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ABSTRACT
We propose a copula-based extension of the hidden Markov model (HMM) which applies when the observa-
tions recorded at each time in the sample are multivariate. The joint model produced by the copula extension
allows decoding of the hidden states based on information from multiple observations. However, unlike
the case of independent marginals, the copula dependence structure embedded into the likelihood poses
additional computational challenges. We tackle the latter using a theoretically-justified variation of the EM
algorithm developed within the framework of inference functions for margins. We illustrate the method
using numerical experiments and an analysis of room occupancy. Supplementary materials for this article
are available online.
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1. Introduction

When developing statistical models that aim to capture the gen-
erating mechanism of observed data, one must often consider
various forms of dark data (Hand 2020), such as missing data,
data that have been modified during the sampling stage, or
unobservable data that can be injected into the model as latent
variables to add meaning and to enhance interpretability. One
can make use of the latter approach by setting up a hidden
Markov model (HMM) in which the observed data consist of
serially correlated observations on each item. The latent aspect
of the model is a Markov chain on a discrete state space that
evolves on the same time scale as the observed processes. The
HMM postulates that the distribution of the data observed at
time t depends on the state of the Markov chain at time t.
Estimating the hidden structure can illuminate the underlying
workings of the system (Rabiner and Juang 1986) and, in some
cases, the Markov latent structure can be associated with a real
hidden mechanism. Examples of HMMs abound in numerous
domains including meteorology, medicine, ecology, and finance
(Zucchini, MacDonald, and Langrock 2017).

Several distinct problems can be tackled using the HMM
formulation. If one aims to identify the number of hidden states
and then to decode the state sequence, an unsupervised approach
will rely on clustering the observed features and assigning each
cluster to its most likely hidden state. Alternatively, a supervised
version of the analysis relies on items which were monitored and
their hidden states labeled as a complete set of training data,
whence one aims to predict the hidden states for observations
outside the training sample. In either setting, one might also aim
to impute missing values from the observed features in datasets
that exhibit missing patterns.

CONTACT Robert Zimmerman robert.zimmerman@mail.utoronto.ca Department of Statistical Sciences, University of Toronto, Canada, Toronto.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

This work is motivated by situations in which the observa-
tions recorded at each time for each item are multivariate, and
one must jointly integrate the information they contain about
the hidden states. When the observations in an HMM setup are
vector-valued, the state-dependent multivariate distributions
can be constructed by assuming either contemporaneous condi-
tional independence or longitudinal conditional independence.
In the former case, these distributions are constructed as
products of marginal distributions, while in the latter case
they are typically assumed to be multivariate normal, which
is tractable and easily implemented within the standard array of
HMM algorithms (Zucchini, MacDonald, and Langrock 2017).
However, data which can be modeled by the multivariate normal
distribution are limited; in the bivariate case, for example,
the normal distribution cannot capture dependence in the
extremes of the upper-right or lower-left tails (a property
known as tail dependence). One of our main aims here is to
propose a general approach to integrate the continuous-valued
information provided by multivariate observations in HMMs.

Copulas have become a ubiquitous tool in modeling complex
dependence structures. Sklar (1959) provided a theoretical foun-
dation and demonstrated that any multivariate distribution can
be represented by its marginal distributions and a copula that
fully describes their interdependence, a decomposition which
is unique whenever the marginal distributions are continuous.
Copulas have been widely used in areas such as actuarial science
(Frees and Valdez 1998), hydrology (Genest et al. 2007), and
finance (Nasri, Remillard, and Thioub 2020), to name only a
few. The introduction of copulas into general HMMs also has
broad applications; for example, Härdle, Okhrin, and Wang
(2015) model the dynamics of exchange rates using hierarchi-
cal Archimedean copulas; Nasri, Remillard, and Thioub (2020)
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model option prices using Gaussian copulas; and Ötting, Lan-
grock, and Maruotti (2023) model momentum shifts within
football matches using Clayton copulas. In this work, we model
the state of occupancy within a room using an HMM with
bivariate environmental observations coupled by copulas whose
underlying families are state-dependent. Potential future appli-
cations include modeling multivariate animal movement data
(McClintock et al. 2020), correlating factors in disease dynamics
(Sherlock et al. 2013), and detecting stellar flares (Stanislavsky
et al. 2020).

This article makes two main contributions. First, we extend
the modeling toolbox for HMMs with multivariate observa-
tions by considering copula models for the distributions of the
observed data. Our experiments show that when the copula is
allowed to vary with the hidden state variable, the identification
of the hidden states improves in accuracy. Second, because
using copulas to model the observed data presents additional
computational challenges compared to the case of independent
marginals, we develop a new optimization procedure in which
we integrate the inference functions for margins (IFM) method of
Joe and Xu (1996) within the ES algorithm of Elashoff and Ryan
(2004).

In the next section we introduce the model along with numer-
ical evidence of the gains in decoding precision when using the
copula-based joint modeling of the observed data. In Sections 3
and 4, we introduce and theoretically justify the algorithm used
for estimation. Section 5 contains our numerical experiments
based on simulations as well as an analysis of room occupancy
data. We end the article with a summary and a discussion of
future work.

2. A Copula-Based HMM

2.1. General Model and Assumptions

Let X1, X2, . . . be an unobserved discrete-time first-order
Markov process taking values in a finite state space X =
{1, 2, . . . , K} with initial distribution δ ∈ �K−1 = {(δ1, . . . , δK) :
δ1, . . . , δK > 0,

∑K
k=1 δk = 1} and transition probability

matrix � = [γi,j]i,j∈X . Let Y1, Y2, . . . YT represent the R
d-

valued observed data with Yt = (Yt,1, . . . , Yt,d), assumed to
satisfy the conditional independence structure (Ys | Xs) ⊥⊥
(Yt | Xt) for s �= t. We assume that for each state k ∈ X ,
the multivariate distribution Hk(·) : R

d → [0, 1] is defined
by d univariate k’th state-dependent marginal distributions,
Fk,h(· ; λk,h) : R → [0, 1] for 1 ≤ h ≤ d, and a d-dimensional
parametric copula Ck(·, . . . , · | θk) : [0, 1]d → [0, 1], where
the θk are state-specific copula parameters and the λk,h are state-
and component-specific marginal parameters, such that

Yi | (Xi = k) ∼ Hk(·) = Ck
(

Fk,1(· ; λk,1), . . . , Fk,d(· ; λk,d)
∣∣∣ θk

)
. (1)

This is the formulation of a generic finite-state time-
homogeneous HMM. We further assume that each Ck and Fk,h
admit densities ck and fk,h with respect to Lebesgue measure on
R

d andR, respectively, whose log densities (and first and second
derivatives thereof) can be computed, implying the existence of
the k’th state-dependent joint density

hk(y) = ck
(
Fk,1(y1; λk,1), . . . , Fk,d(yd ; λk,1) | θk

) ·
d∏

h=1
fk,h(yh; λk,h), (2)

where y = (y1, . . . , yd). Thus, each state k ∈ X generates a
d-dimensional observation whose joint dependence structure is
governed by a particular state-specific copula Ck with associated

parameter θk. Note that while we write the λk,h’s and θk’s as
scalars for ease of presentation, our theory also applies to vector
parameters associated with any and all marginal distributions
and copulas. When Ck belongs to a one-parameter family (i.e.,
when θk is a scalar), it can often be reparameterized in terms
of Kendall’s tau or Spearman’s rho; thus, when it is more conve-
nient, θk can also be understood to represent either of these two
concordance measures for state k.

