On the asymptotic distribution of the Chebyshev estimator in linear regression

KEITH KNIGHT

Department of Statistics, University of Toronto Toronto, Ont. M5S 3G3
E-mail: keith@utstat.toronto.edu

February 15, 2011

Abstract

The Chebyshev or L_∞ estimator minimizes the maximum absolute residual and is useful in situations where the error distribution has bounded support. In this paper, we derive the asymptotic distribution of this estimator in cases where the error distribution has bounded and unbounded support. We also discuss the lack of robustness and stability of the estimator and describe how to improve its robustness. Finally, we consider the asymptotics of set-membership estimators such as the Chebyshev centre and maximum inscribed ellipsoid estimators, which are useful when the bound on the errors is known.

Key words: Chebyshev estimator, Chebyshev norm, Poisson processes, linear programming, set membership estimation.

1 Introduction

Consider the linear regression model

$$Y_i = x_i^T \beta + \varepsilon_i \quad (i = 1, \cdots, n)$$

where x_i is a vector of covariates (of length p) whose first component is always 1, β is a vector of parameters and $\varepsilon_1, \cdots, \varepsilon_n$ are i.i.d. random variables. (The assumption that the model (1) has an intercept is not always necessary in the sequel but will be assumed throughout as its inclusion reflects common practice.)

The Chebyshev (or minimax or L_∞) estimator $\hat{\beta}_n$ of β is defined as the minimizer of the objective function

$$\max_{1 \leq i \leq n} |Y_i - x_i^T \phi|.$$

Intuitively, $\hat{\beta}_n$ will be a good estimator of β in cases where $\{\varepsilon_i\}$ have bounded support with non-trivial probability mass near the boundaries of the support. In cases where the support is unbounded or where this is negligible probability mass near the boundary of the support, $\hat{\beta}_n$ will have a very slow convergence rate or may even be inconsistent.

Although it is not extensively used in practice, the Chebyshev estimator definitely has a niche, especially in certain applications in the physical and environmental sciences; see, for example, the papers by James.
(1983), Brenner (2002), Zolghadri and Henry (2004), and Bertsch et al. (2005). In finance, Jaschke (1998) uses Chebyshev estimation in the context of computing arbitrage bounds where the minimax absolute error should be approximately equal to transaction costs; see also Jaschke and Kühler (2001). There is also a considerable literature in signal processing and systems engineering on estimation with bounded noise (Milanese and Belforte, 1982; Mäkilä, 1991; Tse et al., 1993; Akçay et al., 1996; Beck and Eldar, 2007) and L_∞-norm minimization arises in the context of near lossless compression of images (Alecu et al., 2006). The Chebyshev estimator also arises in the context of the least median of squares (LMS) estimator (Rousseeuw, 1984) as well as the least quartile difference (LQD) estimator (Croux et al., 1994); both the LMS and the LQD estimators can be shown to be a Chebyshev estimator of some (random) half sample. More recently, Castillo et al. (2009) consider combining least squares, L_1, and Chebyshev estimators.

The Chebyshev estimator can also be defined as the solution of the following linear program:

$$\begin{align*}
\text{minimize } & \gamma \\
\text{subject to } & x_i^T \phi + \gamma \geq Y_i \quad (i = 1, \ldots, n) \\
& x_i^T \phi - \gamma \leq Y_i \quad (i = 1, \ldots, n)
\end{align*}$$

The solution of the linear program (3) can, in fact, be viewed as a regression quantile solution for the quantile $\tau = 1$ for the data $\{(x_i^*, Y_i^*) : i = 1, \ldots, 2n\}$ where

$$Y_i^* = \begin{cases}
Y_i & \text{for } i = 1, \ldots, n \\
-Y_{i-n} & \text{for } i = n + 1, \ldots, 2n
\end{cases}$$

and

$$x_i^* = \begin{cases}
(1, x_i^T)^T & \text{for } i = 1, \ldots, n \\
(1, -x_{i-n}^T)^T & \text{for } i = n + 1, \ldots, 2n.
\end{cases}$$

(Alternatively, the Chebyshev estimator can be computed using Lawson’s algorithm (Lawson, 1961; Cline, 1972), which is an iteratively reweighted least squares algorithm with very slow convergence.)

It follows from the linear programming representation of the Chebyshev estimator that the maximum absolute residual will be attained at $p + 1$ points where p is the dimension of x_i. It is this property that, to a large extent, makes the Chebyshev estimator unattractive in practice beyond some special cases. The following example illustrates this main pitfall, namely the misfitting of some or all of the data in order to attain a minimum uniform error.

EXAMPLE 1. We will consider the well-known data from a simulated motorcycle crash as presented by Silverman (1985). These data, which are described in detail by Schmidt et al. (1981), consist of 133 accelerometer readings taken over time. If A_i is acceleration measured at time t_i, we assume the model

$$\begin{align*}
A_i &= \beta_0 + \sum_{j=1}^{15} \beta_j \phi_j(t_i) + \varepsilon_i \\
&= g(t_i) + \varepsilon_i \quad \text{for } i = 1, \ldots, 133
\end{align*}$$

where the functions $\phi_1, \ldots, \phi_{15}$ are B-spline functions. Figure 1 shows three estimates of g: the least squares estimate, the Chebyshev estimate, and an estimate computed using a variation of Lawson’s algorithm with 1000 iterations; the maximum absolute residual for the Lawson estimate (62.89166) is only slightly greater.
than that of the Chebyshev estimate (62.89160). Clearly, the Chebyshev estimate misfits the data for smaller values of \(t \) while the Lawson and least squares estimates are very similar for these values of \(t \). For larger values of \(t \), the Chebyshev and Lawson estimates are essentially equal and different from the least squares estimate; for larger values of \(\{t_i\} \), the noise in the corresponding \(\{A_i\} \) makes it less clear what the correct form of \(g \) should be although the least squares estimate is certainly aesthetically more pleasing. The lack of stability (or lack of robustness) of the Chebyshev estimator will be discussed in section 3 and methods for stabilizing the Chebyshev estimator will be discussed in section 4.

Some insight into the asymptotic behaviour of the Chebyshev estimator can be obtained by thinking of \(\hat{\beta}_n \) minimizing (2) as the limit \(L_r \) estimators \(\hat{\beta}_n^{(r)} \) minimizing

\[
\sum_{i=1}^{n} |Y_i - x_i^T \phi|^r
\]

taking \(r \to \infty \). To simplify the computations, assume that the errors \(\{\varepsilon_i\} \) have common density

\[
f_{\alpha}(t) = \frac{\Gamma(2\alpha)}{2^{2\alpha-1} \Gamma^2(\alpha)} (1 - t^2)^{\alpha-1} \quad \text{for } |t| \leq 1
\]
and that \(\{x_i\} \) satisfy
\[
\frac{1}{n} \sum_{i=1}^{n} x_i x_i^T \to C
\]
\[
\frac{1}{n} \max_{1 \leq i \leq n} x_i^T x_i \to 0
\]
where \(C \) is positive definite. The assumptions on \(\{x_i\} \) are standard for asymptotic normality while the parameter \(\alpha \) in the error density \(f_\alpha \) describes the concentration of probability mass near the endpoints \(\pm 1 \).

Under these assumptions, for each fixed \(r \geq 1 \), we have
\[
\sqrt{n}(\hat{\beta}_n^{(r)} - \beta) \xrightarrow{d} \mathcal{N}(0, \sigma^2(r, \alpha)C^{-1})
\]
where
\[
\sigma^2(r, \alpha) = \frac{2^{2\alpha-3}\Gamma(r-1/2)\Gamma(\alpha)\Gamma^2(\alpha + r/2 - 1/2)}{\Gamma(2\alpha)\Gamma(\alpha + r - 1/2)\Gamma^2(r/2 + 1/2)}.
\]

(Lai and Lee (2005) give a comprehensive survey of the asymptotics of \(L_r \) estimators in regression.) For large values of \(r \), \(\sigma^2(r, \alpha) \) behaves like a multiple of \(r^{\alpha-2} \); taking the limit of \(\sigma^2(r, \alpha) \) as \(r \to \infty \) for each fixed \(\alpha > 0 \), we get
\[
\lim_{r \to \infty} \sigma^2(r, \alpha) = \begin{cases}
0 & \text{if } \alpha < 2 \\
1/12 & \text{if } \alpha = 2 \\
\infty & \text{if } \alpha > 2.
\end{cases}
\]

(If \(\{\varepsilon_i\} \) are normally distributed then the corresponding asymptotic variance behaves like a multiple of \(2^r/r \) as \(r \to \infty \).) These heuristics (which take the limits as \(r \) and \(n \) tend to infinity in the wrong order) suggest that the convergence rate of the Chebyshev estimator increases with the concentration of probability mass near the endpoints of the error distribution. It is interesting to note that in the location case Rider (1957) (see also Harter (1975a, 1975b) and Sposito (1990)) recommends as a rule-of-thumb using the sample midrange as a estimator of location for distributions with kurtosis smaller than 2.2; the density \(f_\alpha \) in (6) has kurtosis \(3(1 + 2\alpha)/(3 + 2\alpha) \). Thus the limit of \(\sigma^2(r, \alpha) \) (as \(r \to \infty \)) is 0 for \(\alpha < 2 \) or for densities \(f_\alpha \) with kurtosis smaller than \(15/7 \approx 2.14 \). We will see that the asymptotics of the Chebyshev estimator do depend strongly on the parameter \(\alpha \) in (6) where \(\alpha \) describes the concentration of probability mass near the boundaries \(\pm 1 \) of the support of \(f_\alpha \) in (6).

