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Abstract

Bootstrap principle is briefly reviewed. Hall’s (1989) antithetic variates

method for bootstrap is discussed and extended to more than two antithetic

resampling processes. We illustrate the theory with a simulation study. The

numerical results show that increasing the number of antithetic resampling

processes produces significant smaller variances of the bootstrap estimator over

the paired case.
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1 Bootstrap method

The bootstrap method has been known to statisticians for a long time before Efron

(1979) found a suggestive name for it and emphasized that its scope is much broader

than previously thought. The name bootstrap is a reference to the old saying ac-

cording to which, one can pull oneself out of trouble by pulling one’s bootstraps.

Although extremely suggestive, the name is somewhat misleading in that it conveys

the impression that bootstrap builds “something from nothing” while, in fact, the

technique has a sound theoretical foundation.

In its basic form, the idea is quite natural. Let’s assume that we want to estimate

a characteristic of a population distribution F , e.g. the mean of F

µ =
∫
xdF (x).(1)

1



If we dispose of a sample of size n from F , x = {x1, . . . , xn} it is natural to replace

F in equation (1) with its closest available discrete counterpart, F̂ , the empirical

distribution function associated to the sample x, and estimate µ with

X̄ =
∫
xdF̂ (x).(2)

It is worth emphasizing that the above approach is not practicable for all func-

tionals. Moreover, in most applications the bootstrap statistics are hard to compute.

Efron showed that a way around this difficulty is the use of Monte Carlo methods,

specifically, “bootstrap resampling”. In what follows, a resample will be, given the

sample x, an unordered collection of n items x∗ = {x∗1, . . . , x∗n} sampled with replace-

ment from x. We will denote by F ∗ the empirical distribution function of x∗.

In most cases where statistical inference is needed, we try to find a way to describe

the relationship that exists between a sample and the population from which the

sample has been drawn. Hall (1992) formally states the problem as follows: given a

class of functionals {ft : t ∈ T } we need to find t0 such that ft0 is the solution of the

equation

E[ft(F, F̂ )|F ] = 0.(3)

For example, if

µr =
[∫

xdF (x)
]r

is the r-th power of the population distribution mean, then the sample estimate will

be

µ̂r =
[∫

xdF̂ (x)
]r

To correct for bias one would like to find t0 the solution of

E[ft(F, F̂ )|F ] = E[µr − µ̂r + t|F ] = 0.

Our bias corrected estimate for µr will be then µ̂r + t0.

To obtain an approximate solution to equation (3) we will apply our assumption

that the relationship between F and F̂ is well approximated by the relationship
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existent between F̂ and F ∗. An approximate solution to (3) will then be the solution

to

E[ft(F̂ , F
∗)|F̂ ] = 0(4)

In most cases the conditional expectation in (4) is approximated using samples from

a distribution determined by the original sample x.

We would like to emphasize that the bootstrap method is not needed in all cir-

cumstances. The underlying idea is that of replacing the true distribution function

F with F̂ and F̂ with F ∗ in a formula that expresses a parameter as a functional of

F . For applications where the substitutions are unlikely to produce estimates similar

to the originals, the method will produce unreliable results.

2 Antithetic variates

The word antithetic refers to the main objective of the method, that is, to produce

random numbers that are negatively correlated. The reason for which statisticians

are interested in such negatively correlated numbers is emphasized by the following

simple example. Consider the problem of estimating the integral

ξ =
∫ b

a
h(x)dx

by Monte Carlo. The standard crude Monte Carlo estimator uses a sample drawn

uniformly on (a, b), x1, ..., xn and approximates ξ with (b − a)
∑n
i=1 h(xi)/n. The

antithetic principle (Hammersley and Morton, 1956) states that the above estimate

will be subject to less variability if, for each xi, we also use its “mirror” xi‘ = a+ (b−
xi). This mirror variate is called an antithetic variate and its use can be effective in

reducing the variance of the Monte Carlo estimate. For a sample of size n, one can

combine the sampled points and their mirrored counterparts into

b− a
n

n∑
i=1

(h(xi) + h(xi‘)).
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The key ingredient of the method is the negative correlation induced between h(X)

and h(X ′). It is natural then to suppose that the use of antithetic variates is related

to a certain monotonicity structure existent in the problem (in the above simple

example, h should be monotone on (a, b) for the variance reduction to surely take

place).