In this article, we assume that the number of states K is known
a priori, as is often the case for HMMs used to model regime
change in financial transactions (Zheng, Li, and Xu 2021), ecol-
ogy (McClintock et al. 2020) and health status (Kwon et al. 2020),
as well as in binary classification problems like the one studied
in Section 5.2. In general, determining the number of states in an
HMM is a challenging problem to which several solutions have
been proposed in the literature; for example, Nasri, Remillard,
and Thioub (2020) use a goodness-of-fit test based on Cramér-
von Mises test statistics to select the number of regimes within a
class of regime-switching models that includes (1) as a special
case. Alternatively, one may adopt the general methodology
described in Section 4 of Pohle et al. (2017).

2.2. Coupling Benefits: An Illustration

HMMs are generally used to model a data-generating mecha-
nism in which the Markov process serves as proxy for a process
of interest, or to classify the hidden states (or both). When
the multivariate data regularly switch between different com-
plex dependence structures and hierarchies, one can model the
generating process as a finite-state HMM in which the state-
dependent marginal distributions are linked together via cop-
ulas. The copula-within-HMM framework is highly flexible,
because one has the freedom to vary both the copula itself and
the marginal distributions between states. Such models have
been applied to financial data as regime-switching copulas (Nasri,
Remillard, and Thioub 2020). In these applications, the focus is
on the data-generating mechanism, and the HMM is assessed via
measures of goodness of fit and the model’s capacity to replicate
key features of the data.

When the copula-within-HMM framework is used to
classify hidden states, the model is assessed by its predictive
capacity. In this paper, we focus on local state decoding, in
which the prediction X̂t of the unknown state Xt is the
maximizer of the state membership probability of Xt con-
ditioned on observing the data y1:T , where we write ys:t for
(ys, ys+1, . . . , yt) ∈ R

d×(t−s+1), and we write xs:t ∈ X t−s+1

and their random counterparts similarly. We denote by η

the collection of all model parameters (see Section 3.1), so
that X̂t = argmaxk∈X Pη

(
Xt = k | Y1:T = y1:T

)
; Lemma S.1

within Section S.4 of the supplementary material derives an
explicit expression for this posterior probability. In contrast,
global state decoding jointly predicts the entire state sequence
as X̂1:T = argmaxx1:T∈X T Pη

(
X1:T = x1:T | Y1:T = y1:T

)
. Both

methods tend to yield similar predictions in practice (Zucchini,
MacDonald, and Langrock 2017).

HMMs can perform poorly when one assumes contempora-
neous conditional independence of the observation process,
even when the marginal state-dependent distributions are
correctly specified. As a simple example, consider the special
case of bivariate data arising from a 2-state finite mixture model

https://doi.org/10.1080/01621459.2023.2263202
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of length T = 100 with equal persistence between states,
where the state-dependent distributions are Frank copulas
with standard normal margins, and the state-dependent copula
parameters are θ1 = −θ and θ2 = θ for some fixed value of
θ ∈ (0, 100), representing extreme negative dependence and
extreme positive dependence, respectively, when θ is large. In
Figure 1(a), we have plotted the zero-one loss for this model (i.e.,
�01 = 1

T
∑T

t=1 1X̂t �=Xt
, where X̂t is the state at time t predicted

by local state decoding) as a function of θ , as well as the zero-one
loss based on an incorrectly specified model with independent
marginals. As a function of θ , the expected zero-one loss for
the independence model is constant; however, the loss function
for the true model is given by �01(θ) = 1

2 − 2
θ

log
(
cosh θ

4
)
.

Such measures can be derived for other radially symmetric
bivariate copula families within the same finite mixture model
(see Corollary S.2 within Section S.4 of the supplementary
material); for example, if for some ρ ∈ (0, 1), Gauss(−ρ) and
Gauss(ρ) copulas replace the Frank copulas under the same
setup, it can be shown that �01(ρ) = cos−1(ρ)/π .

Even when both states feature positive dependence between
the components of the observations, the zero-one loss can
decrease when the dependence structures induced by the
copulas are substantially different. For example, Figure 1(b)
shows empirical zero-one losses for a two-state HMM with
standard normal margins, a Gauss(ρ) copula in state 1, and
a Clayton(θ) copula in state 2, where ρ varies over (0, 1) and
θ = 100ρ. Here, the zero-one loss increases slightly as both
state-dependent copulas approach the comonotonicity copula,
whence the states again become indistinguishable. While a
closed-form expression for the expected zero-one loss for the
latter model is unavailable, the true expected loss functions are
special cases of a far more general expression.

Theorem 2.1. Let νt,k = P (Xt = k) = [δ�t]k. The expected
zero-one loss of the classifications made by local decoding is
given by

�01(η) = 1
T

T∑
t=1

K∑
k=1

νt,k·

Pη

( hk(Yt) · ∑
x−t κ(x−t , Y−t) · γxt−1,k · γk,xt+1

maxj�=k
{

hj(Yt) · ∑
x−t κ(x−t , Y−t) · γxt−1,j · γj,xt+1

} < 1
∣∣∣∣Xt = k

)

(3)

where κ(x−t , y−t) = δx1

∏
s �=t hxs(ys) · ∏

s �=t,t+1 γxs−1,xs . More-
over, if the HMM constitutes a finite mixture model, then (3)
reduces to

�01(η) = 1
T

T∑
t=1

K∑
k=1

νt,k

∫
1

{
νt,k · hk(yt)

maxj �=k νt,j · hj(yt)
< 1

}
dHk(yt).

(4)

Here again, Hk refers to the k’th state-dependent joint distri-
bution, and hk to the corresponding density function. The com-
plicated form of the HMM posterior state probabilities makes
it challenging to derive useful bounds for the zero-one loss
of the most general models, but under certain conditions one
can deduce upper bounds for individual components of the
loss function. For example, if at any time, the Markov chain
travels through state k with a higher probability than that of
any other state, then the contribution of the k’th state to the loss
function has an upper bound with a more succinct mathematical
form.

Proposition 2.2. Suppose Pη (Xt = k, Xt+1 = i1 | Xt−1 = i2) ≥
Pη

(
Xt = j, Xt+1 = i1 | Xt−1 = i2

)
for all i1, i2, j ∈ X . Then

Pη

( hk(Yt) · ∑
x−t κ(x−t , Y−t) · γXt−1,k · γk,Xt+1

maxj�=k
{

hj(Yt) · ∑
x−t κ(x−t , Y−t) · γXt−1,j · γj,Xt+1

} < 1
∣∣∣∣Xt = k

)

≤
∫
Rd
1

{
hk(yt)

maxj�=k hj(yt)
< 1

}
dHk(yt). (5)

While the additional structure on the Markov chain in Propo-
sition 2.2 is somewhat restrictive, the result provides insight
into the general case, which is analytically intractable due to the
structure of the HMM. For the case in which the HMM consti-
tutes a finite mixture model, the assumption in Proposition 2.2
simplifies to Pη (Xt = k) ≥ Pη

(
Xt = j

)
for all j ∈ X . The effect

of the copulas in the HMM can be further analyzed through the
lens of the integral (5). In the bivariate case, the following result
explicitly relates the integral to the strength of the dependence
within any particular state. Below τk and ρk denote, respec-
tively, Kendall’s tau and Spearman’s rho of the copula in the k’th
state.