There has been some research on the asymptotics of the Chebyshev estimator although most this has been restricted to special cases. For example, Aoki (1965) and Broffitt (1974) consider the distribution of the midrange (which is the Chebyshev estimator in the location model), Akçay and At (2006) consider the distribution of the Chebyshev estimator in a simple scalar regression model. In the next section, we will use the approach of Knight (2001) and Chernozhukov (2005) (which exploits the linear programming representation (3)) to derive limiting distributions for the Chebyshev estimator.

2 Asymptotics for i.i.d. errors

In this section, we will assume that the errors \(\{\varepsilon_i\} \) are i.i.d. and bounded in absolute value. In particular, we will assume that there exists a typically unknown parameter \(\gamma_0 \) such that
\[
P(-\gamma_0 < \varepsilon_i < \gamma_0) = 1 \quad \text{for } i = 1, \cdots, n
\]
and that \(\{ \varepsilon_i \} \) is “boundary visiting” in the sense that for any \(\delta > 0 \),
\[
P(-\gamma_0 + \delta < \varepsilon_i < \gamma_0 - \delta) < 1 \quad \text{for } i = 1, \ldots, n.
\]
The asymptotics of the Chebyshev estimator depend on the behaviour of the distribution function of \(\{ \varepsilon_i \} \)
close to the endpoints \(\pm \gamma_0 \).

If \(F \) is the distribution function of \(\{ \varepsilon_i \} \), we define a function \(G \) by
\[
G(t) = \begin{cases}
F(\gamma_0 + t) - 1 & \text{for } -\gamma_0 \leq t < 0 \\
F(-\gamma_0 + t) & \text{for } 0 \leq t \leq \gamma_0.
\end{cases}
\] (7)

Clearly, \(G \) is a non-decreasing function. To obtain non-degenerate limiting distributions, we will assume that
for some sequence of constants \(\{ a_n \} \) with \(a_n \to \infty \), we have
\[
nG(t/a_n) \to \psi(t) \quad \text{as } n \to \infty
\] (8)

where \(\psi \) is a non-decreasing function of the form
\[
\psi(t) = \begin{cases}
\kappa t^\alpha & \text{for } t \geq 0, \\
(1 - \kappa)(-t)^\alpha & \text{for } t < 0,
\end{cases}
\] (9)

where \(\kappa \) and \(\alpha \) are both positive numbers. In the “standard” case where we assume \(\{ \varepsilon_i \} \) to have a continuous
density \(f \) on \([-\gamma_0, \gamma_0]\) with \(f(-\gamma_0) = \lambda^- > 0 \) and \(f(\gamma_0) = \lambda^+ > 0 \), then
\[
a_n = (\lambda^+ + \lambda^-) n \text{ and } \psi(t) = \begin{cases}
\kappa t & \text{for } t \geq 0, \\
(1 - \kappa)t & \text{for } t < 0,
\end{cases}
\] so that \(\alpha = 1 \) and \(\kappa = \lambda^-/(\lambda^+ + \lambda^-) \). More generally, \(a_n = n^{1/\alpha} L(n) \) where \(L \) is a slowly varying
(at infinity) function. For the family of densities \(\{ f_\alpha(t) \} \) defined in (6), the parameter \(\alpha \) corresponds to the
parameter \(\alpha \) in (9) with \(\kappa = 1/2 \) and \(a_n = k(\alpha)n^{1/\alpha} \) where \(k(\alpha) \) does not depend on \(n \).

Given these assumptions on the distribution of \(\{ \varepsilon_i \} \), it is straightforward to derive a point process
convergence result for the number of \(\{ \varepsilon_i \} \) lying within \(O(a_n^{-1}) \) of \(\pm \gamma_0 \). Define
\[
\tau_n(x) = \begin{cases}
a_n(x - \gamma_0) & \text{for } 0 \leq x \leq \gamma_0, \\
a_n(x + \gamma_0) & \text{for } -\gamma_0 \leq x < 0.
\end{cases}
\] (10)

Then the point process
\[
\sum_{i=1}^n I \{ \tau_n(\varepsilon_i) \in A \}
\]
converges to a Poisson process whose mean measure is given by
\[
\int_A \psi'(t) \, dt.
\]

We will make the following assumptions about the errors \(\{ \varepsilon_i \} \) and the design \(\{ x_i \} \):

(A1) \(\{ \varepsilon_i \} \) are i.i.d. random variables on \([-\gamma_0, \gamma_0]\) with distribution function \(F \) where \(G \) defined in (7)
satisfies (8) for some sequence \(\{ a_n \} \) and some non-decreasing function \(\psi \) of the form (9) where \(\alpha > 0 \)
and \(0 < \kappa < 1 \).
(A2) There exists a diagonal matrix of constants \(C_n \) and a probability measure \(\mu \) on \(\mathbb{R}^p \) such that for each set \(B \) with \(\mu(\partial B) = 0 \),

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} I(C_n^{-1}x_i \in B) = \mu(B),
\]

where \(\mu \) is not concentrated on a lower dimensional subspace.

Condition (A2) is effectively a weak convergence condition for the empirical distribution of the \(x_i \)'s; if the \(x_i \)'s are a random sample from some distribution then we would have \(C_n = I \) and \(\mu \) equal to the underlying probability measure of the \(x_i \)'s. Even for fixed designs, (A2) is a reasonable condition although \(C_n \) need not equal \(I \). For example, if \(x_i = (1, i, i^2)^T \) for \(i = 1, \ldots, n \) then the diagonal elements of \(C_n \) are \((1, n, n^2) \) and \(\mu \) is the probability measure of the random vector \((1, U, U^2)\) where \(U \) is uniformly distributed on \([0, 1]\). More importantly, (A2) implies similar weak convergence results about the empirical distribution of \(u^T C_n^{-1}x_i \) \((i = 1, \ldots, n)\) for a given \(u \) (or finite number of \(u \)'s). Under conditions (A1) and (A2), it is easy to verify that the point process

\[
M_n(A \times B) = \sum_{i=1}^{n} I\{\tau_n(e_i) \in A, C_n^{-1}x_i \in B\}
\]

converges in distribution with respect to the vague topology on measure (Kallenberg, 1983) to a Poisson process \(M \) whose mean measure is given by

\[
E[M(A \times B)] = \left\{ \int_{A} \psi'(t) \, dt \right\} \mu(B).
\]

The convergence in distribution of \(M_n \) to \(M \) is equivalent to the following: For any bounded continuous function \(g \) with compact support, we have

\[
\sum_{i=1}^{n} g(\tau_n(e_i), C_n^{-1}x_i) \xrightarrow{d} \int g(w, x) \, M(dw \times dx).
\]

In the case where the support of \(\{C_n^{-1}x_i\} \) is bounded, conditions (A1) and (A2) are sufficient to establish the limiting distribution of \(a_n C_n (\hat{\beta}_n - \beta) \). However, in the case of unbounded \(\{C_n^{-1}x_i\} \), we need to make stronger assumptions both about the function \(G(t) \) as well as the behaviour of \(\{C_n^{-1}x_i\} \).

