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Abstract

We investigate the choice of default prior for use with likelihood to facilitate

Bayesian and frequentist inference. Such a prior is a density or relative density that

weights an observed likelihood function leading to the elimination of parameters

not of interest and then to providing a density type assessment for a parameter of

interest. For independent responses from a continuous model, we develop a prior

for the full parameter that is closely linked to the original Bayes approach and

provides an extension of the right invariant measure to general contexts. We then

develop a modified prior that is targetted on a component parameter of interest

and by targetting avoids the marginalization paradoxes of Dawid, Stone and Zidek

(1973). In particular this modifies the Jeffreys’ prior and provides extensions to

Welch-Peers theory. These two approaches are combined to develop a prior that

targets a vector interest parameter in the presence of a vector nuisance parameter.

Examples are given to clarify the computation of the priors.

Keywords: Haar measure; Invariance; Jeffreys prior; Likelihood asymptotics;

Noninformative prior; Nuisance parameter; Objective prior; Subjective prior.

1 Introduction

We develop default priors for Bayesian and frequentist inference in the context

of a statistical model f(y; θ) and observed data y0. A default prior is a density

or relative density used as a weight function applied to an observed likelihood

function. The choice of prior is based directly on assumed smoothness in the model

and an absence of information as to how the parameter value was generated.

One Bayesian role for a default prior is to provide a reference allowing sub-

sequent modification by an objective, subjective, personal, elicited or expedient

prior. From a frequentist viewpoint a default prior can be viewed as a device to

replace integration on the sample space by integration on the parameter space and

thus to use the likelihood function directly. From either view it offers a flexible

and easily implemented exploratory approach to statistical inference.
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There is a large literature on the construction of many types of default priors,

variously called non-informative, non-subjective, or objective; a complete review

is beyond the scope of this paper. The term objective prior has obvious scien-

tific interpretation and perhaps should be reserved for contexts where it is known

that θ arose from some density g(θ). A very helpful survey of various methods

for constructing defaulty priors is given in Kass & Wasserman (1996). In most

discussions there is at least some emphasis on ensuring correct calibration of pos-

terior probability limits, in the sense that these limits represent probability under

the model, at least approximately. A recent discussion of this appears in Berger

(2006); Goldstein (2006) gives a contrary view. Our own view is that such cal-

ibration is necessary to ensure that posterior inference does not give misleading

results. Calibration of Bayes procedures is reviewed in Little (2006).

Broadly speaking, approaches to default priors in the literature include those

based on notions of invariance and generalized invariance, on information or diver-

gence measures, and on the goal of matching posterior and frequentist inferences

to some order of approximation. For a scalar parameter model, all of these ap-

proaches lead to Jeffreys’ prior πJ(θ) ∝ i1/2(θ), where i(θ) is the expected Fisher

information in the model. Jeffreys (1961) derived this default prior based on

invariance arguments, and this was further pursued by Box & Tiao (1973) as

data-translated likelihoods; see Kass (1990). George & McCulloch (1993) derived

a class of invariant priors and developed a link between this approach and that

based on divergence methods. Divergence methods can be framed in the context

of the information processing that takes a prior distribution to a posterior dis-

tribution, as in Zellner (1988). The reference prior approach of Bernardo (1979)

and Berger & Bernardo (1992) seeks to maximize the Kullback-Liebler divergence

between the posterior and prior distribution: Clarke & Barron (1994) related this

to least favorable distributions. This approach has been extended to families of

divergence measures; a recent treatment is Ghosh et al. (2009). A more direct con-

struction of reference priors for scalar parameters is given in Berger et al. (2009).

Welch & Peers (1963) derived Jeffreys’ prior by a probability matching argument
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based on Edgeworth exapnsions.

In extending these results to problems with nuisance parameters several diffi-

culties arise. The Welch-Peers approach was developed in Peers (1965), Tibshi-

rani (1989), and in several papers by Mukerjee and colleagues. A review of this

literature is provided by Datta & Mukerjee (2004); see also Reid et al. (2003).

These extensions addressed the construction of matching priors using asymptotic

arguments based on Edgeworth expansions, and the construction turns out to be

difficult, and sometimes not possible. The reference prior approach to the con-

struction of priors in the presence of nuisance parameters involves difficulties both

in the ordering of the parameters and in the construction of compact subsets of

the parameter space, which are still unresolved. Clarke & Yuan (2004) give a sur-

vey of information based priors for problems with nuisance parameters. Jeffreys

(1961) recognized that his arguments based on invariance led to unsuitable pri-

ors in regression-scale problems, and recommended a modified approach treating

location and scale parameters as independent: see Kass & Wasserman (1996).

We construct default priors directly by examining how parameter change de-

termines change in the model near an observed data point. The corresponding

volume change as a function of the parameter reflects the sensitivity of the pa-

rameter at the data point and is the link to replacing sample space integration

by parameter space integration. This is developed in Section 2, leading to the

default prior given below by (7) or (9). In Section 3 we consider examples of exact

and approximate priors using this construction. As part of this we show that the

default prior needs in general to be targetted on the parameter of interest, when

there is a type of nonlinearity in that parameter; this is an aspect of the marginal-

ization paradoxes of Dawid, Stone and Zidek (1973). In Section 4 we use third

order approximations for p-values and posterior probabilities to derive a suitably

targetted prior defined on the profile curve of the parameter of interest, and we

then extend this to the full parameter space, leading to a full default targetted

prior, given below by (25).

The information based approach however seems to be limited to the case of
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scalar interest and scalar nuisance parameters, and in order to extend this to

vector sub-parameters we return to the approach of Section 2. This is described

in Section 5, and Section 6 records a brief discussion.

Our goal throughout is to examine the structure of priors for which stated

levels for posterior inference are realized, at least approximately. Our develop-

ment is not rigorous, but we require the model to be smoothly differentiable in

both y and θ, and assume the log-likelihood function can be expanded in Taylor

series to at least third order, in the usual manner of asymptotic expansions. Our

method of construction of default priors entails dependence on the data. Data-

dependent priors have been discussed in the literature in various contexts, such as

Box & Cox (1964) and Wasserman (2000). Pierce & Peters (1994) noted that to

obtain agreement of Bayesian and frequentist higher order approximations data-

dependent priors would be required in general. This work responded to a question

raised by in the discussion of Pierce & Peters (1992). Clarke (2007) discusses the

role of data-dependent priors in the context of priors constructed by information

processing arguments.

2 Default priors from model properties

Suppose we have a single observation on a scalar parameter θ from a model with

density f(y; θ) and distribution function F (y; θ), and that F is continuously dif-

ferentiable in both y and θ. For an observed value y0, the p-value as a function

of θ is F (y0; θ). The posterior survivor function for θ is s(θ) =
∫
θ f(y0;ϑ)π(ϑ)dϑ.

If these two inference functions are to be equal for all θ, giving equivalence of

posterior and frequentist inference, then

F (y0; θ) =
∫
θ
f(y0;ϑ)π(ϑ)dϑ.

Differentiation of both sides with respect to θ gives

∂

∂θ
F (y0; θ) = −f(y0; θ)π(θ)
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and thus determines the prior as

π(θ) =
∣∣∣∣Fθ(y0; θ)
Fy(y0; θ)

∣∣∣∣ , (1)

where the subscript notation indicates differentiation with respect to the relevant

argument. The derivation of this default prior shows that the parameter space

integration provides a duplicate of the sample space integration; in other words

the posterior survivor function s(θ) is exactly equal to the frequentist p-value

function, which records the percentile position of the data with respect to possible

θ values.

In the special case of a location model, F (y; θ) = F (y−θ), (1) gives a constant

prior for θ; otherwise (1) it gives the precise generalization, in terms of a re-

expression of θ. The prior can also be interpreted as π(θ) ∝ |dy/dθ|, where the

derivative is computed with F (y; θ) held fixed.