Proposition 2.3. Let d = 2 and fix k ∈ X . As either |τk| → 1
or |ρk| → 1 while the parameters of the other state-dependent

Figure 1. (a) Empirical zero-one losses (black dots) for local decoding of a 2-state HMM with standard normal margins, a Frank(θ) copula in state 1, and a Frank(−θ) copula
in state 2, for θ ∈ {1, 2, . . . , 100}. (b) The same zero-one losses, but with a Gauss(ρ) copula in state 1 and a Clayton(θ) copula in state 2, for ρ ∈ {0.01, 0.02, . . . , 0.99} and
θ = 100ρ.

https://doi.org/10.1080/01621459.2023.2263202
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distributions stay fixed, we have

∫
Rd
1

{
ωk · hk(y)

maxj �=k ωj · hj(y)
< 1

}
dHk(y) → 0

for any (ω1, . . . , ωK) ∈ �K−1.

In effect, Theorem 2.1, Propositions 2.2, and 2.3 clarify that
as the copula in a particularly “common” state approaches either
of the Fréchet-Hoeffding bounds, the observations produced by
that state will become sufficiently distinguished for the local
decoding algorithm to detect the state with complete accuracy,
thereby eliminating its contribution to the zero-one loss. Proofs
of these results are provided in Section S.4 of the supplementary
material.

3. Parameter Estimation

3.1. Pitfalls of the Vanilla EM Algorithm

We consider a parametric approach for copula specification, in
which the parameter vector characterizes the state-dependent
copulas and the marginal distributions. Parameter estimation
for HMMs usually relies on the Baum-Welch algorithm
(Baum et al. 1970), which is a special case of the expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin
1977) in which the sequence of hidden states plays the role
of missing data. For the model proposed here, the E-step
calculations are straightforward when all state-dependent
densities can be evaluated at the current parameter estimates.
Alas, the maximization required to complete the M-step is more
difficult because the task requires us to maximize a nonlinear
function of all state-dependent parameters; since an exact
closed-form solution is usually unavailable, we must resort to
numerical optimization. In practice, quasi-Newton methods
often bypass the need for analytical score functions when dealing
with parametric copulas alone; even so, joint maximization of
the entire copula-within-HMM likelihood remains challenging.
We present here a succinct version of the relevant equations;
complete derivations may be found in Zucchini, MacDonald,
and Langrock (2017). When s < t, for general continuous
R

d×(t−s+1)-valued Ys:t and X -valued X, we employ a standard
abuse of notation and write P

(
Ys:t = ys:t | X = x

)
for the

conditional density of Ys:t | X = x and P
(
Ys:t = ys:t , X = x

)
for

the joint density of (Ys:t , X), the latter with respect to the product
of Lebesgue measure onR

d×(t−s+1) and counting measure onX
(see Cappé, Moulines, and Ryden (2005) for general definitions).

The set of parameters consists of the initial distribution
δ and the vectors of transition probabilities γ k,· of the latent
Markov chain, the parameters of the state-dependent marginal
densities λk,h, and the copula parameters θk. We write η

for the vector whose entries contain all these parameters,
and yt for the observed data at time t. Our formulation of
the Baum-Welch algorithm follows Zucchini, MacDonald,
and Langrock (2017). We consider here a single trajectory
(y1:T , X1:T), but the algorithm can easily be extended to
handle multiple independent and identically distributed (iid)
trajectories (y1:T1 , X1:T1), . . . , (y1:Tn , X1:Tn).

The complete-data log-likelihood for one trajectory (y1:T , X1:T)

of the copula-within-HMM is given by

�com
(
η | y1:T , X1:T

) = log δX1 +
T∑

t=2
log γXt−1,Xt

+
T∑

t=1

( d∑
h=1

log fXt ,h(yt,h; λXt ,h)

+ log cXt

(
FXt ,1(yt,1; λXt ,1), . . . , FXt ,1(yt,d; λXt ,d) | θXt

))
.

(6)
For j, k ∈ X , we define the latent indicators Uk,t = 1Xt=k for
t ∈ {1, . . . , T}, and Vj,k,t = 1Xt−1=j,Xt=k for t ∈ {2, . . . , T}. The
complete-data log-likelihood in (6) is then

�com
(
η | y1:T , X1:T

) =
K∑

k=1
Uk,1 · log δk +

K∑
j=1

K∑
k=1

( T∑
t=2

Vj,k,t

)
log γj,k

+
K∑

k=1

T∑
t=1

Uk,t ·
( d∑

h=1
log fk,h(yt,h; λk,h)

+ log ck
(

Fk,1(yt,1; λk,1), . . . , Fk,d(yt,d; λk,d)
∣∣∣ θk

))
. (7)

Now consider the E- and M-steps at the (s+1)’th iteration of the
algorithm, assuming that the algorithm is initialized at η(0). In
the E-step, we must compute the conditional expectation Q(η |
η(s)) = Eη(s)

[
�com

(
η | y1:T , X1:T

) | Y1:T = y1:T
]
, which relies

on the expectations of all Uk,t ’s and Vj,k,t ’s conditioned on the
observed data y1:T , given by
û(s)

j,t = Pη(s)
(
Xt = j | Y1:T = y1:T

)
= αj,t(y1:t ; η(s)) · βj,t(y(t+1):T ; η(s))∑K

l=1 αl,t(y1:t ; η(s)) · βl,t(y(t+1):T ; η(s))
, t ∈ {1, . . . , T}

(8)
and

v̂(s)
j,k,t = Pη(s)

(
Xt−1 = j, Xt = k | Y1:T = y1:T

)

=
αj,t−1(y1:(t−1); η(s)) · γ

(s)
j,k · hk(yt ; η(s)) · βk,t(y(t+1):T ; η(s))∑K

l=1 αl,t(y1:t ; η(s)) · βl,t(y(t+1):T ; η(s))
,

t ∈ {2, . . . , T} (9)
for all j, k ∈ X , where αj,t(y1:t ; η) = Pη

(
Y1:t = y1:t , Xt = j

)
are known as the forward probabilities for t ∈ {1, . . . , T}, and
βj,t(y(t+1):T ; η) = Pη

(
Y(t+1):T = y(t+1):T | Xt = j

)
are known

as the backward probabilities for t ∈ {1, . . . , T − 1}, with βj,T =
1. These ingredients are essential in HMM classification algo-
rithms, and are well-known to admit recursive structures that
allow for their efficient computation via dynamic programming;
this fact is not altered by the addition of the copula density in
(7).

The M-step requires finding the maximizer η(s+1) of

Q(η|η(s)) =
K∑

k=1
û(s)

k,1 · log δk +
K∑

j=1

K∑
k=1

( T∑
t=2

v̂(s)
j,k,t

)
· log γj,k

+
K∑

k=1

T∑
t=1

û(s)
k,t ·

( d∑
h=1

log fk,h(yt,h | λk,h)

+ log ck
(

Fk,1(yt,1 | λk,1), . . . , Fk,d(yt,d | λk,d)
∣∣∣ θk

))
.
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Since the parameters in the three groups of sums above are func-
tionally independent, they can be maximized independently.
Using Lagrange multipliers, one can easily show that the max-
imizer for the initial distribution is

δ(s+1) = argmax
δ∈�K−1

( K∑
k=1

û(s)
k,1 · log δk

)
= (û(s)

1,1, . . . , û(s)
K,1)

while that for the vector of transition probabilities from state j ∈
X is

γ
(s+1)
j,· = argmax

γ∈�K−1

( K∑
k=1

( T∑
t=2

v̂(s)
j,k,t

)
· log γk

)

=
( K∑

k=1

T∑
t=2

v̂(s)
j,k,t

)−1 ( T∑
t=2

v̂(s)
j,1,t , . . . ,

T∑
t=2

v̂(s)
j,K,t

)
.

