕ , (12)

where 1C is a C × 1 vector of ones and X>y is the minimal sufficient statistic. The

score function and the observed information are respectively

`0
ϕ(ϕ) = X>(y0 − eXϕ) = X>{y0 − µ(ϕ)}, (13)

ϕϕ(ϕ) = X>diag{eXϕ}X = X>diag{µ(ϕ)}X .

For inference about a component parameter ψ of ϕ, the columns of the design matrix

are partitioned as X = [X1 X2], in conformity with ϕ = (ψ, λ). The hypothesis
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Figure 2: The tilted log-likelihood function, (6), used in (11), and the curve traced

by the maximum likelihood estimate (×) as t increases from t = 0 (◦) and s(t) varies

along L∗ for the case d = 2, as in Table 1. Each figure corresponds to a 2 × 3 table

indicated in the right column of Figure 1.
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H0 : ψ = 0 corresponds to the equivalence of the two nested models with linear

predictors X2λ and Xϕ. The constrained maximum likelihood estimate of ϕ satisfies

`λ(ϕ̂ψ; y0) = X>2 (y0 − eXϕ̂ψ) = 0.

For directional assessment of the null hypothesis, the observed data point s0 = 0

and the expected value sψ defined in (8) is

sψ =

[
−X>1 (y0 − eXϕ̂ψ)

0

]
= −X>{y0 − µ(ϕ̂ψ)} .

The directional p-value is obtained numerically from (11). To determine tmax, note

that the maximum likelihood estimate satisfies the condition

X>y0 = X>µ(ϕ̂0) : (14)

the observed value of the sufficient statistic equals the expected value under the as-

sumed model. In a contingency table, (14) implies that some marginal totals are equal

in the observed table and in the fitted table (Birch, 1963). Moreover, if some of these

totals are zero, then the maximum likelihood estimate will lie on the boundary of the

parameter space (see, e.g., Agresti, 2002, §9.8.2). When we need to compute ϕ̂(t),

which maximizes `(ϕ; t) = `0(ϕ) + ϕ>s(t), equation (14) becomes

X>{µ̂0
ψ + t(µ̂0 − µ̂0

ψ)} = X>µ̂(t) , (15)

where µ̂0 = µ(ϕ̂0), µ̂0
ψ = µ(ϕ̂0

ψ) and µ̂(t) = µ{ϕ̂(t)}. For any given value of t larger than

1, the maximum likelihood estimate ϕ̂(t) and corresponding mean parameter µ̂(t) can

be easily obtained by solving (15) using iteratively reweighted least squares. A value of

t will be admissible if the corresponding fitted cell frequencies µ̂(t) are all non-negative

and the marginal totals implied by (15) are all positive; tmax is the largest such value

of t.

Furthermore, if the larger model is saturated, X will be an invertible matrix of

dimension C × C. Then (15) simplifies to

µ̂(t) = µ̂0
ψ + t(µ̂0 − µ̂0

ψ) ,

and for the value of t to be admissible each element of µ̂(t) must be positive; i.e.

t < tmax = min
i;(µ̂0ψ−µ̂0)i>0

(µ̂0
ψ)i

(µ̂0
ψ)i − (µ̂0)i

.
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Table 2: Sexual enjoyment data (Kolassa and Tanner, 1994, §3.1)

Wife’s response

Never or Fairly Very Almost

Husband’s response occasionally often often always

Never or occasionally 7 7 2 3

Fairly often 2 8 3 7

Very often 1 5 4 9

Almost always 2 8 9 14

The directional p-value is obtained from (11) with h(t;ψ) given in (10), here equal to

h(t;ψ) = exp
[
1>C{µ̂(t)− µ̂0

ψ} − µ̂(t)>{log µ̂(t)− log µ̂0
ψ}
]
|X>diag{µ̂(t)}X|−1/2 .

As a second example we use the data in Table 2. The structure of the model is

similar to that for the data in Table 1, but here λ and ψ have dimensions 7 and 9;

again we test the null hypothesis H0 : ψ = 0 of independence. The directional p-value

(11) is 0.139, while the first-order and Skovgaard’s w∗ p-values are respectively 0.078

and 0.165. Kolassa and Tanner (1994, §3.1) reported a simulated conditional p-value

of 0.111.

Finally we consider the data in Table 9.17 of Agresti (2002, p. 401), which describes

the joint distribution of four dichotomous variables: age of mother (A), length of gesta-

tion (G), infant survival (I) and number of cigarettes smoked per day during gestation

(S). It is appropriate to treat length of gestation and infant survival as responses and

the other variables as explanatory. As a null model we take that with all main effects

and three first-order interactions (IG, IA and SA); this has an 8-dimensional parameter

λ consisting of the intercept, all four main effects and three first-order interactions. A

larger model includes two additional first-order interaction parameters, IS and GA.