(A3) The function \(G \) defined in (7) satisfies

\[
nG(t/a_n) = \psi(t)\{1 + r_n(t)\}
\]

where for each \(u \),

\[
\max_{1 \leq i \leq n} |r_n(u^T C_n^{-1}x_i)| \to 0.
\]

(A4) For all \(u \),

\[
\int |u^T x|^\alpha \, \mu(dx) < \infty.
\]

Moreover, for each \(u \),

\[
\frac{1}{n} \sum_{i=1}^{n} |u^T C_n^{-1}x_i|^\alpha \to \int |u^T x|^\alpha \, \mu(dx)
\]

\[
\frac{1}{n} \max_{1 \leq i \leq n} |u^T C_n^{-1}x_i|^\alpha \to 0.
\]
Clearly, conditions (A3) and (A4) are redundant given (A1) and (A2) if \(\{C_n^{-1}x_i\} \) is bounded. If, for example, \(G(t) = t^\alpha\{1 + k t^\delta\} \) for some \(\delta > 0 \) then \(a_n = n^{1/\alpha} \) and so condition (A3) becomes

\[
\max_{1 \leq i \leq n} \left| \frac{u^T C_n^{-1} x_i}{n^{\delta/\alpha}} \right| \to 0
\]

which is equivalent to

\[
\frac{1}{n} \max_{1 \leq i \leq n} \left| u^T C_n^{-1} x_i \right| \to 0
\]
as required in (A4).

The key tools used in deriving the limiting distributions are epi-convergence in distribution (Pflug, 1994, 1995; Geyer, 1994, 1996; Knight, 1999, 2001; Chernozhukov, 2005; Chernozhukov and Hong, 2004) and point process convergence for extreme values (Kallenberg, 1983; Leadbetter et al, 1983). A sequence of random lower semicontinuous functions \(\{Z_n\} \) epi-converges in distribution to \(Z \) (\(Z_n \overset{e}{\to} Z \)) if for any closed rectangles \(R_1, \cdots, R_k \) with open interiors \(R^0_1, \cdots, R^0_k \) and any real numbers \(a_1, \cdots, a_k \),

\[
P \left\{ \inf_{u \in R_1} Z(u) > a_1, \ldots, \inf_{u \in R_k} Z(u) > a_k \right\} \leq \lim_{n \to \infty} P \left\{ \inf_{u \in R^0_1} Z_n(u) > a_1, \ldots, \inf_{u \in R^0_k} Z_n(u) > a_k \right\} \leq \lim_{n \to \infty} P \left\{ \inf_{u \in R^0_1} Z(u) \geq a_1, \ldots, \inf_{u \in R^0_k} Z(u) \geq a_k \right\} \leq P \left\{ \inf_{u \in R_1} Z(u) \geq a_1, \ldots, \inf_{u \in R_k} Z(u) \geq a_k \right\}.
\]

See the monograph by Molchanov (2005) for more details. Epi-convergence in distribution gives us an elegant way of proving convergence in distribution of “argmin” (and “argmax”) estimators: suppose that \(U_n = \text{arg min}(Z_n) \) where \(Z_n \overset{e}{\to} Z \) and \(U_n \overset{d}{\to} U = \text{arg min}(Z) \) provided that the latter argmin is unique. If the \(Z_n \)'s are convex (as will be the case here) then epi-convergence is quite simple to prove; finite dimensional convergence in distribution of \(Z_n \) to \(Z \) (\(Z_n \overset{d}{\to} Z \)) is sufficient for epi-convergence in distribution provided that \(Z \) is finite on an open set. (In fact, it is sufficient to prove this finite dimensional convergence on a countable dense subset.) Moreover, if \(\text{arg min}(Z) \) is unique then \(U_n = O_p(1) \) is implied by \(Z_n \overset{e}{\to} Z \).

THEOREM 1. Assume the model (1) and conditions (A1) through (A4). Then if \(\hat{\beta}_n \) is the solution of (3),

\[
\left(a_n C_n(\hat{\beta}_n - \beta), a_n (\hat{\gamma}_n - \gamma_0) \right) \overset{d}{\to} (U, V)
\]

where \((U, V)\) minimizes \(v \) subject to the constraints

\[
\Gamma_i \geq u^T X_i - v \quad \text{for } i = 1, 2, 3, \cdots
\]
\[
\Gamma_i \leq u^T X_i + v \quad \text{for } i = -1, -2, -3, \cdots
\]

where

(i) \(\Gamma_i = \psi^{-1}(E_1 + \cdots + E_i) \) for \(i \geq 1 \) and \(\Gamma_i = \psi^{-1}(-E_{-1} - E_{-2} - \cdots - E_i) \) for \(i \leq -1 \) where \(\{E_i : |i| \geq 1\} \) is a sequence of i.i.d. unit mean exponential random variables.
(ii) \(\{ X_i : |i| \geq 1 \} \) is a sequence of i.i.d. random vectors whose distribution is \(\mu \).

(iii) \(\{ X_i \} \) is independent of \(\{ E_i \} \).

Proof. Write \(U_n = a_n C_n (\hat{\beta}_n - \beta) \) and \(V_n = a_n (\hat{\gamma}_n - \gamma_0) \) and note that \((U_n, V_n) \) minimizes \(v \) subject to

\[
a_n (\varepsilon_i - \gamma_0) - v \leq u^T C_n^{-1} x_i \\
\leq a_n (\varepsilon_i + \gamma_0) + v \quad \text{for } i = 1, \ldots, n
\]

(12)

Define \(\varphi_n(u, v) \) to be 0 when the constraints in (12) are all satisfied and \(+\infty \) otherwise. Then \((U_n, V_n) \) minimizes

\[
Z_n(u, v) = v + \varphi_n(u, v)
\]

(13)

where \(Z_n \) is a convex function. Thus it suffices to show that \(Z_n \xrightarrow{\text{w}} Z \) where \(Z \) has unique minimizer with probability 1 and for this, it suffices to show finite dimensional convergence of \(Z_n \) to \(Z \) provided that \(Z \) is finite on an open set; this latter fact is true since \(\Gamma_i \sim i^{1/\alpha} \) (with probability 1) as \(i \to \infty \) and so by the first Borel-Cantelli lemma

\[
P(u^T X_i - v > \Gamma_i \text{ for infinitely many } i \geq 1) = 0
\]

and

\[
P(u^T X_i + v < \Gamma_i \text{ for infinitely many } i \leq -1) = 0
\]

for all \((u, v) \) since \(E[|u^T X_i|^\alpha] < \infty \). Thus for a given \((u, v) \), at most a finite number of constraints are violated, the rest being trivially satisfied. Thus for a given \((u, v) \), there exists some \(t > 0 \) such that all the constraints are satisfied for \((tu, tv) \). We then take a finite number of such points whose convex hull contains an open set; since \(Z \) is finite at each point, it will be finite on the open set by convexity.

To show finite dimensional weak convergence of \(\varphi_n \), it suffices to show that

\[
P[\varphi_n(u_1, v_1) = 0, \ldots, \varphi_n(u_k, v_k) = 0] \to P[\varphi(u_1, v_1) = 0, \ldots, \varphi(u_k, v_k) = 0]
\]

where \(\varphi(u, v) = 0 \) if \(\Gamma_i \geq u^T X_i - v \) for all \(i \geq 1 \) and \(\Gamma_i \leq u^T X_i + v \) for all \(i \leq -1 \) and \(\varphi(u, v) = +\infty \) otherwise. Exploiting the convergence in distribution of \(\nu_n \) to the Poisson random measure \(\nu \), we have

\[
P \{ \varphi_n(u_1, v_1) = 0, \ldots, \varphi_n(u_k, v_k) = 0 \}
\]

\[
= \prod_{i=1}^{n} P \left\{ -\gamma_0 + a_n^{-1} \max_{1 \leq j \leq k} (u_j^T C_n^{-1} x_i - v_j) \leq \varepsilon_i \leq \gamma_0 + a_n^{-1} \min_{1 \leq j \leq k} (u_j^T C_n^{-1} x_i + v_j) \right\}
\]

\[
= \prod_{i=1}^{n} \left\{ 1 - G \left(a_n^{-1} \max_{1 \leq j \leq k} (u_j^T C_n^{-1} x_i - v_j) \right) - G \left(a_n^{-1} \min_{1 \leq j \leq k} (u_j^T C_n^{-1} x_i + v_j) \right) \right\}
\]

\[
= \exp \left[-\int \left\{ \psi \left(\max_{1 \leq j \leq k} (u_j^T x - v_j) \right) + \psi \left(\min_{1 \leq j \leq k} (u_j^T x + v_j) \right) \right\} \mu(dx) \right]
\]

\[
= P \{ \varphi(u_1, v_1) = 0, \ldots, \varphi(u_k, v_k) = 0 \}.
\]

Hence for \(Z_n \) given in (13), we have \(Z_n \xrightarrow{f-d} Z \) where

\[
Z(u) = v + \varphi(u, v).
\]
Finally, to show that Z has a unique minimizer (with probability 1) note that Z is minimized at a basic solution (u, v) satisfying for some i_1, \cdots, i_{p+1}
\[
\begin{align*}
 u^T X_{i_k} - v &= \Gamma_{i_k} \quad \text{for } i_k > 0, \\
 u^T X_{i_k} + v &= \Gamma_{i_k} \quad \text{for } i_k < 0.
\end{align*}
\]

Absolute continuity of the distribution of $\{\Gamma_{i}\}$ guarantees that with probability 1, no two basic solutions will be equal.