The maximizer for the vector of parameters involved in the state-
dependent distributions consists of the marginal parameters λk,h
and copula parameters θk that jointly maximize

K∑
k=1

T∑
t=1

û(s−1)

k,t ·
( d∑

h=1
log fk,h(yt,h; λk,h)

+ log ck
(

Fk,1(yt,1; λk,1), . . . , Fk,d(yt,d; λk,d)
∣∣∣ θk

))
. (10)

The M-step falters here because the numerical optimization of
(10) is difficult when d is even moderately high. Even initial-
ization can be challenging; since any copula is grounded, even
a correct initialization λ

(0)

k,h = λk,h can lead us astray, for we
can easily have Fk,h(yt,h; λk,h) ≈ 0 when Xt �= k, and hence
ck(. . . , Fk,h(yt,h; λk,h), . . .) ≈ 0. Unless û(0)

k,t ≈ 0 as well—which
would be unusual when we have no a priori information about
the true underlying states—evaluating (10) will immediately
cause a numerical overflow. We emphasize that this can occur
even if all parameters are initialized to their true values.

3.2. The EIFM Algorithm

Instead of maximizing all parameters in (10) jointly, it is consid-
erably less challenging to estimate the marginal parameters λk,h
and the copula parameters θk separately. For instance, likelihood
inference for the five “classical” one-parameter Archimedean
families under known marginals was studied by Hofert, Mächler,
and McNeil (2012), who derived concise functional representa-
tions for the copula densities and their score functions. Alto-
gether, these allow for maximum likelihood estimation using
gradient-based optimization methods. Meanwhile, as for stan-
dard HMMs with univariate state-dependent distributions, the
difficulty of performing likelihood inference for the marginal
distributions themselves depends highly on their specific forms.
While closed-form solutions (or efficient estimation procedures)
for MLEs in the presence of iid data have been long-established
for most commonly encountered distributions, the situation
is different for our models, in which the objective function
is a weighted sum of log-densities, and closed-form expres-
sions for the maximizing values are rare. If the HMM structure
were removed from the model so that the data consisted of iid

observations from a multivariate distribution characterized by
C(F1(· ; λ1), . . . , Fd(· ; λd)

∣∣θ), then (10) would reduce to
T∑

t=1

( d∑
h=1

log fh(yt,h; λh) + log c
(

F1(yt,1 ; λ1), . . . , Fd(yt,d ; λd)
∣∣∣ θ))

.

(11)
Moreover, if the copula C were known, an estimate for the
marginal parameter λh could be inferred from the marginal data
y1:T,h alone as the standard MLE

λ̃h = arg supλ

T∑
t=1

log fh(yt,h; λ). (12)

This is exactly the first step of the inference functions for margins
(IFM) method of Joe and Xu (1996). The IFM method first finds
the λ̃h that separately maximize the marginal log-likelihoods
(12) for h ∈ {1, . . . , d}, and then finds the θ̃ that maximizes the
joint log-likelihood (11) in which the marginal parameters are
set to their previous estimates:

θ̃ = arg supθ

T∑
t=1

log c
(

F1(yt,1 ; λ̃1), . . . , Fd(yt,d ; λ̃d)
∣∣∣ θ)

. (13)

Section 10.1 of Joe (1997) shows that under standard regularity
conditions, (λ̃1, . . . , λ̃d, θ̃ ) is a consistent and asymptotically
normal estimator of (λ1, . . . , λd, θ), although it is generally not
as efficient as the usual maximum likelihood estimator.

We propose here a new algorithm, which we call the
expectation-IFM (EIFM) algorithm, that alleviates the compu-
tational difficulties associated with the estimation of η. The
main idea is to leave the E-step of the basic EM algorithm
unchanged, but embed the IFM method within the M-step by
replacing the single-state log-likelihoods in (12) and (13) with
weighted averages that are computed over all K states. The log-
likelihood for the k’th state is weighted by the corresponding
state membership probability estimates ûk,t . That is, starting
with an initial guess η(0), we perform the following steps,
iterating over s ≥ 1 until we reach convergence:

Step 1: (E-step) Calculate the conditional expectations:
Step 1a: For each k ∈ X and t ∈ {1, . . . , T}, calculate

û(s)
k,t = αk,t(y1:t ; η(s)) · βk,t(y(t+1):T ; η(s))∑K

l=1 αl,t(y1:t ; η(s)) · βl,t(y(t+1):T ; η(s))
.

Step 1b: For j, k ∈ X and t ∈ {2, . . . , T}, calculate

v̂(s)
j,k,t =

αj,t−1(y1:(t−1); η(s)) · γ
(s)
j,k · hk(yt ; η(s)) · βk,t(y(t+1):T ; η(s))∑K

l=1 αl,t(y1:t ; η(s)) · βl,t(y(t+1):T ; η(s))
.

Step 2: (IFM-step) Estimate model parameters using the IFM
approach:

Step 2a: Set δ(s+1) = (û(s)
1,1, . . . , û(s)

K,1) and for each j ∈
X , estimate the vector of transition probabili-
ties

γ
(s+1)
j,· =

( K∑
k=1

T∑
t=2

v̂(s)
j,k,t

)−1 ( T∑
t=2

v̂(s)
j,1,t , . . . ,

T∑
t=2

v̂(s)
j,K,t

)
.

Step 2b: For each k ∈ X and h ∈ {1, . . . , d}, estimate
the marginal parameters

λ
(s+1)

k,h = arg supλ

T∑
t=1

û(s+1)

k,t · log fk,h(yt,h; λ).



6 R. ZIMMERMAN, R. V. CRAIU, AND V. LEOS-BARAJAS

Step 2c: For each k ∈ X , estimate the copula parame-
ters

θ
(s+1)

k = arg supθ

∑T
t=1 û(s+1)

k,t

· log ck
(

Fk,1(yt,1; λ(s+1)

k,1 ), . . . , Fk,d(yt,d; λ(s+1)

k,d )

∣∣∣ θ).

(14)

We discuss the algorithm’s implementation in Section S.1 of the
supplementary material, including suggestions for performing
the optimizations in Steps 2b and 2c, initializing parameters
using simple clustering methods, and assessing convergence of
the algorithm.

4. Theoretical Results

4.1. Analysis of the Algorithm

In this section, we demonstrate that the EIFM algorithm does
not belong to the class of generalized EM algorithms (Dempster,
Laird, and Rubin 1977), and therefore a theoretical analysis is
needed to justify its use. We begin with a purely algorithmic
perspective, describing the conditions under which the sequence
of estimates produced by the EIFM algorithm will converge.
To do so, we temporarily set aside its statistical content and
view it as a deterministic nonlinear optimization procedure.
The algorithm is not an EM algorithm in the traditional sense,
because the expectation of the complete-data log-likelihood is
not maximized at each iteration. This is mainly a consequence
of the fact that

T∑
t=1

ût · log fh(yt,h; λ(s)
h ) ≤

T∑
t=1

ût · log fh(yt,h; λ(s+1)

h ),

h ∈ {1, . . . , d} (15)

does not imply

T∑
t=1

ût · log c
(

F1(yt,1; λ(s)
1 ), . . . , Fd(yt,d; λ(s)

d )

∣∣∣ θ(s)
)

≤
T∑

t=1
ût · log c

(
F1(yt,1; λ(s+1)

1 ), . . . , Fd(yt,d; λ(s+1)

d )

∣∣∣ θ(s)
)

.

For a simple counterexample, consider a single bivariate obser-
vation (i.e., T = 1) with Y1 ∼ Exp(λ1) and Y2 ∼ Exp(λ2)
such that (Y1, Y2) has a Farlie–Gumbel–Morgenstern copula
with density c(u1, u2 | θ) = 1 + θ(2u1 − 1)(2u2 − 1). Suppose
the algorithm were initialized at λ

(0)
1 = λ

(0)
2 = 1 and any θ(0).