Another way of describing this is to note that in a location model the quantile

at any observed value y0 shifts to y0 +dθ when θ changes to θ+dθ, i.e. F (y0; θ) =

F (y0 +dθ; θ+dθ). For a non-location model this generalizes by requiring the total

differential of F (y; θ) be equal to zero at y0:

dF (y; θ)|y=y0 =
∂F (y0; θ)

∂θ
dθ +

∂F (y0; θ)
∂y

dy = 0;

thus the effect at y0 of parameter change at θ is

dy

dθ

∣∣∣∣
y0

= −Fθ(y
0; θ)

Fy(y0; θ)
. (2)

The same calculation applies when θ is a vector of dimension p:

dy

dθ′

∣∣∣∣
y0

= −Fθ
′(y0; θ)

Fy(y0; θ)
(3)

which is a 1× p row vector. This generalizes translation invariance to local trans-

lation invariance (Fraser, 1964). Equation (2) can also be written in terms of the

quantile function by setting u = F (y; θ), solving for the u-quantile y = y(u; θ) and

then differentiating directly:

dy

dθ

∣∣∣∣
y0

= yθ(u, θ)|u=F (y0;θ) . (4)
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In (2), (3) and (4) differentiation with respect to θ is calculated with the p-value

F (y0; θ) held fixed. Any pivotal quantity that is a one-to-one function of F (y0; θ)

gives the same definition of dy/dθ.

Now for a sample of independent observations, y = (y1, . . . , yn), each yi has a

corresponding row vector Vi(θ) defined by (3) using its distribution function. The

change then in the vector variable y at y0 under differential change in θ is now

dy

dθ′

∣∣∣∣
y0

=


V1(θ)

...

Vn(θ)

 = V (θ), (5)

where V (θ) is an n × p matrix that we call the sensitivity of θ at y0. We denote

the columns of V (θ) by {v1(θ) · · · vp(θ)} where the n × 1 vector vj(θ) gives the

data displacement when the jth coordinate of θ is changed by dθj .

This sensitivity matrix V (θ) forms the basis for the construction of a default

prior. If we are in a simple location model with scalar y and scalar θ then V (θ) = 1,

and we have F (y0 − θ) =
∫ y0

f(y − θ)dy =
∫
θ f(y0 − α)dα, and the sample space

integration is replaced by parameter space integration. Thus with a flat prior for

θ posterior probabilities are equal to observed p-values. Indeed Bayes (1763) used

a translation or invariance argument to recommend the flat prior π(θ) = c for the

parameter θ; in effect proposing a confidence argument well before Fisher.

In non-location models the sensitivity matrix V (θ) enables integration with

respect to y, which gives p-values, to be converted to integration with respect to

θ, which gives posterior probabilities. Thus a natural default prior is the volume

element determined by V (θ) : π(θ)dθ ∝ |V (θ)|dθ = |V (θ)′V (θ)|1/2dθ. To link this

default prior to the development of priors from information matrices derived in

the next sections, we make some refinements, using the coordinates given by the

maximum likelihood estimator.

We write `(θ; y) = log f(y; θ) for the log-likelihood function, and θ̂ = θ̂(y) for

the maximum likelihood statistic obtained by solving the score equation `θ(θ; y) =

0. The connection between y and θ̂(y) is obtained by evaluating the total derivative
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of the score equation `θ(θ; y) = 0; at (θ̂0; y0) we have

`θθ′(θ̂0; y0)dθ̂ + `θ;y′(θ̂0; y0)dy = 0,

where the differentials dθ̂ and dy are respectively p × 1 and n × 1 vectors, and

θ̂0 = θ̂(y0) is the maximum likelihood estimate with data y0. Solving for dθ̂ gives

dθ̂ = ĵ−1H ′dy

where H ′ = `θ;y′(θ̂0; y0) is the gradient of the score function at the data point and

ĵ = j(θ̂0; y0) = −∂2`(θ̂0; y0)/∂θ∂θ′ is the observed Fisher information. Combining

this with (5) we obtain

dθ̂ = ĵ−1H ′V (θ)dθ = W (θ)dθ (6)

which presents the sample space change dθ̂ at θ̂0 in terms of parameter space

change dθ at arbitrary θ. In particular for any given volume increment at the data

y0 we have determined the direct equivalent volume increment at any parameter

value θ of interest; this gives the default prior as the parameter space support

volume that corresponds to a fixed data volume increment at y0:

π(θ)dθ = |ĵ−1HV (θ)|dθ = |W (θ)|dθ. (7)

For calculations with component parameters, described in Section 5, there are

advantages to standardizing with respect to observed information. For this let

ĵ1/2 be a right square root of the observed information matrix ĵ and consider the

standardized vector differential

ĵ1/2dθ̂ = ĵ1/2W (θ)dθ = W̃ (θ)dθ. (8)

The rescaled default prior is then

π(θ)dθ = |W̃ (θ)|dθ. (9)

These priors can lead to posterior survivor values that duplicate to second and

third order the frequentist p-values available from asymptotic theory, although

care must be taken when constructing marginal posteriors, as the marginalization

paradox of Dawid et al. (1973) is a limiting factor. These issues are taken up in

Section 4.
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3 Examples of default priors

The first three examples are similar to Bayes’ original location model, and lead

to posterior quantiles that agree with frequentist inference. In the normal linear

model we recover Jeffreys’ modified rule, the right invariant prior.

Example 3.1: Normal theory linear regression. Suppose yi follows a normal

distribution with mean Xiβ and variance σ2, where Xi is the ith row of an n× p

design matrix X, β is r × 1, and θ′ = (β′, σ2). Inverting ui = F (yi; θ) = Φ{(yi −

Xiβ)/σ} = Φ(zi), where Φ(·) is the distribution function for the standard normal,

gives the quantile functions y1 = X1β + σz1, . . . , yn = Xnβ + σzn. We compute

V (θ) for fixed u, as described at (4), or equivalently for fixed z, obtaining

V (θ) =
dy

dθ

∣∣∣∣
y0

= {X, z0(θ)/2σ},

where z0(θ) = z(y0, θ) = (y0 −Xβ)/σ is the standardized residual corresponding

to data y0 and parameter value θ. The likelihood gradient `;y = (Xβ−y)/σ2 then

gives the score gradient `θ′;y(θ; y) = {σ−2X,σ−4(y −Xβ)} and

H = {X/σ̂2, (y0 −Xβ̂0)/σ̂4} = (X/σ̂2, ẑ0/σ̂3),

where σ̂0 is abbreviated as σ̂ to simplify notation. The observed information is ĵ =

diag{X ′X/σ̂2, n/(2σ̂4)}; combining these using (7) and least squares projection

properties gives

W (θ) =

 σ̂2(X ′X)−1 0

0 2σ̂4/n


 X ′/σ̂2

ẑ0′
/σ̂3

 { X z0(θ)/(2σ) }

=

 I (X ′X)−1X ′z0(θ)/(2σ)

2ẑ0′
σ̂X/n ẑ0′

z0(θ)σ̂/(nσ)


=

 I (β̂0 − β)/2σ2

0 σ̂2/σ2

 .

leading to

dβ̂ = dβ + (β̂0 − β)dσ2/2σ2

dσ̂2 = σ̂2dσ2/σ2.
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It thus follows from (7) that the default prior is

π(θ)dθ ∝ |W (θ)|dθ ∝ dβdσ2/σ2, (10)

which is the familiar right invariant prior. This example illustrates how (7) mod-

ifies the invariance argument of Jeffreys to adapt to the underlying location pa-

rameter form of the distribution function for each coordinate. Jeffreys’ prior is the

square root of the determinant of the expected Fisher information matrix, which

leads to the left invariant prior dβdσ2/σ4. This is usually regarded as incorrect

for this problem; for example the associated posterior does not reproduce the t-

distribution with the usual degrees of freedom for inference about components of

β, whereas the right invariant prior does, and agrees wutg Jeffreys’ (1961) proposal

for a modified rule for location-scale settings (Kass & Wasserman, 1996).

