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Abstract

Rich data generating mechanisms are ubiquitous in this age of information
and require complex statistical models to draw meaningful inference.While
Bayesian analysis has seen enormous development in the last 30 years, bene-
fitting from the impetus given by the successful application of Markov chain
Monte Carlo (MCMC) sampling, the combination of big data and complex
models conspire to produce significant challenges for the traditionalMCMC
algorithms. We review modern algorithmic developments addressing the
latter and compare their performance using numerical experiments.
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1. INTRODUCTION

The data science revolution has led to multiple pressure points in statistics. A statistical sam-
ple from a large population exhibits, in the twenty-first century, very different characteristics than
what onewould have seenmerely a few years ago.The ubiquitous and almost continuous recording
of many of our activities has made it relatively easy to collect enormous amounts of informa-
tion that require analysis and interpretation. This drastic increase in data volume imposes sober
reevaluations of most classical approaches to statistical inference.

The computational side of a Bayesian statistician’s toolbox is perhaps most challenged by these
developments. The impetus of Bayesian statistics that has been felt since the early 1990s has been
given by the spectacular advances in computation, especially those around Markov chain Monte
Carlo (MCMC) sampling. Thanks to methods in this class of algorithms, the statisticians have
been liberated to think freely about the Bayesian model components used for a given problem,
without worrying about the mathematical intractability of the analysis.

Indeed, given a data set y, most of the pairings of a sampling density, f (y|θ ), and a prior, p(θ ),
result in a posterior distribution,

π (θ |y) = p(θ ) f (y|θ )∫
p(θ ) f (y|θ )dθ , 1.

that cannot be analyzed directly, usually because the denominator in Equation 1 cannot be com-
puted analytically. The latter fact impedes the calculation of quantities of interest related to π ,
most of which can be expressed as

I =
∫
h(θ )π (θ |y)dθ 2.

for some function h that is determined by the question of interest. For instance, if θ is univariate
and we let h(θ ) = θ r in Equation 2, then I is equal to the rth moment of π , or h(θ ) = 1(−∞, t](θ )
leads to the cumulative distribution function of π at a point t.

The classical Monte Carlo method, devised by Metropolis & Ulam (1949) in the middle of
the twentieth century, relies on sampling independently {θ1, . . . , θm} from distribution π and
approximating I with

Î = 1
m

m∑
k=1

h(θk ). 3.

However, the unknown constant in Equation 1 creates a knowledge gap that anMCMC algorithm
closes by constructing aHarris-recurrent,π-irreducible, aperiodicMarkov chain whose stationary
distribution is exactly the posterior distribution π (θ |y). The values taken by the chain make up
the samples θ1, . . . , θm. A couple of issues emerge immediately. First, because π is the chain’s
stationary distribution, the samples will be approximatively distributed with π only after the chain
has entered its stationary regime. Second, due to the Markov property, the samples are typically
positively correlated (although for exceptions, see Frigessi et al. 2000, Craiu &Meng 2005) which
reduces the amount of information they contain about π . To see that, let us imagine the extreme
case in which the m samples are perfectly correlated, in which case they would provide very little
information about π .

The success MCMC sampling had in boosting the use of Bayesian models is largely due to
the ease of implementation of some of its most popular algorithms. For instance, the Metropolis–
Hastings (MH) algorithm (Metropolis et al. 1953, Hastings 1970) can be implemented using the
following recursive procedure.

■ Step 0: Initialize the Markov chain at θ0 and choose a proposal density q(·|ζ ) that may or
may not depend on ζ .
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■ Step t: At the tth step (0 ≤ t ≤ m − 1) do:

PROP: Draw proposal ωt from the density q(·|θ t);
ACC: Set

θt+1 =
{

ωt with probability αt

θt with probability 1 − αt
where

αt = min
{
1,

π (ωt |y)q(θt |ωt )
π (θt |y)q(ωt |θt )

}
. 4.

Because of the form of the acceptance probability (Equation 4), its calculation is not prevented
by the unknown denominator in Equation 1. Nevertheless, computation of Equation 4 hinges on
the ability to calculate the sampling density f (y|θ ) for any parameter value θ and to be able to
do it m times. The challenges posed to Bayesian computation by the modern data and modeling
environment have their roots in this implicit assumption.

In very broad strokes, one can speak of two main challenges in modern Bayesian computation.
The first one concerns the computational price of calculating a likelihood when the data are mas-
sive, say of order N (i.e., of the order of hundreds of millions or even billions). Even in the tame
case of independent and identically distributed (i.i.d.) observations, in order to know Equation 4,
we will have to compute a likelihood (or sampling density) that involves N terms, and this will
have to be repeated each time a new MCMC sample is produced. The cumulative cost is unsus-
tainable, as a single MCMC iteration can take days. A second challenge emerges when the model’s
complexity keeps up with the data volume and yields an intractable likelihood so that Equation 4
simply cannot be computed analytically. Finally, a meta-challenge appears in Bayesian analyses
that merge massive data with intractable models.