The directional p-value (11) for testing equivalence of the two models is 0.050, while

the first-order p-value based on a chi-squared approximation is 0.052, and Skovgaard’s

w∗ gives p-value 0.048.
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4.2 Simulations

In each example above, the p-value from the χ2 approximation to the likelihood ratio

statistic is slightly smaller than the directional p-value, although not enough to make

a practical difference. We performed some simulations to investigate the accuracy of

the directional p-values, when examined unconditionally. The first set of simulations

was based on Table 1: 100,000 2 × 3 tables, with total sample size n = 90, were

generated from the independence model. Table 3 shows that the directional p-values

are unconditionally very accurate, as are Skovgaard (2001)’s large deviation version w∗

and Pearson’s χ2 statistic. The likelihood ratio statistic has the worst performance in

this setting.

We increased the parameter dimensions by simulating 4× 4 tables; there are seven

nuisance parameters and nine interest parameters which when equal to zero yield in-

dependence of the row and column classifications. In 100,000 simulations with total

sample size n = 150, 4,747 of the simulated tables had a cell margin of zero, in which

case neither the directional method nor Skovgaard (2001)’s method can be used. In

these cases we substituted the first-order likelihood ratio test when computing the

simulated p-values. Again both w∗ and the directional test give very accurate results,

improving on both Pearson’s χ2 and the likelihood ratio test.

The final simulation tests independence in a 6× 3× 2 table, with total sample size

n = 1000. Such a large sample size is needed to avoid too many simulations with zeros

in the margins; 14, 417 of 100,000 simulated tables had at least one marginal zero. In

such cases the simulation p-values were again computed using the χ2
1 approximation to

the likelihood ratio statistic w(ψ). In this setting there are 27 parameters of interest,

with nine nuisance parameters. The directional test and Skovgaard (2001)’s large

deviation test again largely retain their accuracy, though the large number of cases in

which w(ψ) must be used leads to some deterioration in the lower tail.

The differences between the approximations are small in all three cases, and here

Skovgaard (2001)’s large deviation statistic and the directional test yield essentially

identical p-values. This is not the case in general, however, as is seen in §5.
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Table 3: Comparison of p-values (%) for tests of independence in 100, 000 simulated

contingency tables of dimensions 2 × 3, 4 × 4 and 6 × 3 × 2. For the 4 × 4 tables,

the likelihood ratio statistic was used instead of (11) or (2) for 4, 747 tables with zero

counts in the margins. For the 6× 3× 2 tables replacement took place for 14, 417 such

tables.

Dimension Nominal 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

2× 3 Lik. Ratio, (1) 1.1 2.8 5.5 10.7 26.0 51.0 75.7 90.5 95.2 97.4 99.2

Pearson’s χ2 0.9 2.4 5.1 10.3 25.7 50.8 75.7 90.5 95.2 97.4 99.2

Skovgaard’s w∗(ψ), (2) 1.0 2.5 5.0 10.1 25.1 50.1 75.2 90.0 95.0 97.3 99.1

Directional, (11) 1.0 2.4 5.0 10.0 25.0 50.1 75.2 90.2 95.0 97.3 99.2

4× 4 Lik. Ratio, (1) 1.4 3.4 6.4 12.3 28.5 53.6 77.3 91.1 95.5 97.7 99.1

Pearson’s χ2 0.9 2.3 4.8 9.9 25.5 51.2 76.2 90.8 95.4 97.7 99.1

Skovgaard’s w∗(ψ), (2) 1.1 2.7 5.2 10.2 25.1 49.7 74.6 89.8 94.8 97.3 98.9

Directional, (11) 1.1 2.6 5.1 10.0 24.8 49.5 74.6 89.9 94.9 97.4 98.9

6× 3× 2 Lik. Ratio, (1) 1.5 3.6 6.9 12.9 29.5 54.8 78.3 91.6 95.9 98.0 99.2

Pearson’s χ2 1.0 2.5 5.1 10.4 26.1 52.1 77.0 91.1 95.7 97.9 99.2

Skovgaard’s w∗(ψ), (2) 1.2 3.0 5.8 11.1 26.2 50.9 75.4 90.2 95.1 97.6 99.0

Directional, (11) 1.2 2.9 5.8 10.9 25.8 50.3 75.0 89.9 95.0 97.5 99.0

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0
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4.3 Binary regression

Consider the data on page 249 of Andrews and Herzberg (1985) concerning calcium

oxalate crystals in samples of urine. The binary response is an indicator of the presence

of such crystals, and there are six explanatory variables: specific gravity, i.e., the density

of urine relative to water; pH (ph); osmolarity (mOsm); conductivity (mMho); urea

concentration (millimoles per litre); and calcium concentration (millimoles per litre).