Step 2b of the algorithm produces the standard univariate MLEs
λ

(1)
1 = y−1

1 and λ
(1)
2 = y−1

2 , which satisfy (15) by construction;
however, the inequality log c

(
F1(y1; λ(0)

1 ), F(y2; λ(0)
2 ) | θ(0)

)
≤

log c
(

F1(y1; λ(1)
1 ), F(y2; λ(1)

2 ) | θ(0)
)

is equivalent to (2e−y1 −
1)(2e−y2 − 1) ≤ (2e−1 − 1)2, which immediately fails when
y1, y2 > 1.

This counterexample shows that despite sharing a similar
strategy with the ECM algorithm (Meng and Rubin 1993), the
EIFM algorithm does not belong to the class of generalized EM
algorithms, as the latter increase the objective function at each

iteration. Clearly, one must identify conditions for the EIFM
algorithm’s convergence, since its sequential updating rule does
not offer convergence guarantees without stronger assumptions.
Our analysis here follows roughly the one given for the ES
algorithm by Elashoff and Ryan (2004), whose aim is also to
iteratively solve unbiased estimating equations in the presence
of missing data. However, the serial dependence inherent in the
HMM data precludes a direct application of that algorithm.

We regard the ûj,t and v̂j,k,t as parameters themselves (in a
nonstatistical context), and collect them and the parameter of
interest η into a larger parameter vector ξ = (û, v̂, η) of length
N = TK +(T −1)K2 +K +K2 +dK +K. We define N R-valued
functions of ξ :

g[1]
k,t (ξ) = ûk,t − αk,t(y1:t ; η) · βk,t(y(t+1):T ; η)∑K

l=1 αl,t(y1:t ; η) · βl,t(y(t+1):T ; η)
, k ∈ X ,

t ∈ {1, . . . , T}

g[2]
j,k,t(ξ) = v̂j,k,t −

αj,t−1(y1:(t−1); η) · γj,k · hk(yt ; η)

·βk,t(y(t+1):T ; η)∑K
l=1 αl,t(y1:t ; η) · βl,t(y(t+1):T ; η)

, j, k ∈ X ,

t ∈ {2, . . . , T}
g[3]

k (ξ) = δk − ûk,1, k ∈ X

g[4]
j,k (ξ) = γj,k ·

K∑
l=1

T∑
t=2

v̂j,l,t −
T∑

t=2
v̂j,k,t , j, k ∈ X

g[5]
k,h(ξ) =

T∑
t=1

ûk,t · ∂

∂λ
log fk,h(yt,h; λ), k ∈ X ,

h ∈ {1, . . . , d}

g[6]
k (ξ) =

T∑
t=1

ûk,t · ∂

∂θ
log ck

(
Fk(yt ; λk) | θ

)
, k ∈ X

where Fk(yt ; λk) = (
Fk,1(yt,1; λk,1), . . . , Fk,d(yt,d; λk,d)

)
. Next, let

g : RN → R
N be defined by g(ξ) = (

g1(ξ), . . . , gN(ξ)
)
, where

gi is the i’th function in the above list. From the description
of the EIFM algorithm in Section 3.2, it can be seen that the
entire (s + 1)’th iteration of the algorithm exactly corresponds
to updating ξ (s) → ξ (s+1) by setting ξ

(s+1)
i as the solution to the

univariate problem gi(ξ
(s+1)
1 , . . . , ξ (s+1)

i−1 , ξ , ξ (s)
i+1, . . . , ξ (s)

N ) = 0
for each i = 1, . . . , N (in practice, many of these sub-updates
are performed in parallel—for example, the sub-updates of the
functions g[3]

1 to g[4]
K,K correspond to Step 2a of the algorithm).

Supposing the sequence {ξ (s)}s≥1 converges to some ξ∗ ∈ R
N ,

the limiting vector will satisfy g(ξ∗) = 0, and the sub-vector
η∗ will be taken as our estimator of η; the statistical properties
of η∗ are studied in Section 4.2. The EIFM algorithm is thus an
example of a nonlinear Gauss-Seidel method, or more generally,
a nonlinear successive over-relaxation (SOR) method (Ortega and
Rheinboldt 2000). Its convergence depends on the behavior of
the Jacobian Jg(ξ) of g in a neighborhood of some solution to
g(ξ) = 0, such that a certain transformation g̃ : RN → R

N of
g is (locally) required to be a contraction mapping with ξ∗ as a
fixed point. The critical theorem is the following:

Theorem 4.1 (Ortega and Rheinboldt (2000), Theorem 10.3.5).
Let g : D ⊂ R

N → R
N be continuously differentiable in an open

https://doi.org/10.1080/01621459.2023.2263202
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neighborhood S0 ⊂ D of ξ∗ such that g(ξ∗) = 0. Decompose
the Jacobian Jg(ξ) = D(ξ) − L(ξ) − U(ξ) where D, L and U are
respectively diagonal, strictly lower triangular, and strictly upper
triangular matrices, and suppose that D(ξ∗) is nonsingular. If
ρ([D(ξ∗) − L(ξ∗)]−1U(ξ∗)) < 1, then there exists an open ball
B(ξ∗, δ) ⊂ S0 such that for any ξ (0) ∈ B(ξ∗, δ), there exists a
unique sequence {ξ (s)} ⊂ B(ξ∗, δ) satisfying the nonlinear SOR
prescription, such that lims→∞ ξ (s) = ξ∗.

See Ortega and Rheinboldt (2000) for a proof. Note here that
for a general matrix A ∈ C

N×N with eigenvalues ν1, . . . , νN ,
the function ρ(A) is defined as max{|ν1|, . . . , |νN |}, the spectral
radius of A. This theorem implies that the EIFM algorithm,
once sufficiently close to a local solution ξ∗ of g(ξ) = 0, will
produce a sequence converging to ξ∗, provided that the spectral
radius of [D(ξ (s)) − L(ξ (s))]−1U(ξ (s)) is less than 1. Verifying
the nonsingularity of D(ξ (s)) is straightforward; it is easy to see
that its first TK + (T −1)K2 +K +K2 diagonal entries are equal
to 1, while the remaining dK + K entries are of the form

T∑
t=1

û(s)
k,t · ∂2

∂λ2 log fk,h(yt,h; λ)

∣∣∣∣∣
λ=λ

(s)
k,h

or

T∑
t=1

û(s)
k,t · ∂2

∂θ2 log ck
(

Fj,1(yt,1; λ(s)
k,1), . . . , Fk,d(yt,d ; λ(s)

k,d) | θ
)∣∣∣∣∣∣

θ=θ
(s)
k

, (16)

which can be calculated directly. Some of the calculations may
be unnecessary with prior knowledge of the involved densities;
for example, the left-hand term in (16) is certain to be negative
if the mapping λ �→ fk,h(y; λ) is known to be strictly concave.
The remaining elements of Jg at ξ (s) and the corresponding
spectral radius ρ([D(ξ (s))−L(ξ (s))]−1U(ξ (s))) can, in principle,
be computed exactly following the s’th iteration of the EIFM
algorithm, although in practice numerical approximation of
these quantities would be considerably easier than explicitly
calculating all of the required derivatives.