This article discussesMCMC-adjacentmethodology that is used to alleviate the pressure posed
on Bayesian computation by the above challenges. Space constraints impede the presentation of
details and variants, but in all cases we present the main ideas and refer the interested reader to
the relevant literature. In order to gauge their computational efficiency, we run numerical experi-
ments where, using publicly available software packages, the algorithms are implemented on two
statistical models.

In the next section we describe in more detail the challenges we just described, and Section 3
summarizes some of the solutions proposed to address them.When big data and complex model
challenges combine, new solutions are needed.We discuss in Section 4 some recent contributions
to address this double jeopardy. Numerical experiments meant to illustrate and compare different
algorithms are reported in Section 5. The article ends with comments and discussion of future
directions for research.

2. MODERN CHALLENGES FOR BAYESIAN COMPUTATION:
MASSIVE DATA

Consider data y collected on N independent items so that y = {y1, . . . , yN } ∈ XN , and denote by
f (y|θ ) the sampling distribution that depends on parameter θ � 2 � Rd. At each iteration of
the MH sampler, one needs to compute f (y|ωt ) = ∏N

k=1 f (yk|ωt ), where ωt is the proposal in
Equation 4. Modern applications often rely on data that are large enough so that the repeated
calculation of f (y|ωt) is impractical or even impossible. It is also not unusual for data size to be
so large as to prohibit storage on a single machine, so that computation of the likelihood also
involves repeated communication between multiple machines, thus adding significantly to the
computational burden.
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Prompted by the obstacle of large data, computational Bayesians have designed a number of ap-
proaches to alleviate the problem.Two general ideas currently stand out in terms of popularity and
usage: divide and conquer (DAC) strategies and subsampling with minimum loss of information.

2.1. Divide and Conquer

The DAC approach is based on partitioning the sample into a number of subsamples, called
batches, that are analyzed separately on a number of workers [central processing units (CPUs),
graphics processing units (GPUs), servers, etc.]. After the batch-specific estimates about the pa-
rameter of interest are obtained, the results are combined so that the analyst recovers a large part
of—or, ideally, all of—the information that would have been available if the whole sample were
analyzed in the usual way, on a single machine.While this idea seems applicable in a wide range of
scenarios, there are a couple of constraints that restrict its generality.First, the procedure is compu-
tationally effective if it is designed to minimize, or preferably eliminate, communication between
the workers before combining the batch-specific results. Second, it is often difficult to produce an
accurate assessment of the resulting loss of information at the combining stage. Some of the first
proponents of DAC for MCMC sampling were Neiswanger et al. (2013), Scott et al. (2016), and
Wang &Dunson (2013). In their approach, the subposterior distribution corresponding to the jth
batch is defined as

π ( j)(θ |y( j) ) ∝ f (y( j)|θ )[p(θ )]1/J, 5.

where f and p are as in Equation 1, y( j) is the data that were assigned to batch j, 1 ≤ j ≤ J, and
J is the total number of batches. With this choice, one immediately gets that

∏J
j=1 π ( j) ∝ π (θ |y).

Both Neiswanger et al. (2013) and Scott et al. (2016) consider ways to combine samples from
the subposteriors π ( j)(θ ), 1 ≤ j ≤ J, in situations in which all posteriors, batch-specific and full
data ones, are Gaussian or can be approximated by mixtures of Gaussians. In this case, one can
demonstrate that a weighted average of samples from all the π ( j)s have density π . The use of
the Weierstrass transform for each posterior density, proposed by Wang & Dunson (2013), ex-
tends the range of theoretical validity beyond Gaussian distributions. The authors also establish
error bounds between the approximation and the true posterior. Nemeth & Sherlock (2018) use
a Gaussian process (GP) approximation of each subposterior. Once again, the Gaussian nature of
the approximation makes recombination possible and relatively straightforward. Limitations of
the method are strongly linked with those of GP-based estimation. For instance, when the sub-
posterior samplers are sluggish, large MCMC samples might be needed, which, in turn, makes
the calculation of the GP-based approximation very expensive. The idea of using the values of the
subposterior at each MCMC sample is adopted also by Changye & Robert (2019), who propose
the subposteriors π ( j) ∝ {[p(θ )]1/J f (y( j)|θ )}λ j . The scale factor λj is used to control the uncertainty
in the subposterior. Alternative ways to define the subposteriors are produced by Entezari et al.
(2018), who use π ( j) ∝ p(θ )[f (y( j)|θ )]J. The intuitive idea is to match the size of the original sam-
ple and the batch-specific one. Their approach has been applied successfully to Bayesian additive
regression tree (Chipman et al. 2010, Pratola 2016) models.