In the following analysis we use the n = 77 complete observations. A natural starting

point for analysis is a logistic regression model with

Pr(yi = 1) = µi(θ) =
exp(x>i θ)

1 + exp(x>i θ)
, i = 1, . . . , n,

where xi represents the vector of explanatory variables associated with the ith response

yi. The log-likelihood is of linear exponential form with canonical parameter ϕ = θ,

i.e.,

`(ϕ; y) = ϕ>X>y − 1>n log{1n + exp(Xϕ)} ,

where y = (y1, . . . , yn)> and X is the matrix of explanatory variables, with ith row x>i .

The development of the directional p-value is similar to that for contingency tables

in §4.1. In particular, to compute ϕ̂(t) we again solve equation (15) through iterative

weighted least squares, but now with µ(ϕ) = exp(Xϕ)/{1+exp(Xϕ)}. In this case the

largest admissible value tmax is the largest value of t for which all fitted probabilities

µ̂(t) are non-negative and not larger than 1. Function h(t;ψ) in (11), given by (10), is

then

h(t;ψ) = exp
[
µ̂(t)>

{
log µ̂0

ψ − log µ̂(t)
}

+ {1n − µ̂(t)}>
{

log(1n − µ̂0
ψ)− log(1n − µ̂(t))

}]
×|X>diag{µ̂(t)(1− µ̂(t))}X|−1/2 .

For illustration, we compare a smaller model with the three covariates pH, osmo-

larity and conductivity to a full model with all six covariates, as in the formulation

of Brazzale et al. (2007, p. 42); there are four nuisance parameters and three interest

parameters. The directional p-value (11) for testing equivalence of the two models is

0.010, while the p-value from the χ2
3 approximation to the log-likelihood ratio test is
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0.004, and to Skovgaard’s w∗ is 0.011. Brazzale and Davison (2008, §4.2) discuss why

higher-order corrections may be expected to be large in binary response models.

Inference for vector parameters is often needed when one or more covariates are

factor variables with several levels, as the natural hypothesis of interest is that the

factor variable has no effect on the response. As an example, we use the bacteria data

from Venables and Ripley (2002, §10.4), which has a binary response, presence/absence

of bacteria, and measurements on 50 subjects at 5 times. There are just 24 subjects that

are informative for ψ, and 108 observations, an average of 4.5 observation per subject.

The parameter of interest is ψ is a 5-level factor variable for time, and the nuisance

parameters are the 24 subject-specific intercepts. Venables and Ripley (2002) used this

example to illustrate the use of conditional likelihood with large numbers of nuisance

parameters. The test of the hypothesis that the four between-week contrasts are all

zero using the likelihood ratio statistic gave a p-value of 0.0005. The more accurate

directional test gave a much larger p-value of 0.0054, Skovgaard’s w∗ gave a p-value of

0.0043. The exact conditional p-value is 0.0038; the difference between this and the

two higher-order approximations is due to approximating a discrete distribution by a

continuous one.

5 Examples with continuous response

5.1 Comparison of normal variances

Suppose yij are independent random variables with distributions N(µi, σ
2
i ), for i =

1, . . . , g, j = 1, . . . , ni. We want to test the null hypothesis of homogeneity of variances

among the g groups

H0 : σ2
1 = · · · = σ2

g

against the alternative that at least one equality does not hold.

The model is a full exponential family and the log-likelihood for the parameter

θ = (µ1, . . . , µg, σ
2
1, . . . , σ

2
g) is

`(θ; y) = −1

2

g∑
i=1

{
ni log σ2

i +
1

σ2
i

ni∑
j=1

(yij − µi)2

}
. (16)
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The full and the constrained maximum likelihood estimates are respectively

θ̂ = (ȳ1, . . . , ȳg, v
2
1, . . . , v

2
g) , θ̂0 = (ȳ1, . . . , ȳg, v̄

2, . . . , v̄2) ,

where ȳi = n−1
i

∑ni
j=1 yij, v

2
i = n−1

i

∑ni
j=1(yij− ȳi)2 and v̄2 =

∑g
i=1 niv

2
i /
∑g

i=1 ni . Hence

the log-likelihood ratio statistic is

w =

g∑
i=1

ni log(v̄2/v2
i ),

which follows asymptotically the χ2
g−1 distribution, under the null hypothesis. The

usual statistic for testing H0 is due to Bartlett (1937),

w̃ =

∑g
i=1(ni − 1) log(s̄2/s2

i )

1 + {
∑g

i=1(ni − 1)−1 − (N − g)−1}
/
{3(g − 1)}−1

,

where N =
∑g

i=1 ni, s
2
i = niv

2
i /(ni − 1) and s̄2 = Nv̄2/(N − g) . This is derived by

Bartlett correction of the likelihood ratio statistic derived from the marginal likelihood

for σ2
1, . . . , σ

2
g , based on the distribution of s2

1, . . . , s
2
g (Barndorff-Nielsen and Cox, 1994,

Example 6.16); see §6.