By combining the constraints for negative and positive values of $\{\Gamma_{i}\}$, we can also represent (U, V) as the minimizer of v subject to $\Gamma'_i \geq u^T X'_i - v$ for $i = 1, 2, \cdots$

where $\Gamma'_i = (E_1 + \cdots + E_i)^{1/\alpha}$ with $\{E_i\}$ i.i.d. unit mean exponential random variables and $\{X'_i\}$ i.i.d. random vectors with probability measure $\bar{\mu}$ defined in terms of μ by

\[
\bar{\mu}(B) = \kappa \mu(B) + (1 - \kappa) \mu(-B).
\]

Using this representation, we can easily determine the density of (U, V); using properties of the dual problem, it follows that the density of (U, V) is

\[
g(u, v) = \frac{\alpha^{p+1}}{(p+1)!} \exp \left[- \int (u^T x - v)^{\alpha} \bar{\mu}(dx) \right] \int \cdots \int |D(x_1, \cdots, x_{p+1})| \prod_{i=1}^{p+1} \{(u^T x_i - v)^{\alpha - 1} \bar{\mu}(dx_i)\},
\]

where $s_+ = sI(s > 0)$ is the positive part of s, $\bar{\mu}$ is the measure defined in (15) and $D(x_1, \cdots, x_{p+1})$ is the determinant of the matrix

\[
\begin{pmatrix}
 1 & 1 & \cdots & 1 \\
 x_1 & x_2 & \cdots & x_{p+1}
\end{pmatrix}
\]

if 0 lies in the convex hull of x_1, \cdots, x_{p+1} and $D(x_1, \cdots, x_{p+1}) = 0$ otherwise.

The limiting density $g(u, v)$ given in (16) is not easy to evaluate in closed-form (except in special cases) but can be approximated quite easily using Monte Carlo techniques (by sampling from the probability measure $\bar{\mu}$). However, it seems that this density does not provide as much insight into the limiting distribution as does the representation of (U, V) as the solution of a linear program.

EXAMPLE 2. Consider the following simple linear regression model

\[
Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \quad \text{for } i = 1, \cdots, n
\]

where $\{\varepsilon_i\}$ are i.i.d. with distribution F where G defined in (7) satisfies (8) and (9) for $\kappa = 1/2$ and $\alpha = 1$.

We will consider the limiting distributions of $\alpha_n(\hat{\beta}_1 n - \beta_1)$ in the cases where the limiting measure for $\{x_i\}$ is

(a) normal with mean 0 and variance 1;

(b) Laplace (double exponential) with mean 0 and variance 1;
Figure 2: Limiting densities of $a_n(\hat{\beta}_1 - \beta_1)$ for the three limiting design measures considered in Example 2. The solid line corresponds to the normal measure, the dashed line to the Laplace measure, and the dotted line the Rademacher measure.

(c) Rademacher with mass $1/2$ at ± 1.

The means and variances of these three distributions are the same; thus the limiting distributions of least squares, regression quantile (for fixed quantiles between 0 and 1), and many other estimators of β would be the same for the two designs. Figure 2 gives the limiting densities for the three limiting measures; the differences among the three limiting densities are quite small.

There are several possible variations on Theorem 1. For example, we may relax the assumption that $E[|u^T X_i|^\alpha]$ is finite for all u to allow $E[(u^T X_i)_+^\alpha]$ or $E[(u^T X_i)_-^\alpha]$ (or both) to be infinite for some u. In such cases, the conclusion of Theorem 1 will still hold although the limiting distribution may put all its mass at 0 for certain components of U. We can also extend Theorem 1 to the case where the behaviour of the distribution of $\{\varepsilon_i\}$ differs at the two endpoints $\pm \gamma_0$. For example, suppose that for some sequence $\{a_n\}$,

$$nP\{a_n(\gamma_0 - \varepsilon_i) \leq x\} \to x^\alpha$$

while

$$nP\{a_n(\varepsilon_i + \gamma_0) \leq x\} \to \infty$$
for any \(x > 0 \). This implies that
\[
a_n \left(\min_{1 \leq i \leq n} \varepsilon_i + \gamma_0 \right) \xrightarrow{p} 0
\]
and (more importantly) that the number of \(\{ \varepsilon_i \} \) falling within \(O(a_n^{-1}) \) of \(-\gamma_0\) is unbounded as \(n \to \infty \). In this case, we can effectively set \(\Gamma_1, \Gamma_2, \cdots \) in Theorem 1 to 0, which means that the set of \((u, v)\) satisfying the constraints \(\Gamma_i \geq u^T X_i - v \) for \(i \geq 1 \) is
\[
A = \{(u, v) : \mu\{x : u^T x - v \leq 0\} = 1\}.
\]
Note that \(A \) always contains 0. This suggests that \((U_n, V_n)\) converges in distribution to the minimizer of \(v \) subject to
\[
\Gamma_i \geq u^T X_i - v \quad \text{for} \quad i \geq 1
\]
and \((u, v) \in A\)
where \(\Gamma_i = (E_1 + \cdots + E_i)^{1/\alpha} \) for i.i.d. unit mean exponential random variables \(\{E_i\} \). Similarly, it is possible to extend Theorem 1 to the case where \(\alpha = \infty \) in (9) (so that \(\psi(t) = 0 \) for \(|t| < 1\) and \(\psi(t) = \text{sgn}(t) \infty \) for \(|t| > 1\)), in which case \(a_n = L(n) \) where \(L \) is a slowly varying function. Assuming that \(\{C_n^{-1} x_i\} \) is bounded, Theorem 1 holds with \(\Gamma_i = 1 \) for \(i \geq 1 \) and \(\Gamma_i = -1 \) for \(i \leq -1 \).

We can also consider the asymptotics for i.i.d. errors that are unbounded but whose distributions have light tails. Condition (A1) on the distribution of \(\{\varepsilon_i\} \) implies that both maxima and minima of \(\varepsilon_1, \cdots, \varepsilon_n \) (suitably normalized) converge in distribution to the same type-III (or Weibull) distribution. We can also generalize to error distributions whose extremes (minima and maxima) converge in distribution to the other two extreme value distributions. We will limit our discussion here to the case where the limiting distribution of the extremes is a type-I (or Gumbel) distribution; distributions in this domain of attraction have light (exponential) tails in contrast with distributions in the domain of attraction of a type-II (or Frechet) distribution, which have heavier tails. The extension to type-II error distributions is straightforward given appropriate modifications to the regularity conditions.

Conditions (A1), (A3), and (A4) are generalized in the following way:

(A1') For some sequences of constants \(\{a_n\} \) and \(\{b_n\} \)
\[
\lim_{n \to \infty} nP\{a_n \varepsilon_i > t + b_n\} = \kappa \exp(-t)
\]
and
\[
\lim_{n \to \infty} nP\{a_n \varepsilon_i < -(t + b_n)\} = (1 - \kappa) \exp(-t)
\]
for all \(t \).

(A3') For all \(t > 0 \),
\[
nP\{a_n |\varepsilon_i| > t + b_n\} = \exp(-t)\{1 + r_n(t)\}
\]
where for each \(u \),
\[
\max_{1 \leq i \leq n} |r_n(u^T C_n^{-1} x_i)| \to 0.
\]

(A4') For all \(u \),
\[
\int \exp(u^T x) \mu(dx) < \infty.
\]
Moreover, for each \(u \),
\[
\frac{1}{n} \sum_{i=1}^{n} \exp(u^T C_n^{-1} x_i) \rightarrow \int \exp(u^T x_i) \mu(dx)
\]
\[
\frac{1}{n} \max_{1 \leq i \leq n} \exp(u^T C_n^{-1} x_i) \rightarrow 0.
\]

Condition (A1') is satisfied (for example) by both the normal and Laplace (double exponential) distributions; for the normal distribution (with mean 0 and variance 1), we have \(a_n = \sqrt{2 \ln(n)} \) and \(b_n = 2 \ln(n) - \ln(4\pi \ln(n))/2 \) while for an Exponential distribution with mean 1, we have \(a_n = 1 \) and \(b_n = \ln(n) \).