4.2. Analysis of the Estimator

We now discuss conditions under which the subvector η∗ of
the solution ξ∗ ultimately produced by the EIFM algorithm—
now regarded as a statistical estimator η∗(Y1:T)—is consistent
for the true parameter η0 for the model described in Section 2.1.
While our analysis of the algorithm’s convergence in Section 4.1
uses the same underlying technique as Elashoff and Ryan (2004)
for their ES algorithm, we cannot emulate their proof of consis-
tency. Their data, assumed to be iid, allow them to use standard
techniques to prove the consistency and asymptotic normality
of their estimator; however, the latent variables in our setup—
namely, the conditional state membership indicators Uk,t ’s and
the Vj,k,t ’s—are not independent due to their strong connection
to the underlying Markov structure of the HMM. We instead fol-
low the approach of Jensen (2011), who studied the asymptotic
properties of M-estimators used for HMMs.

Specifically, we assume that the EIFM algorithm has pro-
duced a vector ξ∗ = (u∗, v∗, η∗) which satisfies g(ξ∗) = 0,
where g is as defined in Section 4.1. To show that this estimator

has desirable asymptotic properties, it suffices to show that the
lower K + K2 + dK + K components of g (corresponding to
the IFM-step of the algorithm) constitute a system of unbiased
estimating equations for η conditional on Y1:T after the latent
variables X1:T have been marginalized out. To do this, we con-
struct a new vector-valued function ψT(η; Y1:T) as follows. First,
we define the random R-valued functions

φ
[3]
k,t (η; Xt) = (δk − Uk,1) · 1t=1, k ∈ X

(17)

φ
[4]
j,k,t

(
η; X(t−1):t

) =
(

γj,k ·
K∑

l=1
Vj,l,t − Vj,k,t

)
· 1t>1, j, k ∈ X

(18)

φ
[5]
k,h (η; Xt , Yt) = Uk,t · ∂

∂λ
log fk,h(Yt,h; λ),

k ∈ X , h ∈ {1, . . . , d} (19)

φ
[6]
k (η; Xt , Yt) = Uk,t · ∂

∂θ
log ck (Fk(Yt ; λk) | θ), k ∈ X ,

(20)

where each Uk,t and Vj,l,t are implicitly functions of Xt and
X(t−1):t respectively, as defined in Section 3.1. Note that only the
functions in (17) and (18) depend on t; the former dependence
is required to capture the initial distribution parameters δ, and
the latter is merely convenient because Vj,k,t is not defined for
t = 1. The remaining functions are free of t because of the time-
homogeneity of the underlying Markov chain. Now, let

φt
(
η; X(t−1):t , Yt

) =
(
φ

[3]
1,t (η; Xt) , . . . , φ[6]

K (η; Xt , Yt)
)


and

ψT(η; Y1:T) =
T∑

t=1
Eη

[
φt

(
η; X(t−1):t , Yt

) | Y1:T
]

. (21)

From (8) to (9) and the algorithm’s convergence to the
fixed point ξ∗, we get u∗

k,t = Eη∗
[
Uk,t | Y1:T

]
and v∗

j,k,t =
Eη∗

[
Vj,k,t | Y1:T

]
, and from these equalities it is easily verified

that η∗ solves ψT(η; Y1:T) = 0. Its use as an estimator of η0 is
justified by the following fundamental fact, whose proof is given
in Section S.4 of the supplementary material.

Theorem 4.2. Under standard regularity conditions, (21) defines
an unbiased estimating equation.

The regularity conditions required in Theorem 4.2 are those
that permit the interchange of differentiation and integration
in certain cases; details are provided in the proof of the theo-
rem. In the presence of iid data, the vector of state-dependent
parameters (λ̃1, . . . , λ̃d, θ̃ ) which solves ψT(η; Y1:T) = 0 is
known to be a consistent and asymptotically normal estimator
of the true data-generating vector of parameters as T → ∞,
whose asymptotic variance is given by the inverse Godambe
information (Joe and Xu 1996). However, in order to account
for the underlying dependence structure of the HMM, stronger
regularity conditions are necessary for the same conclusion to
hold. These conditions are encapsulated in the findings of Jensen
(2011), which establish a central limit theorem for the sequence
of estimators produced by the EIFM algorithm. The relevant

https://doi.org/10.1080/01621459.2023.2263202
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assumptions are restated in Section S.2 of the supplementary
material using our notation. The main theorem is presented
here:

Theorem 4.3. (Jensen 2011, Theorem 1) Define GT =
T−1Covη0

(
ψT(η0; Y1:T)

)
and HT = −T−1

Eη0

[
JψT(·;Y1:T)(η0)

]
.

Under Assumptions 1–3 of Section S.2 of the supplementary
material, there exists a consistent sequence {η̂T} solving
ψT(η; Y1:T) = 0 such that

√
T ·G−1/2

T HT(η̂T −η0)
d−→ N (0, I)

as T → ∞ under η0.

See Jensen (2011) for a proof. In all but the most trivial
situations, the variances and expectations needed to calculate
GT and HT (respectively) are analytically intractable. Therefore,
we suggest two alternative approaches for estimating standard
errors and confidence intervals for η∗. In both cases, we start
by sampling n iid copies (Y(1)

1:T , X(1)
1:T), . . . , (Y(n)

1:T , X(n)
1:T) for some n

from the model under η∗. The first approach involves estimating
GT and HT via Monte Carlo, using η∗ as a plug-in estimator for
η0. Using the samples, we compute the observed information
ĤT = − 1

nT
∑n

i=1

[
J
ψT(·;Y(i)

1:T)
(η∗)

]
and the sample covariance

matrix

ĜT = 1
(n − 1)T

n∑
i=1

(
ψT(η∗; Y(i)

1:T) − ψ̄T(η∗; Y(1:n)
1:T )

)

×
(
ψT(η∗; Y(i)

1:T) − ψ̄T(η∗; Y(1:n)
1:T )

)

,

where ψ̄T(η∗; Y(1:n)
1:T ) = 1

n
∑n

i=1 ψT(η∗; Y(i)
1:T). The entries of

each ψT(η∗; Y(i)
1:T) can be computed by by replacing the Uk,t ’s

and Vj,k,t ’s in (17)–(20) with their conditional expectations given
Y(i)

1:T (i.e., ûk,t and v̂j,k,t in (8) and (9), respectively) calculated
with respect to η∗. While the Jacobian that is required to com-
pute ĤT can be challenging to derive using symbolic com-
putation software, it is typically not difficult to approximate
numerically by exploiting its block diagonal form. Similarly, one
can exploit the block diagonal structure of ĤT itself to reduce
computational overhead in approximating the inverse Godambe
information by Ĥ−1

T ĜTĤ−1
T ; we provide details in Section S.3 of

the supplementary material.
The second approach relies on the parametric bootstrap esti-

mator of Efron and Tibshirani (1994), as described by Zuc-
chini, MacDonald, and Langrock (2017) for HMMs. Specifically,
for each i ∈ {1, . . . , n}, we re-run the EIFM algorithm on
(Y(i)

1:T , X(i)
1:T) to produce a new estimator η̂

(i), and then estimate
the covariance matrix of η∗ via

V̂η∗ = (n − 1)−1
n∑

i=1

(
η̂

(i) − η̄
) (

η̂
(i) − η̄

)


where η̄ = 1
n

∑n
i=1 η̂

(i). The computation time for both methods
is reasonable because the required tasks are parallelizable. Once
the first and second order derivatives are computed, however,
the Monte Carlo method becomes faster to implement since it
does not require re-fitting the model. The latter may also be more
suitable to construct confidence intervals when T is relatively
large due to the use of η∗ as a plug-in estimator, but may also
be prone to numerical errors when the true η0 lies near the
boundary of the parameter space.