The model (16) is a full exponential family of order 2g with canonical parameter

ϕ = (ϕ1, . . . , ϕ2g) and sufficient statistic s = (u1, . . . , u2g). The components of the

canonical parameter are

ϕ(θ)i =

{
µi/σ

2
i , i = 1, . . . , g

−1/(2σ2
i ), i = g + 1, . . . 2g

while the sufficient statistic has components ui = niȳi, ug+i =
∑ni

j=1 y
2
ij, for i = 1, . . . , g.

The hypothesis of equal variances, H0 : ϕj+1 − ϕj = 0, j = g + 2, . . . 2g, is linear in the

canonical parameter ϕ, and K(ϕ) = −
∑g

i=1 ni{2 log(−2ϕg+i) +ϕ2
iϕ
−1
g+i}/4. The global

and constrained maximum likelihood estimates are

ϕ̂> =

(
ȳ1

v2
1

, . . . ,
ȳg
v2
g

,− 1

2v2
1

, . . . ,− 1

2v2
g

)
, (17)

ϕ̂>0 =

(
ȳ1

v̄2
, . . . ,

ȳg
v̄2
,− 1

2v̄2
, . . . ,− 1

2v̄2

)
, (18)
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where for simplicity we write ϕ̂ for ϕ̂0 and ϕ̂0 for ϕ̂0
ψ.

For the computation of the directional p-value we need the tilted log-likelihood

`(ϕ; s) = `0(ϕ) + ϕ>s, as at (6), where s0 = 0 and

sψ = −`0
ϕ(ϕ̂0) = {0, . . . , 0,−n1(v2

1 − v̄2), . . . ,−ng(v2
g − v̄2)} .

In this example, the log-likelihood along the line s(t) = ts0 + (1 − t)sψ = (1 − t)sψ

that joins the expected value sψ and the observed value s0 can be computed explicitly,

giving

`(ϕ; t) = `{ϕ; s(t)}

=

g∑
i=1

ni

[
ϕiȳi + ϕg+i

{
ȳ2
i + (tv2

i + (1− t)v̄2)
}

+
1

2
log(−2ϕg+i) +

1

4
ϕ2
iϕ
−1
g+i

]
,

which is maximized at

ϕ̂i(t) =
ȳi

tv2
i + (1− t)v̄2

, ϕ̂g+i(t) = − 1

2{tv2
i + (1− t)v̄2}

, i = 1, . . . , g . (19)

As expected, t = 0 and t = 1 give (18) and (17), respectively. Moreover, since ϕ̂g+i(t)

must be negative for all i = 1, . . . , g, we have that

t < tmax =
v̄2

v̄2 −mini v2
i

;

s(tmax) is the last value of s along the line s(t) that leads to an admissible maximum

likelihood estimate (19). The directional p-value is computed from (11), with (10)

giving

h(t) ∝
g∏
i=1

{tv2
i + (1− t)v̄2}(ni−3)/2 . (20)

Skovgaard (2001)’s modified likelihood ratio statistic w∗ can also be computed

explicitly for this example, as the correction factor γ simplifies to

γ =

{
g∑
i=1

ni(v
2
i − v̄2)

v̄2

2
}d/2( g∏

i=1

v̄2

v2
i

)3/2/{w
2

}d/2−1
{

g∑
i=1

ni(v
2
i − v̄2)2

v2
i v̄

2

}
; (21)

see the Supplementary Notes for more details.
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Table 4: Data used to illustrate comparison of variances (NIST, 2012). Sufficient statis-

tics for the gear diameter measurement of g = 10 batches each of n = 10 observations.

Batch 1 2 3 4 5 6 7 8 9 10

102ȳi 99.80 99.91 99.54 99.82 99.19 99.88 100.15 100.04 99.83 99.48

105σ̂2
i 1.70 2.45 1.42 1.34 5.17 8.80 5.59 1.18 1.54 2.56

When g = 2, so that the parameter of interest is scalar, and with equal group sizes

n1 = n2, the directional p-value is identical to the p-value from the usual F -test. Such

equality does not hold for n1 6= n2, although simulations not given here indicate that

the differences are slight. When d = 1, Skovgaard (2001)’s w∗ = r∗2, which is very

close numerically to the F -statistic, but not identical to it.