Example 3.2: Normal circle. As a special case of the normal theory linear model

let (y1, y2) be distributed as N{(µ1, µ2); I/n}. It follows either from the preceding

example, or from direct calculation, that the default prior for the location param-

eter µ is cdµ1dµ2, which gives the N{(y0
1, y

0
2); I/n} posterior for (µ1, µ2). For any

component parameter linear in (µ1, µ2) we then have exact agreement between

frequentist p-values and Bayesian survivor probabilities.

Suppose now that we reparameterize the model as θ = (ψ, α) where µ1 =

ψ cosα and µ2 = ψ sinα. The quantile functions are y1 = ψ cosα + z1 and y2 =

ψ sinα+ z2, where z1, z2 are independent standard normal variables. This gives

W (θ) =

 cos(α̂− α) ψ sin(α̂− α)

−ψ̂−1 sin(α̂− α) ψψ̂−1 cos(α̂− α)

 , (11)

and then from (7) or (9) we obtain the default prior π(θ)dθ ∝ ψdψdα for the full

parameter. This is equivalent to the default flat prior dµ1dµ2 calculated directly

from the location parameter (µ1, µ2).

However, this prior is not appropriate for marginal inference when the param-

eter of interest is the radial distance ψ, which is a nonlinear function of the mean

vector µ. To see this note that the marginal distribution of y2
1 + y2

2 depends only
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on ψ, and the p-value function from this marginal distribution is

p(ψ) = Pr{χ2
2(ψ2) ≤ n(y2

1 + y2
2)},

where χ2
2(δ2) is a noncentral chi-square with 2 degrees of freedom and noncentral-

ity parameter δ2 and the y’s are fixed at their observed values. In contrast the

posterior survivor function for ψ under the flat prior dµ1dµ2 is

s(ψ) = Pr[ψ2 ≤ χ2
2{n(y2

1 + y2
2)}].

Numerical calculation confirms there can be substantial under-coverage for right

tail intervals based on the marginal posterior. In the extension to k dimensions,

with yi distributed as N(µi, 1/n), i = 1, . . . , k, it can be shown that

s(ψ)− p(ψ) =
k − 1
ψ
√
n

+O(
1
n

)

so the discrepancy increases linearly with the number of dimensions. The scaling

of the variances by 1/n enables this asymptotic analysis: we could equivalently

model independent observations yij , j = 1, . . . n from normal distributions with

mean µi and variance 1.

This discrepancy does not appear in the first order of asymptotic theory: the

limiting distribution of
√
nψ̂ =

√
n(y2

1 + y2
2)1/2 is N(ψ, 1), and the limiting distri-

bution of the exact posterior for ψ is N(ψ̂, 1/n), so to this order of approximation

p-values and marginal survivor probabilities are identical. This is simply reflecting

the fact that any prior not depending on n is in the limit swamped by the data and

has no effect on the posterior inference. To study the agreement between Bayesian

and frequentist inference it is necessary to consider either the exact distributions,

or higher order approximations.

The inappropriateness of the point estimator developed from the prior π(µ)dµ ∝

dµ was pointed out in Stein (1959) and is discussed in detail in Cox & Hinkley

(1974, p. 46 and p. 383).

This example illustrates in simple form the difficulty with the default prior (7)

and any ‘flat’ prior for a vector parameter. It is not possible to achieve approxi-

mate equality of Bayesian and frequentist inferences beyond the simple asymptotic
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normal limit when the parameter of interest is curved in the local location param-

eter. This is a version of the marginalization paradox of Dawid et al. (1973): they

described settings where assigning a prior to a full parameter and then marginal-

izing necessarily conflicts with the approach of reducing to a one-parameter model

and marginalizing the prior to that parameter of interest. The need to target the

prior on the particular parameter component of interest is well-recognized in the

literature on the construction of reference priors, but seems less well appreciated

in other contexts. In Section 4 we give a method to adapt the default prior (9) to

target a particular parameter of interest.

Example 3.3: Transformation models. The preceding examples and many more

are special cases of transformation models. In the Appendix we briefly record the

links to this general type of model and the result that our locally defined prior (7)

reproduces the right invariant prior for that model type, thus (7) can be written

π(θ)dθ ∝ |W (θ)|dθ = cdν(θ)

where dν(θ) is the right invariant measure on the transformation group. Transfor-

mation model theory shows that this prior is fully accurate fro reproducing frequen-

tist p-values, provided that the parameter of interest is linear in the transformation

parameter, thus avoiding the marginalization issues of Dawid et al. (1973).

In the next three examples the default prior is based on the approximate loca-

tion relationship described by the sensitivity matrix V (θ).

Example 3.4: The Welch-Peers approximation. As noted above, the construc-

tion of the default prior using the sensitivity matrix V (θ), or the modification to

W (θ), gives a flat prior when θ is a location parameter. If we have a scalar param-

eter model in which the location parameter is β(θ), then this construction gives

the flat prior π(θ)dθ ∝ dβ(θ). For any scalar parameter model an approximate

location parameter is proportional to i1/2(θ), where i(θ) is the expected Fisher in-

formation Eθ{−`′′(θ)}. This was established in Welch & Peers (1963), by showing

that this choice led to the equality of confidence and posterior bounds. It can also
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be expressed as the result that

z =
∫ θ̂

i1/2(t)dt−
∫ θ

i1/2(t)dt

has a limiting standard normal distribution, and to second order has a distribution

free of θ. In quantile form this is

β̂ = β + z,

where β(θ) =
∫ θ
i1/2(t)dt is the constant information reparametrization and z is

a fixed quantile of the θ-free distribution. Then dβ̂ = dβ for fixed quantile, giving

Jeffreys’ prior dβ ∝ i1/2(θ)dθ. The interpretation of this prior in terms of an

approximate location parameter is discussed in Kass (1990).

This example links the location-parameter approach for constructing priors to

that based on Fisher information. In Section 4 we extend this linking to develop

targetted priors from exponential family approximations.

Example 3.5. Nonlinear regression. Suppose yi are independently normally

distributed with mean xi(β) and variance σ2 for i = 1, . . . , n, with xi(β) a known

nonlinear function of the p×1 vector β. As in Example 3.1, the quantile functions

are yi = xi(β) + σzi where zi = Φ−1(ui), and with θ′ = (β′, σ2), the sensitivity

matrix V (θ) obtained by differentiating the quantile functions for fixed z is

V (θ) =


X1(β) {y0

1 − x1(β)}/2σ2

...
...