5. Simulations and Applications

5.1. Simulation Studies

The central aim of our simulation studies was to demonstrate
that introducing copulas into the HMM formulation is advan-
tageous when the dependence structure between observed vari-
ables is informative about the latent process, and that it is not
harmful otherwise. Moreover, our experiments provide a proof
of concept for the EIFM algorithm and, in our second simula-
tion, they demonstrate its performance under copula misspeci-
fication.

In the first simulation study, we examined the convergence
and robustness of the EIFM algorithm by applying it to a data-
generating model with state-dependent distributions featuring
several Archimedean and non-Archimedean copulas and three-
parameter skew-normal marginals, the latter family written gen-
erally as SN(ξ , ω, α). The number of states is K = 4, and the
model has the stochastic representation

Yi | (Xi = k) ∼ Ck
(
SN(ξk,1, ωk,1, αk,1), SN(ξk,2, ωk,2, αk,2) | τk

)
(22)

for k ∈ {1, . . . , 4}, with copula families Ck and individual state-
dependent parameters as specified in Table 3 in Section S.5.1
of the supplementary material. The copula families and the
strengths of dependence (as parameterized here by Kendall’s tau)
are both unique across states, as are the means of the marginal
distributions; the state-dependent marginals also take on various
combinations of positive and negative skewness in the first and
second components, respectively. We chose skewness parame-
ters of relatively high magnitude in order to avoid theoretical
issues when these parameters are close to 0; for example, the
Fisher information for the general SN(ξ , ω, α) model is known
to be singular at α = 0 (Arellano-Valle and Azzalini 2008).
The scale parameters ωk,h were all fixed at 1, as larger values
make estimation challenging even in the iid case (in practice,
one could rescale the data prior to estimation and then adjust the
resulting parameter estimates). The underlying Markov chain
had initial distribution δ = (1, 0, 0, 0) and each k’th row of its
transition matrix was constructed by applying k circular shifts
to the vector (0.1, 0.2, 0.3, 0.4).

We generated T = 1500 observations from this model
using the VineCopula (Nagler et al. 2023) and sn (Azzalini
2022) packages in R. We adopted the k-means algorithm to
obtain initial estimates for the parameters of the state-dependent
distributions, initializing δ and each γ k,· at small perturbations
of (1/4, 1/4, 1/4, 1/4). We ran the EIFM algorithm using a stop-
ping rule with tolerance ε = 10−3, and then generated con-
fidence intervals using both methods described in Section 4.2
with 100 resamples of the data for each. The estimates produced
by the k-means algorithm and the EIFM algorithm, and the
resulting 95% confidence intervals produced by both methods,
are shown in Section S.5.2 of the supplementary material; all fig-
ures were rounded to four decimal places. The tables also show
empirical coverage probabilities of the bootstrap intervals based
on 100 independently generated intervals, which generally devi-
ate only narrowly from the expected value of 0.95 (certain off-
diagonal elements of � have somewhat lower coverage, which
may be due to some generated chains not transitioning enough
to yield robust estimates). We repeated the entire experiment
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using tolerance ε = 10−4; the corresponding tables may also
be found in Section S.5.2 of the supplementary material.

In order to empirically assess the convergence rates of the
EIFM algorithm when presented with differing amounts of data
and different stopping rule tolerances, we re-generated data Y1:T
from the same model with lengths T ∈ {500, 1000, 2500, 3000},
and for each of these, we ran k-means clustering followed by
the EIFM algorithm with tolerances ε ∈ {0.01, 0.00001}. We
tracked the number of iterations required before convergence, as
well as the classification accuracy from using the initial k-means
clustering and local decoding (using the parameter estimates
provided by the EIFM algorithm); these figures are given in
Table 1. Unsurprisingly, the number of iterations increases as
the stopping rule becomes more stringent, but increasing the
number of observations T has little effect on either the number
of iterations or the accuracy of local state decoding.

Our second simulation study tested the EIFM algorithm on
higher dimensional data with two hidden states. The state-
dependent distributions were 5-dimensional Markov trees (see
Figure 2): special cases of regular vine copulas in which all con-
ditional relationships are independent (Brechmann, Czado, and
Aas 2012), whose specifications include 4-dimensional param-
eters. The extension to more general vine copulas requires the
specification and sequential updating of all conditional pair cop-
ulas within the vine structure, which can be accomplished using
the clustering ideas of Sahin and Czado (2022). The marginal
distributions, all of the form N (μk,h, 1), were intentionally cho-
sen “close” to each other to force the copula dependence struc-
ture to carry a higher discrimination load. See Section S.5.3 of
the supplementary material for the complete model specifica-
tion. Further experiments suggested that when several marginal
means are identical across states, the algorithm struggles to
decode accurately and must be compensated for by stronger
dependence between all pairs or a higher persistence in each
state; this behavior was consistent with the results of the experi-
ments in Section 2.2.

We generated a time series of length T = 500 from
the model, and assessed the EIFM algorithm’s capacity for
parameter estimation and state classification. Optimal values
for the μk,h’s are available in closed form at each iteration
of the algorithm, thereby limiting potential obstacles in the
estimation of the copula parameters in Step 2c of the algorithm.
To provide initial values for the algorithm, we followed the

Table 1. For each T ∈ {500, 1000, 2500, 5000}: (Top rows) Number of iterations
taken by the EIFM algorithm applied to Y1:T before stopping using tolerances in
{0.01, 0.00001}. (Bottom rows) Classification accuracy of initial k-means clustering
and local decoding with parameter estimates provided by the EIFM algorithm.

T : 500 1000 2500 5000

Tolerance: 0.01 14 24 23 15
0.00001 230 115 460 269

Classifier: k-means 0.9020 0.9090 0.9200 0.9196
Local decoding 0.9640 0.9640 0.9696 0.9732

two-step approach described in Section 3.2, choosing as our
initial clustering method an EM algorithm that assumed the
state-dependent distributions to be multivariate normal with
independent marginals. The entire process was replicated
100 times; we show boxplots of the resulting state-dependent
parameter estimates in Figure 3. The parameter estimates
are all very close to their corresponding true values. We also
checked the accuracy of the state classifications (via local state
decoding) made by the fitted misspecified independence model
and the fitted data-generating model. In every replication,
the latter was strictly more accurate than the former, with
an average accuracy of 99.41% versus 84.82%. These results
are consistent with the fact that the state-dependent marginal
distributions are relatively uninformative of the underlying
states, similar to the numerical example of Section 2.2. Figure 4
shows associated boxplots; these demonstrate that while
the accuracy of the initial classifications varied substantially
between replicates, that of the final classifications was highly
consistent.

5.2. Occupancy Detection

The ability to detect whether a room is occupied using sensor
data such as temperature and CO2 levels can reduce unnecessary
energy consumption by automatically controlling HVAC and
lighting systems, without the need for motion detectors or
other methods that could constitute an invasion of privacy
(Candanedo and Feldheim 2016). We applied the model to three
publicly-available labeled datasets presented by Candanedo
and Feldheim (2016) consisting of three multivariate time
series of four environmental measurements (light, temperature,
humidity, CO2) and one derived metric (the humidity ratio
W, described in Candanedo and Feldheim 2016) captured in
an office room in Belgium, along with indicators for whether
the room was occupied at the time of each measurement.
Candanedo, Feldheim, and Deramaix (2017) proposed an
analysis that specified various HMMs with bivariate normal
distributions and independent margins; model performance
was assessed by comparing predictions made by local decoding
to the ground-truth labels via the zero-one loss.