2.2. Subsampling

Subsampling approaches are mostly developed under two assumptions. The first one is that with
massive data one expects a certain amount of redundancy, so it is possible to obtain the same
likelihood when we eliminate a proportion of the sample as long as the remaining observations
are properly weighted. A simple illustration is one in which R observations are identical, so that
R − 1 of them can be taken out of the likelihood calculation if the term corresponding to the
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remaining one is raised to power R. The second idea is that one might use only a small percentage
of the sample to find accurate (e.g., unbiased) approximations of the quantities needed to run
an MCMC sampler. For instance, in the case of an MH sampler, the pseudomarginal approach
of Andrieu & Roberts (2009) demonstrates that the stationary distribution of the chain is the
same when the likelihoods involved in Equation 4 are replaced with unbiased estimators. The
pseudomarginal idea continues to influence the subsampling methodology for MCMC. While
some divide the subsampling methods into exact and approximate, we refrain from using similar
taxonomy because, in our opinion, all such methods introduce some level of approximation into
the computation of interest.

Early efforts include those of Korattikara et al. (2014) and Bardenet et al. (2014), who propose
estimating the acceptance probability (Equation 4) using only a random subset of the data. The
latter authors demonstrate that, with probability higher than a threshold set in place by the user,
their method yields estimates that are equal to the ones produced by the full data likelihood.
However, one does not know in advance the size of the sample needed at each iteration and thus
must be able, in principle, to access most of it at all times. A review of early subsampling methods
is provided by Bardenet et al. (2017).

2.2.1. Coresets. The process of establishing which sample points are redundant must have the-
oretical backing, lest it lead to a very different posterior distribution without any hope to control
or assess the error incurred.The coreset approach of Campbell & Broderick (2019) offers theoret-
ical guarantees about the quality of the approximation resulting from sample reduction. Consider
the log-likelihood obtained from N i.i.d. observations,

l (θ |y) =
N∑
i=1

li(θ |yi ), 6.

where li(θ |yi)= log f (yi|θ ). The aim of the coreset method is to find a set of weights {wi : 1≤ i≤N},
most of them zero, so that

∥3(θ |W, y) − l (θ |y)∥ ≤ ϵ∥l (θ |y)∥, 7.

for all θ � 2, whereW = (W1, . . . ,WN) is the vector of weights, and 3(θ |W, y) = ∑N
i=1Wili(θ |yi )

is the weighted log-likelihood of the coreset. The weights found by Campbell & Broderick (2019)
are defined as

Wi = σ

σi

Mi

M
, 8.

where

σi = sup
θ∈2

∥∥∥∥ li(θ |yi )
l (θ |y)

∥∥∥∥ 9.

is called the sensitivity of the ith observation, σ = ∑N
i=1 σi, M is the size of the coreset, and

(M1, . . . ,MN ) ∼ Multi (M, { σi
σ
: 1 ≤ i ≤ N}) are multinomial draws. One can think of the sen-

sitivity in Equation 9 as a measure of the influence of the ith observation on the whole likelihood
as θ varies. As expected, the algorithm will retain observations that correspond to relatively higher
likelihood values, but more importantly, it allows some evaluation of the error incurred when the
sample is reduced. The ideas that led to the weights in Equation 8 illustrate the general principles
of the approach, but improvements are possible when one considers other norms in Equations 7
and 9. For instance, Campbell & Broderick (2019) consider the lis as vectors in a Hilbert space,
link the norm to the inner product in the space, and include directionality in the selection of the
coresets. The latter allows replacing the simultaneous selection of the coreset elements by a more
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intuitive procedure in which samples are sequentially added to minimize the residual error. In
Section 3 we implement the coreset approach for logistic regression, as presented by Huggins
et al. (2016). For this model, the coreset is built along the principles delineated above and requires
some specific tuning. The parameter space is taken to be a Euclidean ball of radius R, which is a
reasonable working assumption in the case of a logistic regression with standardized covariates.
The sensitivity measure for each point is modified after K-clustering the entire sample. A measure
of spread within each cluster is used to construct upper bounds for the sensitivity of each point
in the sample. The intuition guiding this choice is that clusters whose data vectors are tightly
bundled together will be well represented in the coreset by only a few points, while clusters with
more spread will need to contribute more points. Overall, the coreset construction is intuitive
and offers many possible directions for future research. The biggest challenge is the evaluation
of approximating error induced in the posterior when replacing the full sample by the coreset,
although some promising initial results exist (Manousakas et al. 2020).

2.2.2. Random subsampling. One can think of coreset subsampling as a static approach, in
the sense that the subsample is selected once and the Bayesian analysis is subsequently conducted
using the coreset in lieu of the original sample. A more dynamic approach is considered by Quiroz
et al. (2018), who propose to use all the data for inference, just not at once. Their idea is to use
a different subset of the data each time the MCMC chain is updated. For instance, in the case
of an MH sampler, a different subset of individuals will contribute to the likelihood needed in
the calculation of Equation 4 at each iteration. Following the development of pseudomarginal
strategies, Andrieu & Vihola (2015) studied the convergence properties of an MH or a random
walk Metropolis (RWM) sampler in which the likelihood in Equation 4 is replaced by an unbiased
estimator. They have shown that the efficiency of the MCMC sample increases when the variance
of the unbiased estimator decreases.