It is known that the Fréchet-Hoeffding inequality’s lower bound (Fréchet, 1951) for

two-dimensional distribution functions is a distribution function itself (e.g. Joe, 1998).

This makes (U, 1 − U), where U ∼ U(0, 1), the best choice for a pair of antithetic

variates (see also Whitt, 1976). Unfortunately, for a number of random variates larger

than two, the lower bound is no longer a distribution function and an uniformly

best solution to the problem is unknown. Craiu and Meng (2001) are proposing a

few methods to generate K antithetic variates and discuss ways to implement the

antithetic principle in approximate and exact Markov chain Monte Carlo (MCMC).

For good introductory references to exact MCMC algorithms see Casella, Lavine, and

Robert (1999) and Wilson (2000). In the next section we will discuss the antithetic

principle for bootstrap as presented by Hall (1989) and we will perform a numerical

experiment that will show that the increase in the number of antithetic processes

results in significant efficiency gains. We will take a different approach then the

one recommended for MCMC algorithms since, for bootstrap, the method aims at

antithetically sampling from discrete distributions with a finite support.

3 Antithetic resampling for the bootstrap

In the present section we present an antithetic variates method for conducting boot-

strap resampling operations. We will follow in the tracks of Hall (1989) but we will

also extend his method to more than two parallel resampling operations at a time.

Suppose we are interested in the expected value µ of an order-invariant statistic
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θ(X1, . . . , Xn). The bootstrap estimate of this quantity is

µ̂ = E[θ(X∗1 , . . . , X
∗
n)|X]

where X = {X1, . . . , Xn} is the random sample and {X∗1 , . . . , X∗n} are drawn with

replacement from X. In practice, we approximate µ̂ with

µ̂∗ =
1

B

B∑
b=1

θ(X∗b1, . . . , X
∗
bn)(5)

where, conditional on X, X∗bi are independently and uniformly distributed on X.

The samples Xi are d-dimensional, with d ≥ 1. Another way of writing (5) is

µ̂∗ =
1

B

B∑
b=1

θ(X∗I(b,1), . . . , X
∗
I(b,n))

where I(b, i) are independently and uniformly distributed on the integers 1, . . . , n.

Antithetic resampling is based on antithetic permutations π1, . . . , πk of the integers

1, . . . , n. If the π’s are chosen appropriately and

µ∗j =
1

B

B∑
b=1

θ(X∗πj(I(b,1)), . . . , X
∗
πj(I(b,n))),

then µ∗j , j = 1, . . . , k should be negatively correlated conditional on X.

To appreciate the form the antithetic permutations should take we will assume

that θ(x1, . . . , xn) is actually a function of the mean 1
n

∑n
i=1 xi. We will write θ(x1, . . . , xn) =

θ( 1
n

∑n
i=1 xi).

Assume that the vectors Xi are d-variate and θ is smooth and define θi(x) =
∂
∂xi
θ(x) and

Yh =
d∑
i=1

θi(X̄)(Xh − X̄)i

where the superscript i on a vector denotes the i-th element of that vector and

X̄ = 1
n

∑
iXi

We relabel the sample values Xi so that Y1 ≤ Y2 ≤ . . . ≤ Yn.
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By Taylor expansion we have

µ̂∗j = B−1
B∑
b=1

θ(X̄∗b,πj) = θ(X̄) +B−1
B∑
b=1

d∑
i=1

θi(X̄)(X̄∗b,πj − X̄)i + . . .

where X̄∗b,πj = 1
n

∑n
i=1 Xπj(I(b,i)).

Following Hall (1989) we have that

V ar(µ̂∗j) = (Bn)−1n−1
n∑
i=1

Y 2
i

and if g 6= h

cov(µ̂∗h, µ̂
∗
g) = (Bn)−1cov(Yπh(I(b,n)), Yπg(I(b,n))|s) = (Bn)−1n−1

n∑
i=1

Yπh(i)Yπg(i)

where all errors of approximation are O(B−1n−2).

Therefore, if we want to use k antithetic resampling processes , we need to find

k − 1 permutations π2, ..., πk such that for any Y1 ≤ Y2 . . . ≤ Yn we have, for π1 the

identical permutation

∑
g 6=h

n∑
i=1

Yπg(i)Yπh(i) = minimum possible(6)

If k = 2 an uniform optimal solution is π1(i) = i and π2(i) = n− i+ 1 for all 1 ≤
i ≤ n. The solution is uniform optimal in the sense that for any Y1 ≤ Y2 ≤ . . . ≤ Yn

the sum
∑
j YjYπ1(j) is minimal.