Xn(β) {y0
n − xn(β)}/2σ2

 =
{
X(β) z0(θ)/2σ

}
,

where Xi(β) = ∂xi(β)/∂β′. We also have

H ′ =
1
σ̂2

{
X(β̂0) ẑ0/σ̂

}
,

ĵ =

 ĵ11/σ̂
2 0

0 n/2σ̂4


where ĵ11 =

∑n
i=1 ẋ

′
i(β̂)ẋi(β̂) −

∑n
i=1{yi − xi(β̂)}ẍi(β̂) and again for notational

convenience we write σ̂2 = (σ̂0)2 = {y − x(β̂0)}′{y − x(β̂0)}/n.
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We then obtain

W (θ) =

 σ̂2ĵ−1
11 0

0 2σ̂4/n

 X(β̂0)′/σ̂2

ẑ0′
/σ̂3

{X(β) z0(θ)/2σ
}

=

 ĵ−1
11

∑
Xi(β̂)′Xi(β) ĵ−1

11

∑
Xi(β̂)′zi(θ)/(2σ)

2σ̂
∑
ẑiXi(β)/n (σ̂/σ)

∑
ẑizi(θ)/n


where ẑi = {yi − xi(β̂)}/σ̂ and zi(θ) = {yi − xi(β)}/σ. The determinant of W (θ)

has the form h(β)/σ2, where h(β) is a nonlinear function of β determined by the

derivatives X(β) of the mean function. Using the approximation

x(β) = x(β̂0) +X(β̂0)′(β − β̂0) + wn−1/2

where w is orthogonal to L{X(β̂0)}, the default prior becomes dβ̃dσ2/σ2 to

O(n−1), where dβ̃ designates a flat prior in coordinates of the tangent plane pro-

jection at the fitted data point. The two-group reference prior for this example is

proportional to |X(β)′X(β)|1/2/σ (Yang & Berger,1996), which was also proposed

on the grounds of invariance by Eaves (1983).

Example 3.6. Gamma distribution. As an example of a one-parameter model

which is neither location nor scale, we consider default priors for the shape pa-

rameter of a gamma distribution:

f(y; θ) =
1

Γ(θ)
yθ−1e−y.

Jeffreys’ prior is πJ(θ) ∝ ψ′′(θ)1/2, where ψ(θ) = log Γ(θ). To construct a location-

based prior for a sample of n, we use (2) with (7) to determine Vi(θ),

Vi(θ) =
Γ′(θ)F (y0

i ; θ)−
∫ y0i
0 zθ−1 log(z)e−zdz

e−y
0
i (y0

i )θ−1
,

and then have πV (θ) ∝ {
∑
V 2
i (θ)}1/2.

Figure 1 shows Jeffreys’ prior i1/2(θ) and πV (θ) for two different samples of

size 30 from the gamma distribution with shape parameter θ = 3. The priors are

normalized to equal 1 at θ = 3. The priors agree in the neighbourhood of the

observed maximum likelihood value, then have slightly different curvature as they

respond differently to curvature in the model.
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Figure 1: Priors for the shape parameter of a Gamma distribution. Jeffreys’ prior πJ(θ)
(solid line) is proportional to {ψ′′(θ)}1/2 where ψ′′ is the trigamma function; the default
prior (dashed line) proposed here is based on (2) and (7), and presented here for two
different samples y0 of size 30 from a gamma distribution with true value θ = 3. The
priors are standardized to equal 1 at the true value of θ.
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This example can be extended to the two-parameter gamma model, with shape

θ and mean µ:

f(y;µ, θ) =
1

Γ(θ)
yθ−1θθ

µθ
exp(−θy/µ).

The sensitivity matrix V (µ, θ) has two columns: the column corresponding to µ is

simply (y0
1/µ, . . . , y

0
n/µ)′, while the column corresponding to θ has elements

Ṽi(θ, µ; y0
i ) = −F1θ(θy0

i /µ; θ)
1
µf1(θy0

i /µ; θ)

where the notation F1 and f1 refer to the gamma densities for µ = θ used above.

The associated default prior is given by

π(θ, µ) ∝ |V ′(µ, θ)V (µ, θ)|1/2 =
1
µ
{
∑

Ṽ 2
i − (

∑
yiṼi)2/

∑
y2
i }1/2,

which is proportional to (1/µ) times a function of θ (and y0) only.
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4 Information based priors

The approach developed in the preceding sections gives a default prior for a vector

parameter, but the resulting posterior is not appropriately targetted on compo-

nent parameters unless the components are linear, in the sense discussed in the

Appendix at (iii). To develop default priors that are targetted on parameters of

interest, we use an approach motivated by higher order asymptotics and by the in-

terpretation of the Welch-Peers prior as a location-model based default prior noted

in Example 3.4. In that example, the Fisher information function defines locally a

location parameter, and the resulting ‘flat’ prior is given by the Fisher information

metric. To generalize this to the vector case, we can either generalize the location

model approximation, which we did in the previous section, or the information

approach, which we now consider. For targetting the prior on the parameter of

interest, the information approach seems more directly accessible. In Section 5

we combine the two approaches to develop default priors for vector parameters of

interest in the presence of nuisance parameters, although the resulting posterior

is still subject to the marginalization paradox and may not give well-calibrated

marginal posterior inference for curved parameters.

To examine the constraints needed to ensure that a marginal posterior is well-

calibrated, we use higher order approximations for p-values and marginal poste-

riors available in the literature. We write θ = (ψ, λ), where ψ is a scalar pa-

rameter of interest and λ is a nuisance parameter, and let θ̂ψ = (ψ, λ̂ψ) be the

constrained maximum likelihood estimator, where λ̂ψ is the solution (assumed

unique) of ∂`(θ)/∂λ = 0.

The Laplace approximation to the marginal posterior survivor function for ψ

is given by

s(ψ) = Φ(r∗B) = Φ{r + (1/r) log(qB/r)}, (12)

where

r = sign(ψ̂ − ψ)[2{`(θ̂)− `(θ̂ψ)}]1/2, (13)

qB = `′p(ψ)j−1/2
p (ψ̂)

|jλλ(θ̂ψ)|1/2

|jλλ(θ̂)|1/2
π(θ̂)

π(θ̂ψ)
, (14)
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jλλ is the submatrix of the observed Fisher information matrix corresponding to

the nuisance parameter, and `p(ψ) = `(θ̂ψ) is the profile log-likelihood function.

This can be derived from Laplace approximation to the marginal posterior density

for ψ: see, for example, Tierney & Kadane (1986), DiCiccio & Martin (1991)

and Bédard et al (2007). The approximation has relative error O(n−3/2) for ψ in

n−1/2-neighbourhoods of ψ̂.

There is a parallel O(n−3/2) p-value function for scalar ψ(θ), developed in

Barndorff-Nielsen (1986) when there is an explicit ancillary function, and extended

to general asymptotic models in Fraser & Reid (1993); see also Fraser et al. (1999)

and Reid (2003). The analysis makes use of the observed likelihood function `(θ) =

`(θ; y0) and the observed likelihood gradient ϕ(θ) = `;V (θ; y0) = (∂/∂V )`(θ; y)|y0

in sample space directions V described below. Third order inference for any scalar

parameter ψ(θ) is then available by replacing the model by an approximating

exponential family:

g(s; θ) = exp{`(θ) + ϕ(θ)′s}h(s) (15)

with observed data s0 = 0, and using available approximation formulas for such

(p, p) exponential families. This model is based on an expansion that ignores

terms of second order, O(n−1), but its construction ensures that p-values based

on (15) have relative error of third order, O(n−3/2). Some discussion of this use

of the exponential family model {`(θ), ϕ(θ)} as a full third order surrogate for the

original model is given in Davison et al. (2006).

The p-value for testing ψ(θ) = ψ is

p(ψ) = Φ(r∗f ) = Φ{r + (1/r) log(qf/r)} (16)

where r is as given above, and two equivalent expression for qf are:

qf =
|ϕ(θ̂)− ϕ(θ̂ψ) ϕλ(θ̂ψ)|

|ϕθ(θ̂)|
|j(θ̂)|1/2

|jλλ(θ̂ψ)|1/2
,

= {χ(θ̂)− χ(θ̂ψ)}

{
|jϕϕ(θ̂)|
|j(λλ)(θ̂ψ)|

}1/2

. (17)

The second version of qf indicates that it can be presented as a parameter depara-

ture divided by its estimated standard error, and the first version gives a form
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that is useful for computation.