We illustrate our model using the same data, processed in the
same manner as Candanedo, Feldheim, and Deramaix (2017)
by averaging the data across five-minute periods, and then cal-
culating the lagged differences to obtain time series of lengths
1629, 533, and 1951, respectively, with bivariate observations
Yt = ((CO2)t , Wt · 106). The first dataset was used for training.
We used the k-means algorithm to partition the data into initial
“unoccupied” and “occupied” subsets, and assigned the former
label to the subset with more elements. We then chose state-
dependent copula and marginal families. The state-dependent
copula families were determined by following the approach
outlined by Hofert et al. (2018). First, pseudo-observations were
computed for each state (see Figure 5) so that analysis could
be performed independently of the margins. Second, statistical

Figure 2. Markov trees for state 1 (left) and state 2 (right).
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Figure 3. Estimates of marginal parameters (top) and copula parameters (bottom) for the Markov trees study, based on 100 independent simulations and EIFM algorithm
runs.

Figure 4. Accuracy across repetitions using the true data-generating model (EIFM)
and the initial independence model (EM) for the Markov trees study.

tests of uncorrelatedness, exchangeability, radial symmetry, and
extreme-value dependence were performed for each state as
implemented in the copula package (Hofert et al. 2020); see
Chapter 5 of Hofert et al. (2018) for more details. From these
tests performed at the 95% confidence level, uncorrelatedness
was ruled out in both states, no evidence presented against
exchangeability in either state, and strong evidence presented
against radial symmetry and extreme-value dependence in the
unoccupied state (but no evidence presented against them in the
occupied state).

Finally, we selected several common families of bivariate
parametric copulas (including four of the five “classical”
Archimedean families, the Gaussian and t families, and several
extreme-value families and two-parameter families, as well as
their rotated versions) not immediately ruled out by the above
tests. For each, we computed the Akaike information criterion
(AIC) for each state, as shown in Table 13 of Section S.5.4 of
the supplementary material (for brevity, we have omitted AICs
for the rotated copula families, which were identical to their
non-rotated counterparts). The same table shows that the AIC
selected the BB7 family for the unoccupied state, and the Tawn
(type 1) family for the occupied state; both are two-parameter

families (Joe 2014). We also chose marginal distributions
using basic model selection; since marginal selection was not
the focus of our work, we limited our choices of marginal
distributions to several continuous exponential families and
evaluated them using the AIC and basic visual diagnostics.
Ultimately, normal distributions yielded the best results for both
marginal components within both states.

We labeled the unoccupied state as “1” and the occupied
state as “2”, so that the model had the stochastic representation
Yt | (Xt = k) ∼ Ck

(
N (μk,1, σ 2

k,1),N (μk,2, σ 2
k,2) | θk,1, θk,2

)
for k ∈ {1, 2}, where C1 = CBB7 and C2 = CTawn (type 1).
Parameter initializations were based on clustering results and
empirical Kendall’s taus produced by the k-means algorithm, as
described in Section 3.2; the EIFM algorithm then converged
after 14 iterations. Tables of parameter estimates produced by
the algorithm, including those for the initial distribution of the
Markov chain δ and the chain’s transition probability matrix �,
are given in Tables 14–15 of Section S.5.4 of the supplemen-
tary material, along with an estimate of Kendall’s tau for each
state; we also include 95% confidence intervals produced by
both methods described in Section 4.2, with standard errors for
Kendall’s tau produced using the delta method. Interestingly, 0
is contained in both intervals for θ̂1,2, suggesting that the B5
subfamily (obtained as θ1,2 → 0 (Joe 2014)) may be a suitable
model for the unoccupied state; similarly, 1 is contained in
the intervals for θ̂2,2, suggesting the Gumbel subfamily for the
occupied state.

While the primary purpose of our study was to understand
the data-generating mechanism by estimating the copula-
within-HMM, the estimated model also allowed us to classify all
three datasets and compare the model’s predictive performance
with that of a more basic model featuring independent
marginals, fitted using the standard EM algorithm for HMMs.
We used local decoding to classify all three datasets, and assessed

https://doi.org/10.1080/01621459.2023.2263202
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Figure 5. Pseudo-observations computed from unoccupied (Panel 1) and occupied (Panel 2) subsets of the data, as determined by an initial k-means clustering algorithm.

Table 2. Overall state classification accuracy for the occupancy data, using k-means
clustering and local decoding via independence- and copula-based HMMs.

Classifier Train Test 1 Test 2

k-means clustering 0.865 0.818 0.788
HMM with independent marginals 0.895 0.846 0.679
HMM with BB7 and Tawn (type 1) copulas 0.900 0.852 0.690

the accuracy of these classifications via the zero-one loss. The
performance of both models is shown in Table 2, with results
similar to those in Candanedo, Feldheim, and Deramaix (2017).
In all cases, as expected, the performance of the copula model
exceeded that of the independence model. For comparison,
the top row of Table 2 also displays the performance of k-
means clustering, which outperformed both independence- and
copula-based HMMs on the third dataset; this is to be expected,
however, since Candanedo and Feldheim (2016) note that these
data were collected under different conditions from the first two
datasets.

6. Discussion

This article proposes a copula-based approach for integrating
information from multivariate observations in an HMM setting.
Dependence between the components of the observed vectors is
captured using copulas, and we show that ignoring this depen-
dence can deteriorate the predictive capacity of the statistical
model. We meet the computational challenges of fitting the
copula-within-HMM with a new iterative algorithm, the EIFM
algorithm, which is broadly similar to the EM algorithm but
differs in essential ways; most importantly, it allows for compu-
tation when other traditional methods fail.

The EIFM algorithm allows for development of other com-
mon HMM extensions when considering copula-based state-
dependent distributions. One of the most common extensions
is to assume a time-inhomogeneous state process such that the
dynamics of the transition probability matrix � depend on time-
varying covariates of interest. A related extension is to consider
state-dependent parameters that vary over time. However, once
the copula is introduced, variations of the HMM will usually
require application-specific customizations; for example, one
might want to allow for situations in which components of the
vector of observations are observed at different times.

Overall, we aim to challenge the assumption of contempo-
raneous conditional independence often made in HMM set-

tings when working with multivariate data. We demonstrate the
utility of several Archimedean and non-Archimedean copulas
in an HMM setting and also demonstrate that with the aid
of labeled data, we can choose different copula families across
states. Our work here is limited to continuous-valued observa-
tion processes; discrete margins pose a fundamental problem
in copula modeling, for it is known that any copula applied
to discrete margins cannot be uniquely identified (Genest and
Nešlehová 2007). Moreover, Trivedi and Zimmer (2017) have
shown that in the iid setting, the nonuniqueness of the copula
leads to biased estimation of the copula parameter θ ; we have
observed that such behavior carries over to the EM and EIFM
settings as well (although the EIFM algorithm still appears to
produce unbiased marginal parameter estimates, as one might
expect). Further, the support of the observation process may
not always be the same across dimensions. For example, having
a multivariate process where one dimension is discrete-valued,
another continuous-valued and a third circular-valued is not
uncommon in ecological and environmental applications of
HMMs (Hodel and Fieberg 2022). Such situations will require
customizing copula techniques that have been developed for
mixed or discrete variables.

Supplementary Materials

The supplementary materials include R code and data used in the paper,
details regarding the implementation of the EIFM algorithm (Section S.1),
a list of regularity conditions sufficient for the Theorem 4.3 (Section S.2),
details regarding the Monte Carlo approximation of the inverse Godambe
information matrix described in Section 4.2 (Section S.3), proofs of results
(Section S.4), and additional material related to Section 5 (Section S.5).
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