THEOREM 2. Assume the model (1) and conditions (A1'), (A2), (A3'), and (A4'). Then if \(\hat{\beta}_n \) is the solution of (3),
\[
\left(a_n C_n (\hat{\beta}_n - \beta), b_n \right) \overset{d}{\rightarrow} (U, V)
\]
where \((U, V)\) is the solution of the linear program:
\[
\text{minimize } v \text{ subject to } \Gamma_i' \geq u^T X'_i - v \text{ for } i = 1, 2, 3, \ldots
\]
where

(i) \(\Gamma_i' = -\ln(E_1 + \cdots + E_i) \) for \(i \geq 1 \) where \(\{E_i\} \) is a sequence of i.i.d. unit mean exponential random variables.

(ii) \(\{X'_i\} \) is a sequence of i.i.d. random vectors whose distribution is \(\bar{\mu} \).

(iii) \(\{X'_i\} \) is independent of \(\{E_i\} \).

Proof. The proof of Theorem 2 is essentially the same as that of Theorem 1 with only minor modifications. The moment conditions for \(\mu \) guarantee that the limiting objective function is finite on an open set. \(\square \)

Using the same considerations as before, we can determine the limiting density under the conditions of Theorem 2. The density of \((U, V)\) is
\[
g(u,v) = \frac{1}{(p+1)!} \exp \left[- \int \exp(v - u^T x) \bar{\mu}(dx) \right] \int \cdots \int |D(x_1, \cdots, x_{p+1})| \prod_{i=1}^{p+1} \{ \exp(v - u^T x_i) \bar{\mu}(dx_i) \}
\]
where \(\bar{\mu} \) is defined as in (15) and \(D(x_1, \cdots, x_{p+1}) \) is the determinant of the matrix (17) if \(0 \) lies in the convex hull of \(x_1, \cdots, x_{p+1} \) with \(D(x_1, \cdots, x_{p+1}) = 0 \) otherwise.

3 Robustness issues

To this point, we have ignored the question of what the Chebyshev estimator is actually estimating; this has not been an issue since we have assumed i.i.d. errors. However, more generally, this question is somewhat more complicated.
We will assume that, as a function of \(x \), the response is bounded between two functions \(g^-(x) \) and \(g^+(x) \), which represent the essential infimum and supremum of the response given a covariate value \(x \). Thus

\[
g^-(x_i) \leq Y_i \leq g^+(x_i) \quad (i = 1, \ldots, n).
\]

Thus, under mild conditions, the Chebyshev estimator of \(\beta \) will converge in probability to the value of \(\phi \) that minimizes \(\gamma \) subject to the constraints

\[
g^+(x) \leq x^T \phi + \gamma \quad \text{for all } x \]
\[
g^-(x) \geq x^T \phi - \gamma \quad \text{for all } x
\]

provided that this minimizer is unique. We will have a unique minimizer \((\beta, \gamma_0) \) if there exist positive constants \(\lambda_1, \ldots, \lambda_{p+1} \) with \(\lambda_1 + \cdots + \lambda_{p+1} = 1 \) and points \(x^0_1, \ldots, x^0_{p+1} \) such that

\[
\sum_{j=1}^{p^o} \lambda_j x^0_j - \sum_{j=p^o+1}^{p+1} \lambda_j x^0_j = 0
\]

(where \(1 \leq p^o \leq p \)) and

\[
g^+(x_j) = \beta^T x^0_j + \gamma_0 \quad \text{for } j = 1, \ldots, p^o
\]
\[
g^-(x_j) = \beta^T x^0_j - \gamma_0 \quad \text{for } j = p^o + 1, \ldots, p + 1
\]

with

\[
g^+(x) \leq x^T \beta + \gamma_0 \quad \text{for all } x
\]
\[
g^-(x) \geq x^T \beta - \gamma_0 \quad \text{for all } x.
\]

In general though, uniqueness of \(\beta \) requires fairly strong assumptions on the model, both in terms of the error structure as well as any possible model misspecification.

In view of the above, it seems that Theorem 1 masks the lack of robustness of Chebyshev estimation. The hypotheses of Theorem 1 assume that the distributions of \(\{\varepsilon_i\} \) are homogeneous over the covariates \(\{x_i\} \); that is, each \(\varepsilon_i \) is potentially boundary visiting with no distributional dependence on \(x_i \) (at least in neighbourhoods of the boundaries \(\pm \gamma_0 \)). However, the proof of Theorem 1 shows that the basic result depends mainly on the convergence of the point process \(M_n \) defined in (11); we can weaken the conditions on \(\{\varepsilon_i\} \) and \(\{x_i\} \) (or more generally \(\{C_n^{-1} x_i\} \) while retaining the weak convergence of \(\{M_n\} \) to some limiting point process \(M \), which will give the constraints in the limiting linear program. For example, suppose that \(F_i \) is the distribution function of \(\varepsilon_i \) with \(G_i \) defined analogously to \(G \) in (7). If we assume that

\[
nG_i(t/a_n) \rightarrow \begin{cases}
\lambda^+(x_i)t^\alpha & \text{for } t > 0 \\
-\lambda^-(x_i)(-t)^\alpha & \text{for } t < 0.
\end{cases}
\]

where \(\lambda^+(x_i), \lambda^-(x_i) \geq 0 \) then (assuming appropriate additional regularity conditions) then the point process \(M_n \) defined in (11) (setting \(C_n = I \) for simplicity) converges weakly to \(M \) whose points are represented by

\[
(\lambda^+(X_i)^{-1/\alpha} \Gamma_i, X_i) \quad \text{for } i \geq 1,
\]
\[
(\lambda^-(X_i)^{-1/\alpha} \Gamma_i, X_i) \quad \text{for } i \leq 1
\]
where \(\{\Gamma_i\} \) and \(\{X_i\} \) are as defined in Theorem 1. In the case where \(\lambda^+(X_i) = 0 \) or \(\lambda^-(X_i) = 0 \), we set \(\lambda^\pm(X_i)\Gamma_i = \pm\infty \) and hence we can remove the corresponding constraints from the limiting linear program; Theorem 1 will hold provided that the sets \(\{x : \lambda^+(x) > 0\} \) and \(\{x : \lambda^-(x) > 0\} \) both have positive \(\mu \)-measure.

A more interesting case from a robustness point of view occurs when the errors \(\{\epsilon_i\} \) are boundary visiting only in the neighbourhoods of a finite number of points \(x_1^*, \ldots, x_q^* \); for example, this seems to be a good approximation for the motorcycle data considered in Example 1. (We assume that the matrix whose columns are \(x^*_1, \ldots, x^*_q \) has full rank.) Define disjoint neighbourhoods \(B_1^*, \ldots, B_q^* \) of \(x_1^*, \ldots, x_q^* \), respectively, and assume that for some sequence \(\{a_n\} \) the point processes

\[
M_n^* (A) = \sum_{x_i \in B_j^*} I\{\tau_n(\epsilon_i) \in A\} \quad (j = 1, \ldots, q)
\]

(where \(\tau_n \) is defined as in (10)) converge in distribution to independent Poisson processes \(M_1^*, \ldots, M_q^* \) whose mean measures are given by

\[
E[M_j^*(dt)] = \begin{cases}
\lambda_j^+ \alpha t^{\alpha-1} dt & \text{for } t > 0 \\
\lambda_j^- \alpha (-t)^{\alpha-1} dt & \text{for } t < 0,
\end{cases} \quad (j = 1, \ldots, q)
\]

where \(\lambda_1^+, \ldots, \lambda_q^+, \lambda_1^-, \ldots, \lambda_q^- \geq 0 \) with at least one strictly positive. We also assume that

\[
\sum_{x_i \notin \cup_j B_j^*} I\{\tau_n(\epsilon_i) \in A\} \xrightarrow{p} 0
\]

for all \(A \). Define \(M_n(A \times B) \) as in (11) setting \(C_n = I \) (for simplicity). Then \(M_n \) converges in distribution to a Poisson process \(M^* \) whose mean measure is given by

\[
E[M^*(dt \times B)] = \sum_{j=1}^q E[M_j^*(dt)] I(x_j^* \in B).
\]