In the expression for qf , the canonical parameter ϕ(θ) is defined using sample

space directional derivatives of the log-likelihood function:

ϕ(θ) = `;V (θ; y0) =
∑

`yi(θ; y
0)Vi(θ̂0)

where Vi(θ) is the ith row of the sensitivity matrix (5). A derivation of the r∗f

approximation is beyond the scope of this paper, but is described in Reid (2003)

and Fraser et al. (1999); see also Ch. 8 of Brazzale et al. (2007). The role of

V (θ̂0) in the development of the approximation is to implement conditioning on

an approximate ancillary statistic derived from a local location model, which is

why the same matrix arises here as in the discussion of default priors.

Because the only difference between (12) and (16) is in the use of qB or qf , and

only qB involves the prior, we obtain equality of posterior and frequentist inference

to O(n−3/2) by deriving a prior so qB = qf . This was suggested in Casella et al.

(1995), and was developed further in Fraser & Reid (2002), where it was called

strong matching. Strictly speaking inference for ψ can be obtained using (16)

alone, but the close parallel between (12) and (16) determines some aspects of

the prior needed to ensure frequentist validity, at least to the present order of

approximation. Thus we have

π(θ̂ψ)

π(θ̂)
∝

`′p(ψ)|jλλ(θ̂ψ)||ϕθ(θ̂)|
|ϕ(θ̂)− ϕ(θ̂ψ) ϕλ(θ̂ψ)||j(θ̂)|

. (18)

If the model is free of nuisance parameters, we obtain the strong matching

prior described in Fraser & Reid (2002), which is given explicitly as

π(θ)dθ ∝ `′(θ; y0)
ϕ(θ)

dθ; (19)

equivalently β(θ) =
∫ θ{`′(ϑ; y0)}/ϕ(ϑ)dϑ is a local location parameter at the

observed data point. By construction this prior leads to third order equality of

posterior probabilities and p-values; accordingly we refer to it as a third order

prior. The asymptotic equivalence of (19) and Jeffreys’ prior is outlined in the

Appendix at (iv).
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Equation (18) gives a data-dependent prior along the profile curve Cψ = {θ :

θ = (ψ, λ̂ψ)} in the parameter space, but does not immediately give a prior over

the full parameter space. To extend the prior for arbitrary values of λ beyond

the profile curve we use the Welch & Peers (1963) construction based on Fisher

information, as described below at (25).

Using the second expression for qf in (17), we obtain

π(θ̂ψ)dψdλ = c
`′p(ψ)

χ(θ̂)− χ(θ̂ψ)
dψ · |jλλ(θ̂ψ)|1/2|j(λλ)(θ̂ψ)|1/2dλ (20)

on the profile curve Cψ, ignoring terms of O(n−3/2). The scalar parameter χ(θ)

is a rotated coordinate of the canonical parameter ϕ(θ) that is first derivative

equivalent to ψ(θ) = ψ at θ̂ψ; it is the unique locally defined scalar canonical

parameter for assessing ψ(θ) = ψ (see for example, Fraser et al., 1999). The

matrix j(λλ)(θ̂ψ) is the nuisance information matrix calculated with λ change re-

expressed to the metric provided by ϕ(θ) for fixed ψ:

|j(λλ)(θ̂ψ)|1/2 = |jλλ(θ̂ψ)|1/2|ϕλ(θ̂ψ)|−1,

where ϕλ(θ) = ∂ϕ(θ)/∂λ.

Since (15) is a second order approximation in moderate deviations at the data

point, we find it convenient to approximate the initial factor using the asymp-

totic relation between the score function and the maximum likelihood estimator,

described in the Appendix at (iv),

`ψ(θ̂ψ)dψ
χ̂− χ̂ψ

= |j(ψψ)·λ(θ̂ψ)|1/2d(ψ). (21)

The notation d(ψ) = dχψ denotes differential change in the parameter ψ, but

expressed in terms of the ϕ metric.

The right factor in (20) can be rewritten giving

|jλλ(θ̂ψ)|1/2|j(λλ)(θ̂ψ)|1/2dλψ = |j(λλ)(θ̂ψ)|d(λψ)

where λψ is the λ parametrization as used on the contour with ψ fixed and (λψ)

is that parametrization presented in the ϕ scaling. Thus d(λψ) = |ϕλ(θ̂ψ)|dλψ at

the point where the ψ contour intersects Cψ.
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Combining these modifications gives the following default prior as an adjusted

Jeffreys’ prior along the profile contour Cψ:

π(θ̂ψ)dψdλ = |j(ψψ)·λ(θ̂ψ)|1/2|j(λλ)(θ̂ψ)|d(ψ)d(λψ) (22)

= |jϕϕ(θ̂ψ)|1/2|j(λλ)(θ̂ψ)|1/2d(ψ)d(λψ). (23)

To extend this off the contour Cψ the calculations for nuisance information for

various λ given ψ need to be carefully ordered: they are made within the exponen-

tial model defined by `(θ) and ϕ(θ), and are thus with respect to the ϕ-rescaled

version of λ designated as (λ) and are then rescaled to other parametrizations as

needed. The notation d(ψ)d(λψ) is used to emphasize this: some further explana-

tion is given in the Appendix at (ii). We extend (23) to the full parameter space

by replacing the information metric |j(λλ)(θ̂ψ)|1/2d(λψ) at the intersection with

Cψ by the extension off the profile contour that accomplishes Laplace integration

performed at the profile contour Cψ; this gives the following general expression for

the default prior,

πψ(θ)dψdλ = |j(ψψ)·λ(θ̂ψ)|1/2|j(λλ)(θ̂ψ)|1/2|j(λλ)(θ)|1/2d(ψ)d(λψ) (24)

= |jϕϕ(θ̂ψ)|1/2|j(λλ)(θ)|1/2d(ψ)d(λψ), (25)

which is Jeffreys’ prior with a supplemental factor |j(λλ)(θ)|1/2 that accomplishes

the targetting on the component ψ. The use of approximation (21) reduces the

prior to second order accuracy.

Example 4.1: Normal (µ, σ2). In Example 3.1 we obtained the default prior

for the full parameter θ = (µ, σ2); we now illustrate the preceding targetted de-

fault prior for the components µ and σ2. The canonical parameter is (ϕ1, ϕ2) =

(µ/σ2, 1/σ2) which has information function

jϕϕ(θ) = n

 ϕ−1
2 −ϕ1ϕ

−2
2

−ϕ1ϕ
−2
2 (1/2)ϕ−2

2 + ϕ2
1/ϕ

3
2


= n

 σ2 −µσ2

−µσ2 σ4/2 + µ2σ2

 ,
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and thus Jeffreys prior (nσ3/
√

2)dϕ1dϕ2 = (n/
√

2σ3)dµdσ2. Without loss of gen-

erality we take the data point to be (µ̂, σ̂2) = (0, 1). The re-standardized canonical

parameter (ϕ̃1, ϕ̃2) is (n1/2µ/σ2, n1/2/
√

2σ2) and has j0ϕ̂ϕ̂ = I with information

function

jϕ̃ϕ̃ =

 σ2 −
√

2µσ2

−
√

2µσ2 σ4 + 2µ2σ2


and Jeffreys prior

σ3dϕ̃1dϕ̃2 = (n/
√

2σ3)dµdσ2.

With µ as interest parameter using the particular data choice we have Cµ =

{(µ, σ̂µ)} = {(µ, 1)} and in moderate deviations O(n−1) have σ̂2
µ = σ̂2 + µ2 =

1 + δ2/n = 1 where µ = δ/
√
n relative to µ̂ = 0. For the nuisance information we

have jσ2σ2 = nσ4/2 and the recalibrated information using the ϕ̃ scaling is

j(σ2σ2)(θ̂µ) =
n

2σ̂4
µ

∣∣∣∣ ∂σ2

∂(σ)2

∣∣∣∣−2

(µ,σ̂2
µ)

=
1
2

(µ2 +
1
2

)−1σ̂4
µ = 1.