For k ≥ 2 such an optimal solution doesn’t exist. For instance, if k = 3, for

each arbitrarily fixed sequence Y1 ≤ Y2 ≤ . . . ≤ Yn one can find π1, π2, π3 such that
n∑
j=1

(Yπ1(j)Yπ2(j) +Yπ2(j)Yπ3(k) +Yπ1(j)Yπ3(k)) is minimum possible, but the permutations

may change as a new sequence is drawn. Although an algorithm to determine π1, π2,

and π3 for each sequence of Y ’s can be constructed, such an endeavor is expensive in

terms of computing effort. Instead, we propose a way to combine variance reduction

improvement and reduced additional computer effort by devising an algorithm that

remains unchanged once k is fixed.
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One can show that if we think of the solution as unique (although it isn’t!) then

the optimal solution is such that π1(i) = i and π2, π3 have to be permutations obtained

as products of 3–cycles. We will use in our algorithm this information although we

know it is not the optimal choice for any vector of Y ’s. We choose the entries for

each cycle such that they are situated “symmetrically” away from the extremities of

the sequence Y1 ≤ Y2 ≤ ... ≤ Yn. Of course, since we are dealing with cycles of odd

length, the term “symmetric” is loosely used here. The 3–cycles we choose to use

are among those that minimize the sum of the form (6) for n = 3 and when the Y ’s

are equidistant: (I): (1 3 2), and (II): (1 2 3). The way we mimic the “grouping

of the extremes” that takes place in the case k = 2 is, for k = 3, to include in the

3-cycles numbers that are at the opposite ends of the sequence Y1 ≤ Y2 ≤ ... ≤ Yn.

Specifically, the first cycle will contain {1, n, n− 1}, the second, {2, 3, n− 2} and so

on until there are less than three entries from {1, 2, . . . , n} that are not included in

one of the cycles. Those elements, if any, will be left unchanged (if there is only one

left) or will be transposed by one of the permutations. As a result, we define π2 as

the product of cycles of the type (I), and π3 as the product of cycles of the type (II)

and each the first 3–cycle from π2 and , respectively, π3, will contain the same entries.

For example, if n = 7 , π2 and π3 will be

π2 =

 1 2 3 4 5 6 7

7 5 2 4 3 1 6


and

π3 =

 1 2 3 4 5 6 7

6 3 5 4 2 7 1

 .
Although the scheme is not uniformly optimal, simulations show that important

variance reductions take place when we use π1, π2, and π3 to increase the number

of antithetic resampling processes to k = 3. We emphasize that one can write a

subroutine which generates π2, π3 automatically once n is given since the construction

depends only on n mod 3.
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In the following table we summarize the variance reductions obtained when we

compute bootstrap estimates of a mean E[X] +E[Y ] based on a i.i.d. sample of size

50 from (X ∼ N(3, σ2), Y ∼ Gamma(1, 1)). Following the recommendations given in

Efron and Tibshirani (1994) we used 210 bootstrap resamples and we estimated the

variance reduction using a Monte Carlo sample of size 5000. The entry in a given cell

represents the ratio between the Monte Carlo estimate of the bootstrap estimator’s

variance when using k antithetic processes and the same variance computed with

independent bootstrap resamples. We would like to stress that the technique is ap-

plicable to other problems, like estimation of cumulative distribution functions (see

also Hall, 1989 for more illustrations).

k \ σ 1 2 3 4 6 8 10 20

2 0.89 0.90 0.78 0.65 0.65 0.68 0.71 0.68

3 0.71 0.39 0.38 0.32 0.33 0.32 0.36 0.27

Table 1: Variance reduction ratio V aranti/V arindep for different values of σ and k

antithetic resampling processes

It is striking that when σ is large and compensates for the skewness in the Gamma

distribution, the paired antithetic variates are doing well but by using k = 3 we shrink

the variance reduction ratio by more than 50% relative to the k = 2 case. Moreover,

while for k = 2 the variance reduction is smaller as the population variance gets

smaller, the pattern doesn’t appear as obvious in the k = 3 case. We are left with

the impression that the increase in efficiency is more robust when a higher number of

processes are run in parallel. More theoretical work needs to be done to explain this

pattern.

Therefore, if we were to leave the reader with a single message, this would con-

tain the advice that whenever the antithetic principle is recommended, one should
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implement it with more than two antithetically paired processes.
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