In order to extend Theorem 1, we require at least \(p + 1 \) of \(\lambda_1^+, \ldots, \lambda_q^+, \lambda_1^-, \ldots, \lambda_q^- \) to be positive with at least one positive elements in each of the sets \(\{\lambda_j^+\} \) and \(\{\lambda_j^-\} \); in this case,

\[
\left(a_n(\beta_n - \beta), a_n(\gamma_n - \gamma_0) \right) \xrightarrow{d} (U, V),
\]

which is the minimizer of \(v \) subject to

\[
\Gamma_i' \geq u^T X_i' - v \quad \text{for } i = 1, 2, \ldots
\]

where

\[
\Gamma_i' = \Lambda^{-1/\alpha}(E_1 + \cdots + E_i)^{1/\alpha}
\]

with

\[
\Lambda = \sum_{j=1}^q (\lambda_j^+ + \lambda_j^-)
\]

and \(\{E_i\} \) i.i.d. unit mean exponential random variables; \(\{X_i\} \) are i.i.d. random vectors with probability measure \(\bar{\nu} \) defined by

\[
\bar{\nu}(B) = \frac{1}{\Lambda} \sum_{j=1}^q \left\{ \lambda_j^+ I(x_j^* \in B) + \lambda_j^- I(x_j^* \in -B) \right\}.
\]
The positivity condition on $\{\lambda^+_j\}, \{\lambda^-_j\}$ implies that the measure ν does not put all its probability mass on a hyperplane $\{x : c^T x = d\}$ where $c \neq 0$. In the case where fewer than $p + 1$ of $\lambda^+_1, \cdots, \lambda^+_q, \lambda^-_1, \cdots, \lambda^-_q$ are positive, we will not have $a_n(\hat{\beta}_n - \beta) = O_p(1)$ although we may have $a_n(c^T \hat{\beta}_n - c^T \beta) = O_p(1)$ for c belonging to some lower dimensional subspace. Note, however, that $a_n(\hat{\gamma}_n - \gamma_0) = O_p(1)$ if 0 lies in the convex hull of some x_1, \cdots, x_s in the support of ν. In section 5, we will discuss a modification of Chebyshev estimation that may, under these conditions, give estimators of β with $O_p(a_n^{-1})$ convergence when this fails for the Chebyshev estimator.

Example 3. Consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i \quad (i = 1, \cdots, n)$$

where $x_i = i/n$ (so that $\{x_i\}$ are asymptotically uniformly distributed on $[0, 1]$) and $\{\epsilon_i\}$ are independent random variables with ϵ_i uniformly distributed on $[-x^\eta_i, x^\eta_i]$ for some $\eta \geq 0$. When $\eta = 0$, Theorem 1 holds with $\alpha = 1$ with $n(\hat{\beta}_n - \beta) \xrightarrow{d} U$ where U is defined as in Theorem 1. The situation becomes a little more complicated when $\eta > 0$. In this case, we do not have unique identification of β; for a given (β_0, β_1), the maximum absolute error $\gamma_0 = 1$ can be attained for any $(\beta_0 - \phi, \beta_1 + \phi)$ satisfying $|\phi| \leq \min(\eta, 1)$. If we take $\phi = 0$ then $x^\eta_1 = 1$ and the point process M^*_n defined in (19) converges to a Poisson process.

Figure 3: Variances (on a logarithmic scale) of the Chebyshev estimator of β_1 in Example 3 for $n = 100$ (solid line) and $n = 1000$ (dashed line) for $0 \leq \eta \leq 2$.
with $a_n = n^{1/2}$ and $\lambda^+_1 = \lambda^-_1 = (4\eta)^{-1}$; however, because of non-uniqueness in the identification of β, the extension of Theorem 1 does not hold. (In fact, the Chebyshev estimator is not consistent in this case.) Figure 3 gives the variances of the Chebyshev estimator of β_1 for $n = 100$ and $n = 1000$ (based on 100000 Monte Carlo replications) for values of η between 0 and 2. This plot illustrates how unstable the Chebyshev estimator is, particularly for larger values of η. In particular, one might expect the distribution of the Chebyshev estimator of β_1 to be mostly concentrated on the interval $[-\min(\eta, 1), \min(\eta, 1)]$; the variance of a uniform distribution on $[-\eta, \eta]$ is $\eta^2/3$ and so the distributions of the estimators have a greater larger variance than a uniform distribution on $[-\min(\eta, 1), \min(\eta, 1)]$. A natural question to ask is whether we can modify the Chebyshev estimation appropriately (that is, retaining the spirit of minimizing, at least approximately, the maximum absolute residual) to obtain a $n^{1/2}$-consistent estimator. For example, the L_r-estimator $\hat{\beta}_n$ is $n^{1/2}$-consistent and asymptotically normal with mean 0 and variance-covariance matrix $D(r, \eta) = D^{-1}_1(r, \eta)D_1(r, \eta)D^{-1}_2(r, \eta)D_2(r, \eta)$ where

$D_1(r, \eta) = \frac{1}{2r-1} \begin{pmatrix} 2\eta(r-1) + 1 & 2\eta(r-1) + 2 & 2\eta(r-1) + 3 \\ 2\eta(r-1) + 2 & 2\eta(r-1) + 3 & 2\eta(r-1) + 4 \\ 2\eta(r-1) + 3 & 2\eta(r-1) + 4 & 2\eta(r-1) + 5 \end{pmatrix}^{-1}$

and

$D_2(r, \eta) = \begin{pmatrix} \eta(r-2) + 1 & \eta(r-2) + 2 & \eta(r-2) + 3 \\ \eta(r-2) + 2 & \eta(r-2) + 3 & \eta(r-2) + 4 \end{pmatrix}^{-1}.$

The L_r-estimator approximates the Chebyshev estimator for large values of r; however, some tedious calculations reveal that the larger eigenvalue of $D(r, \eta)$ is approximately $\eta^3 r^2 / 4$ for large r while the smaller eigenvalue tends to $\eta/16$.

4 Stabilizing the Chebyshev estimator

As noted above, the Chebyshev estimator can be viewed as an extreme ($\tau = 1$) quantile regression estimator on augmented data. We can obtain extensions of the Chebyshev estimator by defining ρ to be a non-decreasing, non-negative function on the positive real line and defining $(\hat{\beta}_n, \hat{\gamma}_n)$ to minimize

$$\sum_{i=1}^{n} \{\rho(\gamma + x_i^T \phi - Y_i) + \rho(Y_i + \gamma - x_i^T \phi)\}$$

subject to the constraints

$$Y_i \leq x_i^T \phi + \gamma \quad \text{for } i = 1, \ldots, n,$$

$$Y_i \geq x_i^T \phi - \gamma \quad \text{for } i = 1, \ldots, n.$$

The Chebyshev estimator corresponds to the case where $\rho(x) = x$ for $x \geq 0$. In the case where $\rho(x) = x^2$, (28) becomes

$$2n \left\{ \gamma^2 + \frac{1}{n} \sum_{i=1}^{n} (Y_i - x_i^T \phi)^2 \right\}$$

so that we are minimizing a combination of the maximum absolute residual and the residual sum of squares subject to the constraints (29) and (30). In the absence of a better name, we will refer to a general estimator
minimizing (28) subject to (29) and (30) as an M-Chebyshev estimator and the estimator minimizing (31) subject to (29) and (30) as the LS-Chebyshev estimator.

The asymptotic theory for M-Chebyshev estimators follows quite simply from the asymptotics for the Chebyshev estimator. For simplicity, assume that ρ is convex with a sufficiently smooth derivative ρ'. Then under the assumptions of Theorem 1 (plus some additional regularity conditions), we would have that

$$\left(a_n C_n (\hat{\beta}_n - \beta), a_n (\hat{\gamma}_n - \gamma_0) \right) \xrightarrow{d} (U, V)$$

where (U, V) minimizes

$$\{ E[\rho'(\gamma_0 - \varepsilon_i)] + E[\rho'(\varepsilon_i + \gamma_0)] \} v + \{ E[\rho'(\varepsilon_i - \gamma_0)] - E[\rho'(\varepsilon_i + \gamma_0)] \} \int x^T u \mu(dx)$$

subject to the constraints

$$\Gamma_i \geq u^T X_i - v \text{ for } i = 1, 2, 3, \cdots$$

$$\Gamma_i \leq u^T X_i + v \text{ for } i = -1, -2, -3, \cdots$$

where $\{\Gamma_i\}$ and $\{X_i\}$ are defined in Theorem 1. The limiting distribution of the general estimator will thus be the same as that of the Chebyshev estimator if

$$E[\rho'(\gamma_0 - \varepsilon_i)] = E[\rho'(\varepsilon_i + \gamma_0)],$$

which would occur, for example, if the distribution of $\{\varepsilon_i\}$ were symmetric around 0. The density of (U, V) has the same form as the density (16) except that $D(x_1, \cdots, x_{p+1})$ is now defined to be the determinant of the matrix (17) if the convex hull of x_1, \cdots, x_{p+1} contains the vector

$$\frac{E[\rho'(\gamma_0 - \varepsilon_i)] - E[\rho'(\varepsilon_i + \gamma_0)]}{E[\rho'(\gamma_0 - \varepsilon_i)] + E[\rho'(\varepsilon_i + \gamma_0)]} \int x \mu(dx)$$

with $D(x_1, \cdots, x_{p+1}) = 0$ otherwise.