We illustrate these calculations using data on measurements of gear diameter for

g = 10 batches of gears, with ni = 10 observations from each batch. Summary statistics

for the data are given in Table 4. The first order p-value based on the likelihood

ratio statistic w is 0.0042; Bartlett’s test gives a much larger p-value of 0.0136. The

directional p-value 0.0389 is still larger, and Skovgaard’s w∗ gives a p-value of 0.0622.

The pattern illustrated by these results is typical of the examples we have looked at;

the first-order p-value seems to be too small, while w∗ seems to over-correct.

We compared the accuracy of the approximations by simulation of balanced sam-

ples with varying numbers of groups, g, and observations per group, n. These were

summarized by graphs that compare the p-values obtained from simulations under the

hypothesis to the uniform distribution. For each configuration we considered 100,000

replications, with σ2
i = 1 and µi = 2(g − i) for i = 1, . . . , g. The results are shown

for two cases in Figure 3, with further results given in the Supplementary Notes. In

the left panel, g = 3 and ni = 5, giving two interest parameters and four nuisance

parameters. In the right panel we took the extreme case of g = 1000 with ni = 5; this

has 999 interest parameters and 1001 nuisance parameters. As might be guessed from
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Figure 3: Simulations for testing common variances in g = 3 groups with ni = 5

observations per group (left panels), and in g = 1000 groups with ni = 5 observations

per group (right panels), based on 100,000 replications. We compare the simulated

p-values under the null hypothesis to the uniform distribution.

the gear data example, the likelihood ratio statistic yields p-values that are too small,

but this is corrected by Bartlett’s statistic w̃. The directional p-value is remarkably

accurate in all cases, with a distribution practically indistinguishable from that from

w̃, although the p-values in individual cases can be different. When g = 1000, inference

based on the likelihood ratio statistic or on Skovgaard (2001)’s statistic w∗ break down

completely, but Bartlett’s test and the directional test maintain their level extremely

well; with a slight edge to the directional test apparent in Table S.2 in the Supplemen-

tary Notes. The more realistic cases of g = 10 and n = 20 are also reported in the

Supplementary Notes: the likelihood ratio test and Skovgaard’s statistic are noticeably

non-uniform, whereas the directional test and Bartlett’s test are essentially exact. We

also computed an alternative version of w∗, w∗∗ = w− 2 log γ, which is asymptotically

equivalent to w∗ in (2), but in all cases w∗ outperforms w∗∗.
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5.2 Comparison of exponential rates

In the model of the previous subsection, the dimensions of both interest and nuisance

parameters increase with the number of groups, g. We now consider a model where the

nuisance parameter is always scalar, although the dimension of the interest parameter

increases. Suppose yij are independent random variables following an exponential

distribution with rates θi, for i = 1, . . . , g and j = 1, . . . , ni. The hypothesis of interest

is homogeneity of the rates among the g groups, θ1 = · · · = θg, the alternative being

that at least one equality does not hold. The log-likelihood for the parameter θ =

(θ1, . . . , θg) is

`(θ; y) =

g∑
i=1

{−uiθi + ni log θi} ,

where ui = niȳi =
∑ni

j=1 yij; the canonical parameter ϕ = −θ and the sufficient statistic

is u = (u1, . . . , ug). The hypothesis can be expressed as a linear constraint on the

canonical parameter, i.e.,

H0 : ψ1 = · · · = ψg−1 = 0 ,

with, for instance, ψi = θi+1 − θi, for i = 1, . . . , g − 1.

The full and the constrained maximum likelihood estimates are respectively

θ̂ = (ȳ−1
1 , . . . , ȳ−1

g ) , θ̂0 = (ȳ−1, . . . , ȳ−1) ,

where ȳ =
∑g

i=1 niȳi/
∑g

i=1 ni and the log-likelihood ratio statistic is

w = 2

ni∑
j=1

ni log(θ̂i/θ̂
0) = 2

ni∑
j=1

ni log(ȳ/ȳi) (22)

which has an asymptotic χ2
g−1 distribution under the null hypothesis.

The tilted log-likelihood (6) along the line s(t),

`(ϕ; t) = `{ϕ; s(t)} = `0(ϕ) + ϕ>s(t)

=

g∑
i=1

[{ui + ni(1− t)(ȳ − ȳi)}ϕi + ni log(−ϕi)] ,

is maximized at

ϕ̂i(t) = − 1

ȳ − t(ȳ − ȳi)
, i = 1, . . . , g . (23)
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The line for the directional test goes through s0 and sψ = {−n1(ȳ1 − ȳ), . . . ,−ng(ȳg −
ȳ)} , where ϕ̂(0) = −θ̂0, and since ϕ̂i(t) has to be negative for all i = 1, . . . , g, we have

that

t < tmax =
ȳ

ȳ −mini ȳi
.