The use of subsampling within MCMC proposed by Quiroz et al. (2018) can be applied quite
generally, and it is attractive because it addresses both the construction of the unbiased estimator
for the likelihood and the reduction of its variance.

Given a random subsample of y of size m, yu = {yu1 , . . . , yum }, where u = {u1, . . . , um} are i.i.d.
random variables uniformly distributed over {1, . . . ,N}, the estimator

lm(θ |yu ) = 1
m

m∑
k=1

luk (θ |yuk ) 10.

is unbiased for the average log-likelihood 1
N l (θ |y). However, when m is much smaller than N, it

has a large variance, subjecting the pseudomarginal chain that uses Equation 10 instead of the
full-sample likelihood in Equation 4 to an increased risk of poor mixing, since an unusually high
value of the likelihood at the current state of the chain will make it unlikely to accept a proposal.
A reduction in variance is desirable and can be achieved via control variates, q(θ ) = {q1(θ ), . . . ,
qN(θ )}, and via a modified estimator of l(θ |y) in Equation 6,

l̃m(θ |yu,q) =
N∑
i=1

qi(θ ) + N
m

m∑
k=1

(luk (θ |yuk ) − quk (θ )). 11.

The notation implies that q might change with θ . Indeed, when the likelihood is unimodal,
the construction of the control variate follows that of Bardenet et al. (2017), who use for each θ a
Taylor series expansion of l(θ |y) around a fixed point, θ∗, which is a point centrally located in 2

(e.g., the maximum likelihood estimate), so that for all 1 ≤ i ≤ N,

qi(θ ) = li(θ∗|yi ) + (θ − θ∗ )T
d
dθ
li(θ∗|yi ) + 1

2
(θ − θ∗ )T

d2

dθ2
li(θ∗|yi )(θ − θ∗ ). 12.
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This control variate construction is called parameter expanded by Quiroz et al. (2018) because it
is obtained using an expansion in the parameter space. With this modification, running an MH
chain for, say, M iterations requires the evaluation of N + mM item-specific likelihood terms,
li(θ | yi), for Equation 11 andMN for Equation 6. This can translate into significant reduction of
computation effort when m j N.

When the likelihood is multimodal or the Taylor approximation is poor, for example, when
θ and θ∗ are distanced, the authors discuss an alternative construction that identifies a number
of centroids y∗

1 , . . . , y
∗
r via clustering of the data and use Taylor series expansions around each

centroid to define the so-called data expanded control variates.
We remark that this is not a standard application of the control variate swindle in Monte Carlo

(Fieller & Hartley 1954) since, for instance, the random variables defined in Equation 12 are not
identically distributed. The reduction in variance requires a careful derivation in which the source
of variability is provided by the finite distribution of the random vector (u1, . . . um). The latter can
be sampled at random at each iteration, or one can use the ideas of Deligiannidis et al. (2018)
and allow dependence between the us in consecutive iterations to further reduce the variance of
Equation 11. In Section 5, we implement the subsampling method with random or correlated
selection of indices and parameter or data expanded control variates.

Finally, we should also point out that while the estimators discussed are unbiased for the log-
likelihood, this does not translate into an unbiased estimator for the likelihood itself. Therefore,
an approximate correction term is applied to reduce the bias but does not dissolve it, which
means that the pseudomarginal theory cannot be applied mutatis mutandis in this case. There-
fore, the target distribution of the chain is perturbed, and one must assess the size of the error
incurred. The authors produce a bound of the perturbation error and provide empirical evidence
that their bound is conservative. Additional details and derivations are provided by Quiroz et al.
(2018).

3. MODERN CHALLENGES FOR BAYESIAN COMPUTATION:
INTRACTABLE LIKELIHOODS

So far we have looked at the pressure posed by the size of the sample on Bayesian computation.
However, there are other hurdles that accompany a massive sample. Often, large data imply more
information, which, in order to be used fully, requires a more complex model. As data become
richer and modelers more ambitious, the likelihoods tend to get intractable, such as the ones used
in population genetics (Pritchard et al. 1999, Beaumont et al. 2002), groundwater studies (Cui
et al. 2018), hurricane surges (Plumlee et al. 2021), or climate change scenarios (Oyebamiji et al.
2015).