The previous result is somewhat disappointing since it essentially implies a first order asymptotic equivalence between Chebyshev and M-Chebyshev estimation under i.i.d. errors. However, taking $\rho(x)$ in (28) to be strictly convex for $x > 0$ can lead to more stable estimation in cases where Chebyshev estimation is unstable, namely when the errors are heterogeneous, which may lead to Chebyshev estimation being inconsistent as discussed in section 3. To illustrate this, we will consider the more general error setup discussed in section 3 (again setting $C_n = I$ for simplicity). In section 3, we assumed independent but non-identically distributed errors whose distributions are boundary visiting for a finite number of points x_{11}, \cdots, x_{q1}. Assume the convergence of the point processes M_{n1}, \cdots, M_{nq} defined in (19) to independent Poisson processes with mean measures given in (20). If the measure $\tilde{\nu}$ in (22) puts all its probability mass on a hyperplane $\{ x : c^T x = d \}$ for some $c \neq 0$ then the extension of Theorem 1 for the Chebyshev estimator does not hold; in practice, this means that the estimator, while uniquely defined for any finite sample, is somewhat unstable and may even be inconsistent.

What happens to the limiting distribution of an M-Chebyshev estimator the measure $\tilde{\nu}$ in (22) puts all its probability mass on a lower dimensional hyperplane? For simplicity, we will consider only the LS-Chebyshev estimator although a similar argument will work for M-Chebyshev estimators defined for wider
class of strictly convex functions. The LS-Chebyshev estimator is the solution of a quadratic program that can be approximated by a linear program whose solution in this scenario is non-unique. Under fairly mild conditions, the asymptotics of the LS-Chebyshev estimator will be determined by the quadratic part of the objective function in (23).

Suppose that the limiting linear objective function

\[\gamma_0 v - \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i x_i \right\}^T u = \gamma_0 v - \theta^T u \]

(27)

has a finite (that is, greater than \(-\infty\)) minimum subject to the constraints

\[\Gamma'_i \geq u^T X_i - v \quad \text{for} \quad i = 1, 2, 3, \ldots \]

(28)

where now \(\{\Gamma'_i\}\) is defined as in (21) and \(\{X_i\}\) are i.i.d. random vectors (independent of \(\{\Gamma'_i\}\) with distribution \(\tilde{\nu}\)) as defined in (22); the minimum of (27) subject to (28) will be finite if the vector \(-\theta/\gamma_0\) lies in the convex hull of some \(x_1, \ldots, x_s\) in the support of the measure \(\tilde{\nu}\). Define \(T\) to be the (random) convex set of all \((U, V)\) minimizing the objective function (27) subject to the constraints (28). The quadratic remainder term is proportional to

\[Z_n(u, v) = v^2 + \frac{1}{n} \sum_{i=1}^{n} (x_i^T u)^2 \]

which converges to

\[Z(u, v) = v^2 + u^T C u \]

(29)

where

\[C = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T = \int x x^T \mu(dx) \]

From this, it follows from Mangasarian (1984) that

\[\left(a_n(\hat{\beta}_n - \beta), a_n(\hat{\gamma}_n - \gamma_0) \right) \xrightarrow{d} \arg \min_{(u,v) \in T} Z(u, v). \]

What the asymptotics suggest is that in the case of instability (many estimates having nearly the minimum maximum absolute residual), the residual sum of squares serves as a tie-breaker. Note that \(C\) is defined in terms of the measure \(\mu\) (not \(\tilde{\nu}\)) and hence is better conditioned.

EXAMPLE 4. Consider the simple linear regression model

\[Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \quad (i = 1, \ldots, n) \]

where \(x_i = i/n\) and \(\{\varepsilon_i\}\) are independent with \(\varepsilon_i\) having the distribution (6) on the interval \([-1, 1]\) with \(\alpha = x_i^{-\gamma}\) for some \(\gamma \geq 0\). When \(\gamma > 0\), it can be verified that the Chebyshev estimator satisfies

\[n^\gamma(\hat{\beta}_n - \beta) \xrightarrow{p} 0 \]

for any \(\gamma < 1\). Setting \(a_n = n/\ln(n)\), it follows that the point process \(M_n\) defined as in (11) with \(C_n = I\) converges in distribution to \(M^*\) where

\[M^*(A \times B) = \sum_{k=1}^{\infty} I(\eta \Gamma_k \in A, X_k \in B) \]

18
Figure 4: Ratio of the variance of Chebyshev estimator of β_1 to the variance of the LS-Chebyshev estimator in Example 4 for $n = 100$ (solid line) and $n = 1000$ (dashed line) for $0 \leq \eta \leq 2$.

where $\Gamma_k = E_1 + \cdots + E_k$ for unit mean exponential random variables $\{E_i\}$ and $\{X_k\}$ are i.i.d. taking the values $\pm(1, 1)^T$ each with probability $1/2$. The limiting linear program based on the limiting Poisson process does not have a unique solution and hence $a_n(\hat{\beta}_n - \beta)$ is not bounded in probability. However, the discussion above suggests that the LS-Chebyshev estimator will be a_n-consistent. Define T as the set of minimizers v subject to the constraints from the limiting Poisson process and $Z(u, v)$ as in (29). We then obtain (after some straightforward calculations) for $\eta > 0$,

$$T = \left\{ (u_0, u_1, v) : u_0 + u_1 = \frac{V_1 - V_2}{2}, v = -\frac{V_1 + V_2}{2} \right\}$$

where V_1 and V_2 are independent exponential random variables with common mean $\eta/2$ and

$$Z(u, v) = v^2 + u^T C u$$

where

$$C = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{pmatrix}.$$
Some simple calculations give

\[a_n(\hat{\beta}_n - \beta) \xrightarrow{d} \left(\frac{V_1 - V_2}{4} \right). \]

Figure 4 shows the ratio of the variance of the Chebyshev estimator of \(\beta_1 \) to that of the LS-Chebyshev estimator (based on 100000 Monte Carlo samples for \(n = 100 \) and \(n = 1000 \)). In both cases, this ratio increases as \(\eta \) increases although (perhaps strangely) the advantage of the LS-Chebyshev estimator is smaller for \(n = 1000 \).

Figure 5 shows the B-spline LS-Chebyshev estimate for the motorcycle data in Example 1 using the same model used to produce the estimates in Figure 1. Clearly, this estimate is much more stable and quite comparable to the least squares estimate; moreover, the estimate of \(\gamma \) is 63.0378, which is only slightly larger than the estimate of \(\gamma \) for the Chebyshev estimate (62.8916).

Figure 5: LS-Chebyshev estimate for motorcycle data (solid line) compared to the least squares estimate (dotted line).
5 Estimators from the membership set

In certain applications, it is reasonable to assume that the bound γ_0 on the errors $\{\varepsilon_i\}$ is known and thus this knowledge can be incorporated into the estimation of β in the model (1). As before, we will assume that the errors are boundary visiting ($P(|\varepsilon_i| \leq \gamma_0 - \delta) < 1$ for any $\delta > 0$); this assumption justifies certain methods although, in practice, the specified bound is not necessarily tight.

We start by defining the so-called membership (or feasible parameter) set (Schweppe, 1968; Bai et al., 1998a)

$$S_n = \{ \phi : -\gamma_0 \leq Y_i - x_i^T \phi \leq \gamma_0 \text{ for } i = 1, \ldots, n \}$$

given the observations $\{(x_i, Y_i) : i = 1, \ldots, n\}$ and the known bound on the errors. The membership set consists of all the parameter values that are consistent with the data given the assumption that the errors are bounded absolutely by γ_0. Intuitively, as $n \to \infty$, the size of S_n should shrink to a single point, which is the “true” parameter value. The asymptotic behaviour of S_n as a random set can be characterized using the point process methods used previously. As before, define $\tau_n(x)$ as in (10) and the point process M_n as in (11). Then $M_n \xrightarrow{d} M$, a Poisson process whose mean measure is $\int_A \psi'(t) d\mu(B)$ where ψ is defined in (9). We now define a centred and rescaled version of S_n:

$$S'_n = a_n C_n (S_n - \beta)$$

$${} = \left\{ u : a_n (\varepsilon_i - \gamma_0) \leq u^T C_n^{-1} x_i \leq a_n (\varepsilon_i + \gamma_0) \text{ for } i = 1, \ldots, n \right\}$$

$${} = \bigcap_{i=1}^n \left\{ u : a_n (\varepsilon_i - \gamma_0) \leq u^T C_n^{-1} x_i \leq a_n (\varepsilon_i + \gamma_0) \right\}.$$