The directional p-value (11) uses h(t) from (10)

h(t) ∝
g∏
i=1

{1− t(ȳ − ȳi)/ȳ}(ni−1) ,

since |ϕϕ(ϕ; s)| =
∏g

i=1 niϕ
−2
i .

Skovgaard (2001)’s modification can again be computed explicitly, and is

γ =

{
g∑
i=1

ni

(
ȳi − ȳ
ȳ

)2
}(g−1)/2( g∏

i=1

ȳ

ȳi

)/{
w(g−1)/2

g∑
i=1

ni(ȳi − ȳ)2

ȳȳi

}
. (24)

We illustrate these calculations by testing the equality of the mean times between

failures of the air-conditioning equipment in ten Boeing 720 aircraft (Proschan, 1963;

Cox and Snell, 1981) The first order p-value based on (22) equals 0.0198, the directional

p-value (11) equals 0.0227, and Skovgaard’s modified likelihood ratio statistic (2) equals

0.0274.

Table 5 summarizes simulation studies using the same sample sizes as in the exam-

ple, and in a balanced but more extreme setting. The results confirm the very accurate

behaviour of the directional approach, while showing a worsening of the performance

of both first order and Skovgaard’s statistics in the second setting where the samples

sizes are relatively small.

5.3 Covariance selection

A linear exponential model of interest in the analysis of graphical models concerns infer-

ence about entries of the concentration, or inverse covariance, matrix in a multivariate

normal distribution. A zero entry in the concentration matrix implies conditional in-

dependence of two variables given the values of other variables and corresponds to no

arc between nodes representing the two variables in a conditional independence graph

(Lauritzen, 1996).
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Table 5: Simulated empirical distribution (%) of p-values for testing equality of ex-

ponential rates, based on 100, 000 replications. The upper figures are for data with

g = 10 groups with sample sizes 23, 29, 15, 14, 30, 27, 24, 9, 12, 16, and the lower ones

are for g = 10 groups and sample sizes ni = 5.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

Likelihood ratio, (22) 1.1 2.7 5.4 10.6 25.8 50.7 75.5 90.3 95.2 97.6 99.0

Skovgaard’s w∗, (24) 0.9 2.4 4.7 9.6 23.9 48.2 73.1 88.7 94.2 96.9 98.6

Directional, (11) 1.0 2.6 5.0 10.2 25.0 49.9 74.9 90.0 95.0 97.5 99.0

Likelihood ratio, (22) 1.3 3.1 5.9 11.5 27.5 52.9 77.0 91.0 95.5 97.7 99.0

Skovgaard’s w∗, (24) 0.8 2.0 3.9 8.0 21.0 44.1 68.8 85.5 91.8 95.3 97.7

Directional, (11) 1.0 2.5 4.9 9.9 24.8 50.0 75.0 89.9 94.9 97.5 98.9

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0
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Let y1, . . . , yn be a sample of independent random vectors from a multivariate nor-

mal Nq(µ,Λ
−1), where the mean µ and the concentration matrix Λ are unknown and

arbitrary apart from the restriction that Λ is positive definite. Let y denote the n× q
matrix with ith row vector y>i . Then the log-likelihood for θ = (µ,Λ) is

`(θ; y) =
n

2
log |Λ| − 1

2
tr(Λy>y) + 1>n yΛµ− n

2
µ>Λµ .

This model is saturated and the maximum likelihood estimate exists if and only if

the matrix y>y − y>1n1>n y/n is positive definite, which happens with probability one

if n > q (Lauritzen, 1996, Theorem 5.1). The maximum likelihood estimate θ̂ has

components

µ̂ = y>1n/n, Λ̂−1 = y>y/n− y>1n1>n y/n
2 .

Consider now a reduced model in which some off-diagonal elements of Λ equal zero.

With ψ denoting the d× 1 vector of these components, the reduced model corresponds

to the null hypothesis H0 : ψ = 0. Under H0 the constrained maximum likelihood

estimate of θ is θ̂0 = (µ̂, Λ̂0), where Λ̂0 is typically obtained numerically, for instance

using the R function fitConGraph in package ggm, and as n → ∞ the log-likelihood

ratio statistic,

w = −n log(|Λ̂−1Λ̂0|) , (25)

follows the χ2
d distribution.