Thus on Cµ with σ2 = σ̂2
µ = 1 we have the Jeffreys |jϕϕ(θ̂µ)|1/2d(µ)d(σ2) = cdµdσ2

and then the adjusted Jeffreys

|jϕϕ(θ̂µ)|1/2|j(σ2σ2)(θ̂µ)|1/2d(µ)d(σ2) = cdµdσ2.

Extending this off Cµ by the constant information metric for σ2 gives

πµ(θ)dµdσ2 =
c

σ2
dµdσ2;

this is the familiar right invariant measure.

With σ2 as parameter of interest we have the profile Cσ2 = {(µ̂σ2 , σ2)} =

{(0, σ2)}. For the nuisance information we have

jµµ =
n

σ2
, j(µµ) =

n

σ2

(
∂ϕ̂

∂µ

)−2

(µ̂σ2 ,σ2)

= σ2,

using µ̂σ2 = 0 on Cσ2 ; this gives the Jeffreys

|jϕϕ(θ̂)|1/2d(µ)d(σ2) = σ−3dµdσ2
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and then the adjusted Jeffreys

|jϕϕ(θ̂σ2)|1/2|j(µµ)(θ̂σ2)|1/2d(µ)d(σ2) = σ−3σdµdσ2.

Extending this using the constant information metric for µ gives the same expres-

sion, which again is the right invariant prior.

Example 4.2: Normal circle (continued). We saw in Example 3.2 that the

default prior for the vector ϕ = (ψ cosα,ψ sinα) did not correctly target the

component parameter ψ. The following components of the targetted prior (23)

are

χ̂− χ̂ψ = r − ψ, `ψ(θ̂ψ) = r − ψ, dχ = d(ψ),

jαα(θ̂ψ) = rψ, j(αα)(θ̂ψ) = r/ψ = j(αα)(θ).

We then obtain the prior

πψ(θ)dψdλ =
r − ψ
r − ψ

(rψ)1/2(
r

ψ
)1/2dψdα = cdψdα,

which is uniform in the radius ψ and the angle α. This agrees with several deriva-

tions of default priors, including Fraser & Reid (2002), who obtained default priors

on the constrained maximum likelihood surface, and with Datta & Ghosh (1995)

who obtained this as a reference prior, while noting that it was in the family of

matching priors derived in Tibshirani (1989).

As another way of explaining (25), suppose that the full likelihood is first

integrated with respect to the Jeffreys prior for the nuisance parameter,

|j(λλ)(ψ, λψ)|1/2d(λψ) = |j[λλ](ψ, λψ)|1/2dλψ,

where the exponential parameter change d(λ) is recalibrated to the change dλ and

the subscript is to indicate that this is done for fixed ψ. This integration on the

parameter space has a Welch & Peers (1963) inversion to the sample space that

uses the corresponding score variable s2 at y0 with differential

|j(λλ)(ψ, λ̂ψ)|−1/2ds2.
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By contrast the ordinary sample space integration to obtain the marginal den-

sity relative to ψ uses just the score differential ds2 for integration, which is

|j(λλ)(ψ, λ̂ψ)|1/2 times larger. Thus to directly duplicate the marginal density for

ψ requires the rescaled Jeffreys

|j(λλ)(ψ, λ̂ψ)|1/2|j[λλ](ψ, λ)|1/2dλ; (26)

the additional factor is in fact the marginal likelihood adjustment to the ψ profile

as developed differently in Fraser (2003).

The rescaled Jeffreys integration for λ on the parameter space produces marginal

probability concerning ψ with support ds1. For different ψ values the support can

be on different lines through y0, which is the rotation complication that has af-

fected the development of marginal likelihood adjustments (Fraser, 2003). The

choice of the standardized ϕ̃(θ) gives a common information scaling on the dif-

ferent lines through y0 that are used to assess ψ. This provides sample space

invariance and leads to the third order adjustment for marginal likelihood.

The adjusted nuisance Jeffreys prior (26) produces marginal likelihood for ψ,

which then appears as an appropriately adjusted profile likelihood for that parame-

ter of interest. This can then be integrated following the Welch-Peers pattern using

root profile information obtained from the exponential parametrization. This gives

the Jeffreys type adjustment

|j(ψψ)(θ̂ψ)|−1/2d(ψ) = |j[ψψ](θ̂ψ)|−1/2dψ

for the profile concerning ψ. The combined targetted prior for ψ is then

πψ(θ) = |j[ψψ](θ̂ψ)|−1/2|j(λλ)(θ̂ψ)|1/2|j[λλ](θ)|1/2dψdλ

= |jϕϕ(θ̂ψ)|1/2|j(λλ)(θ)|1/2d(ψ)d(λ)

= |j[θθ](θ̂ψ)|1/2|j(λλ)(θ)|1/2dψdλ

for use with the full likelihood L(ψ, λ), which is the same as (25).
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5 Targetted default priors: vector components

The information approach outlined in the preceding section requires that the nui-

sance parameter be scalar, so that the Welch-Peers approach can be used to extend

the default prior beyond the profile contour. In this section we use the continuity

approach to extend the preceding information-based approach to the case where

the parameter of interest ψ(θ) and nuisance parameter λ(θ) are vector valued,

with dimensions say d and p− d and with θ′ = (ψ′, λ′).

The parameter effects matrix W̃ (θ) at (8) can be partitioned in accord with

the components ψ and λ giving W̃ (θ) = {W̃ψ(θ),Wλ(θ)} so that

ĵ1/2dθ̂ = W̃ψ(θ)dψ + W̃λ(θ)dλ.

To target the parameter on ψ, we separate the effects of ψ and λ following the

pattern used in Section 4. We construct the targetted prior as

πψ(θ)dθ ∝ |W̃ (θ̂ψ)| |W̃λ(θ)|
|W̃λ(θ̂ψ)

= |W̃ψ·λ(θ̂ψ)| · |W̃λ(θ)|dψdλ;

in comparison with (22) the rescaling mentioned at (26) is built into the W̃ ma-

trices.

For a parameter value θ̂ψ = (ψ, λ̂ψ) on the profile curve Cψ formed by the

constrained maximum likelihood values, a change dλ in λ with ψ fixed generates

a p− d-dimensional tangent plane Tψ = L{W̃λ(θ̂ψ)} at the observed θ̂0. The term

W̃ψ·λdψ presents the effect of a change dψ in ψ with a corresponding change in λ

so that the consequent change in {ĵ1/2dθ} at the observed θ̂0 is perpendicular to

Tψ. Then

ĵ1/2dθ̂ = W̃ψ·λ(θ)dψ + W̃λ(θ)dλ;

with dψ and dλ interpreted as just described. Parameter change in ψ is measured

along the profile curve Cψ. When ψ however is a vector we would expect this

prior for ψ to be third order only for linear parameters; otherwise we could have

curvature effects as in the normal circle example.
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Example 5.1: Linear regression. Suppose r = 3 and let ψ = (β1, β2)′ be the

parameter of interest and λ = (β3, σ
2) be the nuisance parameter. Then we have

Wψ(θ) =



1 0

0 1

0 0

0 0


, Wλ(θ) =



0 (β̂0
1 − β1)/σ2

0 (β̂0
2 − β2)/σ2

1 (β̂0
3 − β3)/σ2

0 σ̂2/σ2


, (27)

leading to

πψ(θ)dθ =
σ̂2

σ̂2
ψ

|W̃λ(θ)|
|W̃λ(θ̂ψ)|

=
σ̂2

σ̂2
ψ

{(β̂0
1 − β1)2 + (β̂0

2 − β2)2 + σ̂4}1/2

σ̂2/σ̂2
ψ

=
1
σ2
{(β̂0

1 − β1)2 + (β̂0
2 − β2)2 + σ̂4}1/2.