At first sight, it can be surprising that Bayesian inference can still be conducted when the likeli-
hood is intractable. The likelihood provides a crucial analytical link between any parameter value
and the probability of observing a given data set. When such a link is not analytically tractable, it
must be inferred from simulations. Central to the latter approach is the ability to sample, given
any value of the parameter, pseudodata from the model. To provide an intuition, imagine that in-
finite computational resources are available. Then one can see that for any θ � 2, it is possible
to simulate enough pseudodata sets to approximate at any degree of precision the distribution
of the observed data f (y0|θ ), essentially filling the void left by the intractability of the likelihood.
However, since computational resources are not infinite, ingenious ways are needed to reduce
the computational burden. We discuss here two algorithms, approximate Bayesian computation
(ABC) and Bayesian synthetic likelihood (BSL), that have gained popularity in the statistical and,
more generally, the scientific communities.
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3.1. Approximate Bayesian Computation

Our discussion of ABC will be brief, given the recent and excellent reviews of Robert (2014) and
Sisson et al. (2018a) and the comprehensive handbook of ABC (Sisson et al. 2018b).

The ABC algorithm was initially proposed as an accept/reject sampler (Tavaré et al. 1997).
Given any θ∗ sampled from the prior p(θ ), it assumes that is possible to generate pseudodata y
from f (y|θ∗). If the pseudodata and the original data are close enough, then the parameter θ∗ is an
approximate draw from the posterior π (θ |y0). We next frame “close enough” and “approximate
draw” in precise mathematical terms and provide some justification for our choices.

Given ϵ > 0, a distance d :Rp × Rp → R+, and summary statistic S(y) � Rp, the ABC algorithm
has the following steps:

1. Sample θ∗ ∼ p(θ ) and synthetic data y ∼ f (y|θ∗).
2. If d(S(y), S(y0)) ≤ ϵ then accept θ∗ as a sample from the approximate posterior π ϵ(θ |S(y0)),

the marginal (in θ ) of the joint distribution

πϵ (θ , y|S(y0 )) ∝ p(θ ) f (y|θ )1{d(S(y),S(y0 ))<ϵ}. 13.

If it is possible to have y= y0 (for instance, if y0 is a discrete random variable with finite support),
we can choose S(y) = y and ϵ = 0, and then the approximate posterior is the true posterior, i.e.,
π ϵ(θ |y0) = π (θ |y0). This is easier to see when both θ and y take discrete values. Then, one can
easily see that ABC will draw θ0 with probability

Pr(θ = θ0 )∝ p(θ0 ) Pr(y = y0|θ = θ0 ) ∝ π (θ0|y0 ), 14.

where Equation 14 holds because of the algorithm’s construction with S(y) = y and ϵ = 0. The
above can be easily extended to the case when S is a sufficient statistic. In general, models with
the level of complexity that requires ABC will not have a low-dimensional sufficient statistic so
the choice of S is central to the performance of the ABC algorithm (Fearnhead & Prangle 2012,
Marin et al. 2014). The accept/reject form of the ABC sampler makes it inefficient when the prior
and posterior place most of their mass on different regions of 2. Recognizing this,Marjoram et al.
(2003) proposed an ABCMCMC algorithm that relies on building an MH transition kernel, with
state space {(θ , y) ∈ Rd × X n}, proposal distribution at iteration t, q(θ |θ t) × f (y|θ ), and target

πϵ (θ , y|S(y0 )) ∝ p(θ ) f (y|θ )1{d(S(y),S(y0 ))<ϵ}, 15.

for which the acceptance probability in Equation 4 can be computed exactly, because the in-
tractable terms involving the likelihood, f (y|θ ), cancel out. Alternatives to this include the
pseudomarginal approach of Lee et al. (2012) and the sequential Monte Carlo implementation
of Sisson et al. (2007), Lee (2012), and Filippi et al. (2013).

3.2. Bayesian Synthetic Likelihood

Indirect inference was developed in econometrics (Smith 1993, Gourieroux et al. 1993) for com-
plex data models that are intractable but can be sampled from. The central tenet is that a complex
model of interest, f (y|θ ), can be well approximated using a tractable sampling model g(y|ϕ) where
dim(ϕ) > dim(θ ). In other words, the complex model can be approximated by a simpler model
whose parameter space is of larger dimension and has a tractable likelihood. This greatly simpli-
fies the original problem since, for instance, Bayesian estimation of θ is possible if one estimates
its functional connection with ϕ (see, for instance, Gallant & McCulloch 2009).