The canonical parameter for this exponential family is ϕ = (ξ,Λ) = (Λµ,Λ), with

corresponding log-likelihood

`(ϕ; y) =
n

2
log |Λ| − 1

2
tr(Λy>y) + 1>n y ξ −

n

2
ξ>Λ−1ξ . (26)

The expected value sψ defined in (8) is sψ = −{`ξ(ϕ̂0), `Λ(ϕ̂0)} = {0, n(Λ̂−1−Λ̂−1
0 )/2}.The

tilted log-likelihood (6) along the line s(t) = (1− t)sψ can be obtained using (26). The

maximization is straightforward in the θ parameterization and yields θ̂(t) = {µ̂, Λ̂(t)},
with Λ̂(t)−1 = tΛ̂−1 + (1 − t)Λ̂−1

0 . The last value of s along the line s(t), s(tmax),

is the largest value such that Λ̂(t) is positive definite, and this can easily be found

numerically.
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The directional p-value (11) uses h(t) from (10), and since
∣∣ϕϕ [ϕ̂{s(t)}; s(t)]

∣∣−1/2
=

|Λ̂(t)|(q+2)/2, we find that

h(t) ∝ |Λ̂(t)|−(n−q−2)/2 ∝ |tΛ̂−1 + (1− t)Λ̂−1
0 |(n−q−2)/2 .

In this example Skovgaard (2001)’s modified likelihood ratio statistic (2) has

γ =

{
1

2

[
tr(Λ̂−1Λ̂0Λ̂−1Λ̂0)− q

]}d/2
|Λ̂−1Λ̂0|−(q+2)/2

/1

2

{
tr(Λ̂Λ̂−1

0 )− q
}{
− log |Λ̂−1Λ̂0|

}d/2−1

.

(27)

We illustrate this model using the dataset of Kenward (1987, Table 1), which con-

sists of repeated measurements of weights (kg) of 60 calves from a trial on the control

of intestinal parasites. The animals were put out to pasture at the start of the grazing

season, and each was then weighed on 11 occasions. The first ten measurements were

made at two-weekly intervals, with a final one made after a further week. We test first-

order Markovian dependence of the measurements, i.e., we test that all off-diagonal

elements of Λ are zero, except those closest to the diagonal. In the saturated model

Λ has 66 parameters, while in the reduced model it has 21 parameters, so d = 45.

The log-likelihood ratio statistic is w = 68.377 and gives p-value 0.0139 based on

its asymptotic χ2
45 distribution. The directional p-value is 0.0706, while Skovgaard’s

w∗ = 57.243, with p-value 0.1042.

The upper part of Table 6 summarizes a simulation study from the fitted reduced

model. The results underline the high accuracy of the directional approach, while the

performances of the first order and Skovgaard’s statistics are respectively poor and not

very accurate. To explore how robust this was to the dimension, we considered much

larger matrices, with q = 30 and 50, giving likelihood ratio tests with 406 and 1176

degrees of freedom respectively, the last two approaches are catastrophically bad, but

the directional approach retains its excellent performance.

Inference on covariance matrices in the multivariate normal are sometimes based

on the Wishart marginal distribution of the sample covariance matrix, which is free of

of the nuisance parameters µ; in some contexts this is called the restricted likelihood

function, or REML. The directional p-value obtained using this marginal distribution

is identical to the one developed above starting from the full likelihood (26). The
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Table 6: Simulated empirical distribution (%) of p-values for testing first-order Markov

dependence with n = 60, based on 100, 000 replications. The dimension q of the

covariance matrix is 11, 30 and 50 for the top, middle and lower rows, respectively; the

dimension of the parameter of interest is correspondingly 45, 406 and 1176.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

Likelihood ratio, (25) 5.5 10.5 17.0 27.0 48.7 73.0 89.5 96.7 98.5 99.4 99.8

Skovgaard’s w∗, (27) 0.7 1.8 3.6 7.4 19.6 42.2 67.8 85.2 91.9 95.5 98.0

Directional, (11) 1.1 2.6 5.0 10.1 24.8 49.8 74.9 89.9 94.9 97.4 99.0

Likelihood ratio, (25) 91.2 95.4 97.5 98.9 99.8 100 100 100 100 100 100

Skovgaard’s w∗, (27) 0.0 0.0 0.0 0.2 1.1 4.7 14.8 31.5 44.0 55.6 68.5

Directional, (11) 1.0 2.5 5.0 10.1 25.2 50.2 75.1 90.1 95.0 97.5 99.0

Likelihood ratio, (25) 100 100 100 100 100 100 100 100 100 100 100

Skovgaard’s w∗, (27) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 1.6 2.9 5.6

Directional, (11) 1.0 2.5 5.0 10.0 25.0 49.8 74.8 89.9 94.9 97.5 99.0

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0
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p-values using w and w∗ would be slightly different, although simulation results not

shown here indicate that numerically there is no practical difference in using the full

or the marginal likelihoods to compute w and w∗.