As β̂0
i −βi is of order n−1/2 we have (β̂0

i −βi)2 = O(n−1) and thus πψ(θ) simplifies

to c/σ2 to second order. This gives the prior dβdσ2/σ2 as expected from Example

3.1.

6 Discussion

We have described two approaches to defining default priors: one based on extend-

ing a location approximation, and one based on matching higher order approxima-

tions. There is a natural progression in complexity, according to the model type.

If we have a location model, then the uniform prior of Bayes, π(θ)dθ ∝ dθ ensures

exact matching of frequentist p-values and posterior probability limits. In a scalar

parameter model that is not location, asymptotic arguments lead to Jeffreys’ prior

πJ(θ)dθ ∝ i1/2(θ)dθ, which gives matching probabilities to second order.

The location version (19) gives matching to third order, and by being data de-

pendent automatically incorporates conditioning on approximate ancillary statis-

tics. The default prior based on the sensitivity matrix, derived in Section 2, extends

this local location property to vector parameters. Underlying the construction of

(7) is an approximation to the model at the data point by a tangent location
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model. This model can be explicitly derived in the scalar parameter case using

Taylor series expansions, and the location parameter is given by the expression

for β following (19). In the vector parameter setting, the existence of a location

model approximation to the original model, to O(n−1) can be established (Cak-

mak et al., 1994), but the form of the location parameter is typically not available

explicitly. The array V (θ) based on pivotals for each coordinate yi gives a trans-

formation model approximation related to this location parameterization, and in

that sense is an O(n−1) default prior. A reviewer has suggested a simpler way to

interpret the role of the sensitivity matrix V (θ) in the default prior (7): this prior

gives more weight to parameter values that have more influence at the data point.

Operationally (7) provides a rescaling on the parameter space so that in the new

parametrization each parameter value has the same influence at the data point.

However more is needed in the case of non-linear parameters, in order to properly

target the parameter of interest, as discussed in Section 4.

We have not discussed the propriety of posteriors based on V (θ). The develop-

ment is local to the data point, and several ad hoc approximations are made that

assume θ is within O(n−1/2) of the maximum likelihood estimate θ̂. This suggests

that posteriors would need to be checked on a case by case basis. It is possible

however that the data dependence is an advantage in this regard. As an example,

consider the three parameter Weibull distribution with density function

f(y; θ) =
β(y − ψ)β−1

ηβ
exp{−(

y − ψ
η

)β}, y > ψ. (28)

This model has a discontinuity related to the endpoint parameter, so the deriva-

tions here do not apply. Although the prior (7) based on linking to the maximum

likelihood estimate cannot be constructed as ψ̂ is not obtained from the score

equation, it is possible to formally compute V (θ) using (5), with fixed quantile

z = {y − ψ)/η}β. This gives the volume element form

|V (θ)′V (θ)|1/2 ∝ 1
ηβ
h1/2(y0, ψ),

where h(y0, ψ) = Σ(y0
i − ψ)2Σ(y0

i − ψ)2 log2(y0
i − ψ)− {Σ(y0

i − ψ)2 log(y0
i − ψ)}2.

Lin et al (2009) propose a combination reference/right Haar prior for this model
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which is proportional to 1/(ηβ), and note that the posterior is improper unless

the range of ψ is restricted. The factor h(y0, ψ) enforces a restriction on the range

of ψ, since it is undefined for ψ > y0
(1).

To summarize, the main conclusions that emerge from the developments in this

paper are that priors that ensure calibration of the resultant posterior inferences

need to depend on the data, and that a global prior ensuring this calibration does

not seem to be possible for nonlinear parameters of interest unless the nuisance

parameter is a scalar. Other approaches to deriving targetted priors for the full

parameter space have analogous difficulties. The Welch-Peers approach leads to

a family of priors π(θ)dθ ∝ iψψ(θ)1/2g(λ) and efforts to choose a unique form for

g(·) have had limited success. The reference prior approach requires care as well in

the construction of targetted priors with vector nuisance parameters: in particular

the parameters need to be ordered and grouped, and the results depend on this

choice.

These results suggest that a completely general calibration of Bayesian poste-

rior inferences is not possible through the choice of the prior, and that calibration

needs to be checked on a case by case basis.

Appendix

(i) Example 3.3: Background on transformation models

The parameter θ of a transformation model is an element of a transformation

group that operates smoothly and exactly on the sample space of the model; for

background details see Fraser (1979). The response y is then generated as y = θz

where z is an error or reference variable on the sample space. An observed value

y = y0 then determines that the antecedent realized error value, say zr, such that

Gy0 = Gzr and this subset is an ancillary contour.

Conditioning on the identified subset gives y = θz where the connection be-

tween any two elements is one-to-one when the remaining variable is held fixed.

The conditional model has the form f̃(y; θ)dy = g̃(θ−1y)dµ(y) where dµ(·) is the
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left invariant measure.

The notation is simplified if the group coordinates are centered so that the

identity element is at the maximum density point of the conditional error density;

thus g̃(z) ≤ g̃(e) where e designates the identity element satisfying ez = z. The

maximum likelihood group element θ̂(y) is then the solution of θ−1y = e which

gives θ̂(y) = y. We then have from (7) that the default prior is

|W (θ)|dθ =
∣∣∣dy
dθ

∣∣∣
y0
dθ =

∣∣∣d(θz)
dθ

∣∣∣
θz=y0

dθ (29)

where the differentiation is for fixed reference value z with the subsequent sub-

stitution θz = y0 or z = z0(θ) = z(y0, θ). The Jacobian can be evaluated using

notation from Fraser (1979, p.144): let J∗(h; g) = |∂gh/∂h| with variable g and

then J∗(g) = J∗(g; e); this gives dν(g) = dg/J∗(g) where dν(g) is the right invari-

ant measure. We then have dθz = J∗(θz)dν(θz) with θ as the variable. Then with

θz set equal to y0 we obtain

dθz = J∗(y0)dν(θz)

= J∗(y0)dν(θ)

using the right invariance of ν, which is a constant times the right invariant mea-

sure dν(θ) on the group. We thus have that the default prior (29) is π(θ)dθ =

cdν(θ).

(ii) Section 4: Rescaling the parametrization of the approximating

exponential model

The exponential model approximation to a general model (15) depends on θ only

through the observed log-likelihood function `(θ) and the observed log-likelihood

gradient function ϕ(θ). The r∗f approximation (16) is computed entirely within

this model, with log-likelihood function

`(θ; s) = `(θ) + ϕ′(θ)s (30)

and observed data s = 0.
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For scalar θ and ϕ we have `(θ)(θ) = `ϕ(θ) = `θ(θ)ϕ−1
θ (θ) where the subscript

as usual denotes differentiation. Then differentiating again we obtain

`(θθ)(θ) = `ϕϕ(θ) = `θθ(θ)ϕ−2
θ (θ)− `θ(θ)ϕθθ(θ)ϕ−3

θ (θ).

An analogous formula is available for the vector case using tensor notation.

Now consider a vector θ = (ψ, λ) with scalar components. The information

j(λλ)(θ) concerns the scalar parameter model with ψ fixed. This model can have

curved ancillary contours on the initial score space {s} if for example ψ is not linear

in ϕ(θ). Correspondingly the differentiation with respect to (λ) requires the use of

the ϕ metric for λ given ψ and the results depend on the use of the standardization

ĵ0ϕϕ = I. From the preceding scalar derivative expression we obtain

j(λλ)(θ) = jλλ(θ)|ϕλ(θ)|−2 − `λ(θ)ϕλλ(θ)|ϕλ(θ)|−3,

where as usual |ϕλ|2 = |ϕ′λϕλ|. To convert back to the to the initial λ scale we

write

j[λλ](θ) = jλλ(θ) + `λ(θ)ϕλλ(θ)|ϕλ(θ)|−1.