The BSL algorithm (Price et al. 2018) relies on the synthetic likelihood (SL) approximation
of Wood (2010), which falls squarely in the class of indirect inference methods. The idea hinges
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on the assumption that the conditional distribution p(S(y)|θ ) is well approximated by a multi-
variate Gaussian N (µ(θ ),6(θ )) whenever y ∼ f (y|θ ). The SL is defined as SL(θ ) = n(S(y); µ(θ ),
6(θ )), where n(·; µ, 6) is the density of a multivariate normal with mean µ and variance 6. One
can estimate µ(θ ) and 6(θ ) numerically for any θ . Given θ , it is enough to repeatedly sample
pseudodata yj ∼ f (y|θ ) and compute S(yj) for 1 ≤ j ≤ K and then estimate µ̂(θ ) = 1

K

∑K
j=1 S(y j )

and 6̂(θ ) = SamVar({S(y j ) : 1 ≤ j ≤ K}), where SamVar is the sample variance of the computed
statistics. BSL is then based on the approximation πBSL(θ |S(y0)) ∝ p(θ )SL(θ |S(y0)), which can be
explored via MCMC sampling using the following update rule at iteration t > 0:

■ PROP: Generate θ∗ ∼ q(·|θ t), estimate µ̂θ∗ and 6̂θ∗ from K pseudodata {yj ∼ f (y|θ∗) : 1 ≤ j
≤ K}, and compute SL(θ∗ ) = N (S(y0 ); µ̂θ∗ , 6̂θ∗ ).

■ ACC: Set θ t+1 = θ∗ with probability α = min(1, p(θ
∗ )SL(θ∗ )q(θt |θ∗ )

p(θt )SL(θt )q(θ∗|θt ) ) and θ t+1 = θ t otherwise.

4. DOUBLE JEOPARDY

The separate treatment of the challenges brought by big data or intractable models is artificial, and
we anticipate that, more and more, the two challenges will have to be met simultaneously. Since
the use of MCMC within ABC or BSL procedures requires repeated generation of pseudodata of
the same size and complexity as the observed ones, it incurs unmanageable computational costs
when the data are massive or the data generating procedure is expensive.

Some of the methods described within the first challenge are amenable to being used in com-
bination with ABC or BSL. For instance, DAC strategies can be used for an intractable model if
each worker runs a separate ABC MCMC sampler for each batch of data. The obvious caveat is
the difficulty of ascertaining the loss of information after the merging stage. Unfortunately, more
generalizable methods like those used for subsampling cannot be used within ABC or BSL.

A strategy customized to ABC and BSL samplers with large or complex data is proposed by
Levi & Craiu (2022).We describe here a variation of their approach, which combines finite adap-
tation ideas and presampling of the proposals. Assuming that an MH transition kernel is used to
implement ABC MCMC or BSL MCMC, the first B samples are used to tune the proposal dis-
tribution. For instance, if a Gaussian proposal is used, then its covariance matrix can be estimated
usingmethods proposed byHaario et al. (2001),Roberts &Rosenthal (2009) or, in the case of mul-
timodal targets, Craiu et al. (2009) or Pompe et al. (2020). The main contribution is to reduce the
simulation time via precomputation performed on parallel processors. Specifically, a set of propos-
als is generated in an embarrassingly parallel procedure. The preprocessed draws are collected in
reference set Z = {(ξh, sh = (s(1)h , . . . , s(m)

h )T ) : 1 ≤ h ≤ H}, where each parameter value ξ h gener-

ated from the proposal distribution is paired withm pseudodataw(1)
h , . . . ,w(m)

h
i.i.d.∼ f (w|ξh ) and the

statistic s( j)h = S(w( j)
h ) calculated for all 1 ≤ j ≤ m. Note that the set Z is generated independently

of the chain.
We illustrate here the use of Z to run the approximate BSL (ABSL) sampler proposed by Levi

& Craiu (2022). If the chain’s proposal at the tth iteration, θ∗, is identical to one element, say
ξh ∈ Z , and m is large, then we would not need to generate y1, . . . , ym ∼ f (y|θ∗) since we already
have the corresponding pseudodata statistics vectors, sh, which can be used to estimate µ(θ∗) and
6(θ∗) and thus SL(θ∗). While the intuition is attractive, it is impractical to faithfully implement
it. For instance, using a large value for m when creating Z might still be too costly, and an exact
match with an element in the reference set remains unattainable when the parameter space is
continuous. However, if Z contains enough ξ values that are close enough to θ∗, one can still use
them for estimating SL(θ∗). Levi & Craiu (2022) build the reference set with m = 1 and propose
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the use of K-nearest-neighbors (kNN) estimators for µ(θ∗) and 6(θ∗):

µ̃(θ∗ )=
∑H

h=1[Wh(θ∗ ) 1m
∑m

j=1 s
( j)
h ]∑H

h=1Wh(θ∗ )
and

6̃(θ∗ )=
∑H

h=1[Wh(θ∗ ) 1m
∑m

j=1(s
( j)
h − µ̂θ∗ )(s( j)h − µ̂θ∗ )T]∑H

h=1Wh(θ∗ )
, 16.