6 Discussion

We have presented the formulas for the conditional density h(t) on the line, (10),

and associated p-value, (11), in the context of inference for linear functions of the

canonical parameter in an exponential family. Elimination of nuisance parameters by

conditioning is only available in this setting. To construct a directional test for inference

on nonlinear functions of the canonical parameter we first need a reference density

analogous to (7). Fraser (2012) shows that this reference distribution is a marginal

density for a particular derived variable, and that the saddlepoint approximation to

this density has a form similar to (7), but with an additional adjustment for curvature.

More generally, if the underlying model is not an exponential family, then the

method may be extended by first approximating the model by a so-called tangent

exponential family. This entails constructing a nominal canonical parameter ϕ(θ) from

the original model, using arguments built on approximate ancillarity. The tangent

exponential family was used to develop r∗-type approximations in Fraser and Reid

(1995); see also Fraser et al. (1999). An overview is given in Brazzale et al. (2007,

Ch. 8).

The chi-squared approximation to the distribution of w(ψ) can be improved by

Bartlett correction (Bartlett, 1937); it can be shown that

w̃(ψ) = w(ψ)/[Eθ{w(ψ)}/d] (28)

follows a χ2
d distribution with relative error O(n−2). Skovgaard (2001) notes that

the accuracy of the χ2
d approximation to (28) can be lost when the expected value

is approximated using its asymptotic expansion, rather than computed analytically.

Even the approximate version can be cumbersome to compute, as it involves arrays

of third and fourth order cumulants (Lawley, 1956; McCullagh and Cox, 1986). The

comparison of normal variances in §5.1 is exceptional in that an analytical expression
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for the Bartlett correction is available, although in that case the likelihood that is

corrected is the marginal likelihood for the variances, which already has an adjustment

to the degrees of freedom. The directional test implements this degrees of freedom

adjustment automatically, via the saddlepoint approximation. The Bartlett test, like

the likelihood ratio test, is an ‘omnibus’ test, looking in all directions of the parameter

space for alternatives. In the scalar parameter setting, this means that error may be

larger than the nominal in one tail of the distribution, and smaller than nominal in

the other. The directional test, on the other hand, looks in the direction determined

by the data.

Directional tests have been proposed before, but have not been widely used. Skov-

gaard (1988) and Cheah et al. (1994) attempted to avoid numerical integration by

using an integration by parts argument analogous to that yielding r∗. However, the

presence of the Jacobian term td−1 in the density means that the base distribution for

this integration by parts is χ2
d, rather than standard normal, and for reasons that are

unclear the approximation is not nearly as accurate as the normal approximation to

the distribution of r∗, a phenomenon also noted by Wood et al. (1993). Also previ-

ously overlooked was the simplification of the conditional density when evaluated only

on the line L∗, where any factors not involving t cancel from the numerator and the

denominator.

In all the examples treated here, the directional p-value can be computed in R (R

Development Core Team, 2012) by first fitting a full and a constrained generalized linear

model using glm, and then computing the one-dimensional integral with integrate.

The only non-standard aspect is the determination of tmax in (11). For contingency

tables, as discussed in §4.1, tmax can be obtained explicitly if the hypothesis is nested

in the saturated model. If the hypothesis is nested in an unsaturated model, as in the

last example in §4.1, then tmax is reached when margins of certain subtables are zero;

a general treatment is given in Fienberg and Rinaldo (2012). Our implementation for

cases where tmax is not available explicitly simply fits the model for increasing values of

t until the maximum likelihood estimate reaches the boundary of the parameter space.

For some of the contingency table examples in §4, algorithms are available to com-

pute the exact p-value, conditional on the table margins. The commercial package
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StatXact (Mehta, 1991) uses a network algorithm for this computation, but for larger

sample sizes some type of sampling is usually needed. The R package exactLoglinTest

(Caffo, 2006) uses either importance sampling or Markov chain sampling; both are built

on a normal approximation to the Poisson distribution. This package can be used to

test independence, although we found in applying it to the data of Table 2 that careful

tuning of the algorithm was needed. Conditional simulation can also be implemented

with the Metropolis–Hastings algorithm (Diaconis and Sturmfels, 1998; Forster et al.,

1996, 2003; Smith et al., 1996), but ensuring irreducibility of the resulting chain is not

straightforward in general, and so far as we know no general code is available for this.

Caffo and Booth (2003) gives a helpful overview of Monte Carlo methods for log linear

models.

Unconditional simulation from the fitted model would be expected to give lower

theoretical accuracy than the approach described above, and although precision can be

improved by nested simulation (Davison and Hinkley, 1997, §4.5) the computational

burden would then greatly increase. An unconditional approach is proposed in DiCiccio

and Young (2008), but it seems to be available only for scalar parameters of interest.

The balance between mathematical elegance and computational brute force is a

matter of taste, but even practical considerations suggest that the demonstrated ac-

curacy of the directional approach makes it worthy of broad consideration. It has the

added advantage that the same method can be used in continuous models.
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