(iii) Linear parameters and marginalization paradoxes

Dawid et al. (1973) showed that in some cases it is not possible to construct a

prior for which the inference obtained by marginalizing the posterior distribution

for the full parameter is consistent with that obtained by marginalizing the prior

distribution to the parameter of interest and using this on the likelihood function

based on a reduced model. The normal circle problem of Example 3.2 is a simple

example of this, with the reduced model being that for r2 = y2
1 + y2

2, which has

a distribution depending only on the parameter of interest ψ. One conclusion of

Dawid et al. (1973) is that improper priors for vector parameters may lead to

anomalous results for inference about component parameters. The default priors

of Section 2 share this drawback, and are only appropriate for marginal inference

on component parameters that are linear, in the sense that they are consistent

with location-type models inherent in their construction. We call such component

parameters linear.
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Formally, we call a parameter contour ψ(θ) = ψ0 linear if a change dλ in the

nuisance parameter λ for fixed ψ = ψ0 generates through (6) a direction at the

data point that is confined to a subspace free of λ and with dimension equal to

dim(λ). This is an extension of the result for f(y1− θ1, y2− θ2) where a change in

θ2 applied to y1 = θ1 + z1, y2 = θ2 + z2 gives the y2 direction which corresponds to

fixed y1. For the normal circle example we note that the radius ψ is curved but

the angle α is linear.

The linearity condition defines a location relationship between the nuisance

parameter λ for fixed ψ and change at the data point. As such it provides an

invariant or flat prior for the constrained model, and thereby leads to a marginal

model with the nuisance parameter eliminated. This avoids the marginalization

paradoxes and parallels the elimination of a linear parameter in the standard

location model.

We now consider a two parameter model parameterized by θ = (θ1, θ2), with

parameter of interest ψ(θ), and develop the linear parameter that coincides with

ψ(θ) in a neighbourhood of the observed maximum likelihood value θ̂0. From (6)

we have

dθ̂1 = w11(θ)dθ1 + w12(θ)dθ2 (31)

dθ̂2 = w21(θ)dθ1 + w22(θ)dθ2,

which can be inverted using coefficients wij(θ) to express dθ in terms of dθ̂.

First we examine the parameter ψ(θ) near θ̂0 on the parameter space and

find that an increment (dθ1, dθ2) with no effect on ψ(θ) must satisfy dψ(θ) =

ψ̂0
1dθ1 + ψ̂0

2dθ2 = 0 where ψi(θ) = ∂ψ(θ)/∂θi; i.e. dθ1 = −(ψ̂0
2/ψ̂

0
1)dθ2. Next we

use (31) to determine the corresponding sample space increment at θ̂0, and obtain

dθ̂1

dθ̂2
=
−ŵ0

11ψ̂
0
2 + ŵ0

12ψ̂
0
1

−ŵ0
21ψ̂

0
2 + ŵ0

22ψ̂
0
1

=
c1
c2

;

thus (c1, c2) so defined gives a direction (c1, c2)dt on the sample space that cor-

responds to no ψ-change. Finally we use the inverse of (31) to determine the

parameter space increment at a general point θ that corresponds to the preceding
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sample space increment, giving

dθ =

 w11(θ)c1 + w12(θ)c2

w21(θ)c1 + w22(θ)c2

 dt, (32)

as a tangent to the linearized version of ψ(θ). We then have either the explicit

contour integral solution

θ(t) = θ̂0 +
∫ t

0

 w11(θ(t))c1 + w12(θ(t))c2

w21(θ(t))c1 + w22(θ(t))c2

 dt,

which describes the iterative solution of the differential equation (32), or the im-

plicit equation θ2 = θ2(θ1) as the direct solution of the differential equation

dθ2
dθ1

=
w21(θ)c1 + w22(θ)c2
w11(θ)c1 + w12(θ)c2

.

This defines to second order a linear parameter that is equivalent to ψ(θ) near θ̂0.

Example A.1. We reconsider the regression Example 3.1, but for notational ease

restrict attention to the simple location-scale version with design matrix X = 1.

We construct the linear parameter that agrees with the quantile parameter µ+kσ

near θ̂0 for some fixed value of k. From W (θ) in that example we obtain

dµ̂ = dµ+ (µ̂0 − µ)dσ/σ

dσ̂ = σ̂0dσ/σ.
(33)

For simplicity here and without loss of generality due to location scale invariance,

we work with observed data (µ̂0, σ̂0) = (0, 1) and have

dµ̂ = dµ− µdσ/σ

dσ̂ = dσ/σ.
(34)

Inverting this gives

dµ = dµ̂+ µdσ̂

dσ = σdσ̂.
(35)

First we examine µ+kσ in the neighbourhood of θ̂0 on the parameter space and

have that an increment (dµ, dσ) must satisfy d(µ+kσ) = 0 at θ̂0 = (µ̂0, σ̂0) = (0, 1);

this gives dµ = −kdσ at θ̂0. Next we determine the corresponding increment at
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θ̂0 on the sample space {(µ̂, σ̂)}; from (34) we have dµ̂ = dµ and dσ̂ = dσ at

this point, which gives dµ̂ = −kdσ̂. Finally we determine what the restriction

dµ̂ = −kdσ̂ on the sample space implies for (dµ, dσ) at a general point on the

parameter space; from (35) this is

dµ

dσ
=
µ− k
σ

with initial condition (µ, σ) = (0, 1). This gives µ = −k(σ − 1) or µ + kσ = k,

which shows that µ+ kσ is linear.

Example A.2. For the normal circle Example 3.2 with parameter of interest ψ =

(θ2
1 + θ2

2)1/2, the increment on the parameter space at θ̂0 with fixed ψ satisfies

dθ1 = − tan α̂0dθ2 = −(y0
2/y

0
1)dθ2. This then translates to the sample space at

(y0
1, y

0
2) using the specialized version of (31) to give dy2 = −(y0

2/y
0
1)dy1, and this

then translates back to a general point on the parameter space using the specialized

version of (32) to give a line through θ̂0 described by dθ2 = −(y0
2/y

0
1)dθ1, which is

perpendicular to the radius and thus tangent to the circle through the data point;

this is the linear parameter equivalent to ψ near θ̂0.

An extension of this linearity leads to a locally defined curvature measure that

calibrates the marginalization discrepancy and can be used to correct for such

discrepancies to second order. We do not pursue this here.

(iv) Strong matching and information approximation

In the scalar case, strong matching of Bayesian and frequentist approximations

gives the expression for the prior as

π(θ)

π(θ̂0)
=
dβ(θ)
dθ

= − `θ(θ; y0)

ϕ(θ)− ϕ(θ̂0)

where dβ(θ) is a locally defined linear parameter (Fraser & Reid, 2002).

If the model is a full exponential family with log-likelihood function `(θ) =

θt− k(θ) then we obtain

dβ(θ)
dθ

= − t
0 − k′(θ)
θ − θ̂0

=
k′(θ)− k′(θ̂0)

θ − θ̂0
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=
k′(θ̂0) + (θ − θ̂0)k′′(θ̂0) + (1/2)(θ − θ̂0)2k′′′(θ̂0)

θ − θ̂0

= k′′(θ̂0){1 + (1/2)(θ − θ̂0)k′′′(θ̂0)/k′′(θ̂0)}

whereas the usual Jeffreys’ prior is

i1/2(θ) = k′′(θ)1/2 = {k′′(θ̂0)+(θ−θ̂0)k′′′(θ̂0)}1/2 = k′′(θ̂0)1/2{1+(1/2)(θ−θ̂0)k′′′(θ̂0)/k′′(θ̂0)};

these are asymptotically equivalent.

The same argument can be applied to the approximating exponential model

(15), and this leads to the approximation used at (21).
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