where Wh(θ∗) = 1 or Wh(θ∗) = 1 − ∥ξ h − θ∗∥/∥ξ ∗ − θ∗∥ and ξ ∗ = maxξ∈Z ∥ξ − θ∗∥, i.e., is the
point in Z that is furthest away from θ∗. If H is large, it is likely that most of its elements will
contribute little or not at all to the estimators in Equation 16. Instead of summing over all the
H elements in Z , it is then advisable to use only the K closest ξs to θ∗, where K is user defined
and depends on the available computational power. In our numerical experiments we have used
Wh = 1 for all 1 ≤ h ≤ K and K = ⌊√H⌋. Clearly, the estimators in Equation 16 are consistent
due to the properties of kNN estimators, but they are not unbiased, so pseudomarginal arguments
cannot be invoked to justify the approach. Validity is demonstrated theoretically by showing that
the perturbation induced when using the modified transition kernel can be controlled using the
user-specified tuning parameters of the sampler (for details, see Levi & Craiu 2022, section 6).

A similar approach is used by Levi & Craiu (2022) for the ABC MCMC chain that targets the
marginal posterior density of θ resulting from Equation 15, π (θ |S(y0 )) ∝ p(θ ) Pr(d(S(y),S(y0 )) <

ϵ|θ ). Instead of using an unbiased estimator for Pr(d(S(y),S(y0 )) < ϵ|θ ), which would require
multiple pseudodata generated from f (y|θ ), they construct the kNN-based estimator from the
collection Z .

In the next section, we compare numerically the methods discussed so far using a couple of
examples.

5. NUMERICAL EXPERIMENTS

In this section we present the performance of the discussed algorithms on two models: logistic
regression and stochastic volatility. We compare the accuracy and computational efficiency of
the described methods with a couple of benchmark MCMC algorithms that are widely known
to perform very well in these cases. Specifically, we measure the performance of the methods
presented in this article against the Polya–Gamma (PG) sampler (Polson et al. 2013) for the logistic
regression, and the sequential Monte Carlo ABC (ABC SMC) (Sisson et al. 2007, Lee 2012) for
the stochastic volatility model. The former is customized for logistic regression, and for the latter,
the length of ϵ sequence is set at 15.

5.1. Description of the Simulation Settings

The following variations of the algorithms described in previous sections are implemented.

■ PG_DAC_J: DAC algorithm with PG sampler that follows the setup of Scott et al. (2016)
using Equation 5. The samples from each batch are combined proportionally to the inverse
covariance matrices. J denotes the number of batches.

■ RW_SS: Subsampling using the technique of Quiroz et al. (2018) with a random walk (RW)
transition kernel. There are four variations corresponding to pairing parameter or data
expansion with random or correlated index selection.

+ RW_SS_P_R_m: Parameter expansion and random index selection
+ RW_SS_D_R_K_m: Data expansion and random index selection
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+ RW_SS_P_C_m: Parameter expansion and correlated index selection; correlation ρ set
at ρ = 0.9999

+ RW_SS_D_C_K_m: Data expansion and correlated index selection; correlation ρ set at
ρ = 0.9999

Note thatm and K indicate the number of observations that will be evaluated with the actual
log-likelihood and the number of clusters, respectively.

■ RW_CO_K_f: Coreset method for logistic regression proposed by Huggins et al. (2016).
The number of clusters and proportion of nonzero weights out ofN are specified by K and f,
respectively. Note that the radius R is calculated from the average sum of squared distances
within each cluster, as suggested by Huggins et al. (2016). The coreset is used with an RWM
sampling algorithm.

■ RW_ABC: ABC MCMC algorithm using an RWM transition kernel for target
Equation 15. Only one pseudodata set is generated for each proposal θ∗.

■ RW_AABC: Approximate ABCMCMC algorithm proposed by Levi & Craiu (2022). Pro-
posals from the history of the chain are used to estimate the likelihood using the kNN
approach with uniform weights. Only one pseudodata set is generated at every iteration.

■ RW_BSL_m: BSL MCMC algorithm with an RWM transition kernel. The distribution
of the summary statistics is approximated by a Gaussian. The mean and covariance of the
distribution are estimated by generating m pseudodata sets at each proposed θ∗.

■ RW_ABSL: Approximate BSL MCMC algorithm proposed by Levi & Craiu (2022). Past
results are used to estimate the mean and covariance of the summary statistics distribution
using the kNN approach with uniform weights. Only one pseudodata set is generated at
every iteration. More detail is provided in the Supplemental Appendix.

With the exception of PG and ABC SMC, all the approximate samplers rely on an RWM
kernel with Gaussian proposals to ensure consistency and comparability. The RWM kernels used
here benefit from a finite-adaptation strategy, in which the covariance of the proposal is modified
using the method of Haario et al. (2001), during the first B iterations that make up the burn-
in period, and is kept fixed after that. The ABC, AABC, and ABC SMC samplers depend on
the threshold ϵ and the ingredients needed to compute the distance d in Equation 15, and are
determined following preliminary simulations, as detailed by Levi & Craiu (2022). Additional
details about each sampling design are provided in the Supplemental Appendix.