Using the Poisson process convergence, we have

$$S'_n \xrightarrow{d} S' = S'_- \cap S'_+$$

where

$$S'_- = \bigcap_{i=1}^{\infty} \left\{ u : X_i^T u \geq \Gamma_i \right\}$$

$$S'_+ = \bigcap_{i=1}^{\infty} \left\{ u : X_i^T u \leq \Gamma_i \right\}$$

for $\{\Gamma_i\}$, $\{X_i\}$ defined as in Theorem 1 and the convergence in distribution is on the space of closed sets with the topology induced by Painlevé-Kuratowski convergence (Molchanov, 2005). Alternatively, given $\{\Gamma'_i\}$ and $\{X'_i\}$ defined in (14), we can write

$$S' = \bigcap_{i=1}^{\infty} \left\{ u : u^T X'_i \leq \Gamma'_i \right\}.$$

The membership set S_n is a bounded convex polyhedron and we can use some measure of its centre to estimate β. This can be done in a number of ways and we will discuss a few of the possibilities below. Since S_n shrinks to the true parameter value as $n \to \infty$, defining an estimator to be some measure of the centre of S_n seems a reasonable idea.
The Chebyshev centre estimator is defined to be the Chebyshev centre of S_n, that is, the centre of the largest radius (L_p-norm) ball that can be inscribed in S_n. It can be computed as the solution of the following linear program: β_n maximizes δ subject to the constraints

\[
x_i^T \phi + \|x_i\|_q \delta \leq Y_i + \gamma_0 \quad \text{for } i = 1, \ldots, n
\]

\[
-x_i^T \phi + \|x_i\|_q \delta \leq \gamma_0 - Y_i \quad \text{for } i = 1, \ldots, n
\]

where q is such that $r^{-1} + q^{-1} = 1$. However, β_n is not equivariant under affine transformations of the predictors $\{x_i\}$ (although S_n is equivariant). Under the assumptions of Theorem 1, if (β_n, Δ_n) is the solution of this linear program and $a_n C_n = a'_n I$ then $(a'_n (\beta_n - \beta), a'_n \Delta_n) \xrightarrow{d} (U, \Delta)$ where the limit maximizes δ subject to

\[
\begin{align*}
&u^T X_i + \delta \|X_i\|_q \leq \Gamma_i \quad \text{for } i \geq 1 \\
&u^T X_i - \delta \|X_i\|_q \geq \Gamma_i \quad \text{for } i \leq -1
\end{align*}
\]

where $\{X_i\}$ and $\{\Gamma_i\}$ are as defined in Theorem 1. Alternatively (similar to (14)), we can write the constraints as

\[
u^T X'_i + \delta \|X'_i\|_q \leq \Gamma'_i \quad \text{for } i \geq 1
\]

where $\Gamma'_i = (E_1 + \cdots + E_i)^{1/\alpha}$ (with $\{E_i\}$ i.i.d. unit mean exponentials) and $\{X'_i\}$ are i.i.d. with distribution $\bar{\mu}$ defined in (15). The density of (U, Δ) is

\[
g(u, \delta) = \frac{\alpha^{p+1}}{(p+1)!} \exp \left[-\int (u^T x + \|x\|_q \delta)_+ \bar{\mu}(dx) \right] \int \cdots \int |D^*(x_1, \ldots, x_{p+1})| \prod_{i=1}^{p+1} \{(u^T x_i + \|x_i\|_q \delta)_+ \bar{\mu}(dx_i)\}
\]

where $D^*(x_1, \ldots, x_{p+1})$ is the determinant of the matrix

\[
\begin{pmatrix}
\|x_1\|_q & \|x_2\|_q & \cdots & \|x_{p+1}\|_q \\
x_1 & x_2 & \cdots & x_{p+1}
\end{pmatrix}
\]

if there exist non-negative $\lambda_1, \ldots, \lambda_{p+1}$ such that

\[
\lambda_1 \|x_1\|_q + \cdots + \lambda_{p+1} \|x_{p+1}\|_q = 1
\]

and

\[
\lambda_1 x_1 + \cdots + \lambda_{p+1} x_{p+1} = 0
\]

with $D^*(x_1, \ldots, x_{p+1}) = 0$ otherwise. Thus the limiting distribution of the Chebyshev centre estimator has the same form as that of the Chebyshev estimator; however, the two limiting distributions coincide if, and only if, the limiting probability measure μ of $\{x_i\}$ concentrates all of its mass on the set $\{x : \|x\|_q = c\}$ for some $c > 0$.

As mentioned above, the Chebyshev centre estimator is not equivariant to affine transformations of the predictors $\{x_i\}$. An estimator based on the membership set that is affine equivariant is the maximum volume inscribed ellipsoid estimator, which is defined to be the centre of the ellipsoid of maximum volume contained in S_n. More precisely, for given ϕ and positive definite matrix Ω define the ellipsoid

\[
\mathcal{E}(\Omega, \phi) = \{\Omega u + \phi : \|u\|_2 \leq 1\}.
\]
Then \((\tilde{\beta}_n, \Omega_n)\) maximizes \(\det(\Omega)\) subject to \(E(\Omega, \phi) \subseteq S_n\) and \(\Omega \geq 0\) (non-negative definite). Renormalizing, it follows that \((a_n C_n (\tilde{\beta}_n - \beta), a_n C_n \Omega_n)\) converges in distribution to \((U, \Omega_0)\), which maximizes \(\ln \det(\Omega)\) subject to
\[
\|\Omega X_i'\|_2 + u^T X_i' \leq \Gamma_i' \quad \text{for } i \geq 1
\]
and \(\Omega \geq 0\).

Deriving a closed-form density for the limiting distribution seems a much more difficult prospect due to the presence of the nuisance matrix-valued parameter \(\Omega\); however, it is straightforward to simulate from the limiting distribution.

An estimator that is closely related to the Chebyshev centre estimator is the analytic centre estimator considered, for example, by Bai et al. (1998b), which maximizes
\[
\sum_{i=1}^{n} \left\{ \ln(\gamma_0 - Y_i + x_i^T \phi) + \ln(\gamma_0 + Y_i - x_i^T \phi) \right\} = \sum_{i=1}^{n} \ln \left(\frac{\gamma_0^2}{\gamma_0^2 - (Y_i - x_i^T \phi)^2} \right) \quad (30)
\]
subject to \(\phi \in S_n\); the maximizer of (30) is the analytic centre of the membership set \(S_n\). The idea is that the logarithmic function essentially acts as a barrier function that forces the estimator away from the boundary of \(S_n\) and thus makes the constraint that the estimator must lie in \(S_n\) redundant. In certain applications, the analytic centre estimator is computationally more convenient since it can be computed efficiently in "on-line" applications, more so than the Chebyshev centre and maximum volume ellipsoid estimators. Bai et al. (1998b) discuss some convergence results for this estimator but do not give its limiting distribution. If \(\tilde{\beta}_n\) maximizes the objective function in (30) then its asymptotic behaviour will depend on \(\alpha\), which describes the amount of probability mass close to the boundaries \(\pm \gamma_0\) of the distribution of \(\{\varepsilon_i\}\). In particular, if \(\alpha < 2\) then the asymptotics are determined by the asymptotics of the point process \(M_n\) defined in (11) while if \(\alpha \geq 2\), we will (under appropriate regularity conditions) obtain a normal limiting distribution. For example, suppose (for simplicity) that the distribution of \(\{\varepsilon_i\}\) is symmetric around 0. Then if \(\alpha < 2\), \(a_n C_n (\tilde{\beta}_n - \beta)\) converges in distribution to the maximizer of the function
\[
Z(u) = \sum_{i=1}^{\infty} \ln \left(1 - \frac{u^T X_i'}{\Gamma_i'} \right)
\]
while for \(\alpha > 2\), \(\sqrt{n} C_n (\tilde{\beta}_n - \beta) \xrightarrow{d} \mathcal{N}(0, \Sigma)\) where
\[
\Sigma = \frac{E[\varepsilon_i^2/((\gamma_0^2 - \varepsilon_i^2)^2)]}{E[\varepsilon_i^2/((\gamma_0^2 - \varepsilon_i^2)^2)]} \int xx^T \mu(dx).
\]

Interestingly, the analytic centre estimator naturally adapts to the noise distribution to give the optimal rate of convergence; when \(\alpha < 2\), it takes advantage of the errors close to \(\pm \gamma_0\) while for \(\alpha \geq 2\), it relies more on "central" information. The analytic centre estimator will be considered in more depth in future research.

Acknowledgments: This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
References