For standard MCMC samplers, performance comparison is often reported in terms of the
effective sample size (ESS) per second of CPU time, denoted ESS/cpu. The ESS is interpreted
as the number of independent samples that would yield the same variance of the Monte Carlo
estimator. A higher ESS value indicates a more efficient MCMC sampling algorithm, since it has
been directly linked with the algorithm’s computational uncertainty (e.g., Gong & Flegal 2016,
Vats et al. 2019). The CPU time directly measures the computational cost in seconds, so ESS/cpu
can be interpreted as a sampler’s speed of generating information about the target.

All the samplers discussed here target a distribution different than the posterior of interest.
Thus, in order to fully compare these samplers, one must consider the errors incurred because
of this shift. Therefore, in addition to metrics designed to measure the efficiency of a regular
MCMC sampler, such as ESS/cpu, we also use R= 50 independent replicates to produce estimates
ofMonte Carlo bias and variance.This led us to twomeasures of efficiency that are used to convey
the performance of each method: the root mean square error (RMSE) and the ESS/cpu.

To fix the notions, let θ rs(t ) represent the posterior samples from replicate 1 ≤ r ≤ R, iteration
B ≤ t ≤ M (only draws obtained after burn-in are retained) and parameter component 1 ≤ s ≤ d.
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Similarly, θ̃ rs(t ) are posterior draws from the benchmark chain (only draws obtained after the burn-
in period are retained).We also let θ strue denote the true parameter value that was used to generate
the data. The following quantities are used for comparing computational efficiency:

Bias2 =Means
((
Meantr (θ rs(t ) ) − θ strue

)2) ,

VAR=Means(Varr (Meant (θ rs(t ) ))), and

RMSE=
√
Bias2 + VAR,

where Meant(ast) is defined as the average of {ast} over index t and, similarly, Vart(ast) and Covt(ast)
denote the sample variance and covariance, respectively.

Using the coda library in R, we compute ESS for each replicate and parameter’s compo-
nent ESSrs. Letting CPUr denote the total CPU time used for producing the MCMC samples
in replicate r, we define ESS/cpu as:

ESS/cpu = Meanrs(ESSrs/CPU r ).

Note that we consider the average over all parameters and replicates. Generally, a sampler with a
higher ESS/cpu is preferred because it yields a higher amount of information per unit of time.The
ABC SMC sampler produces independent draws so its ESS is equal to the number of particles.

Finally, in order to frame the comparison in terms of unit-free measures, we report the per-
formance relative to the benchmark samplers. This means that once we compute the RMSE for,
say, method A, RMSEA, we report instead RMSEA/RMSEBench, where the denominator is the
benchmark sampler’s RMSE. Similarly, we also report the relative ESS/cpu performance.

5.2. Logistic Regression

This set of simulations contains the standard setting for the logistic regression model. The design
N × d matrix X is generated by simulating each variable independently from Unif(0, 1). The
leftmost column is a column of 1s (intercept). For i = 1, . . . ,N, Yi is Bernoulli with Pr(Yi = 1) =
logistic(xi · θ true).We considered two values for the sample size,N: 1,000 and 10,000, and two sets
of parameters:

■ d = 2 with the true parameter of θ true = (−2, 2) and
■ d = 10 with the true parameter of θ true = (−2, 2, −3, 4, 1, 2, −3, −4, 2, 1)/3.

We set the prior distribution to be p(θ ) ∼ N (0, 4Id ), where θ � Rd and Id is d × d identity matrix.
All the samplers are run forM = 55,000 iterations with burn-in set at B = 15,000.

For the DAC sampler we consider three values for the number of batches J = 2, 3, 5. We set
K = 4 for the coreset method and compare four values for the fraction f = 0.5, 0.1, 0.05, 0.01.
Finally, the values of the tuning parameters for the subsampling method are also variable—
specifically, the number of data clusters,K� {10, 50}, and the size of the subsample,m� {20, 100}.
Generally,K andm will depend on the sample sizeN and parameter dimension d. The recommen-
dation is to select larger values for data expansion than for parameter expansion. In addition, using
correlated indices requires smaller values for these hyperparameters. Figures 1 and 2 present the
simulation results for the scenarios with N = 10,000 and d � {2, 10}. In the Supplemental Ap-
pendix, we include two additional scenarios: N = 1,000,d = 2 and N = 10,000,d = 2. The height
of the bars represents the value of the relative measure, and we add the dashed line at 1 to make
it easier to separate performance improvements from degradations.

390 Craiu • Levi

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

23
.1

0:
37

9-
39

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

93
.4

9.
16

7.
13

 o
n 

03
/1

1/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 

https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-033121-110254


ST10CH16_Craiu ARjats.cls February 14, 2023 12:37

Figure 1

Logistic model: Relative RMSE and relative ESS/cpu when N = 10,000 and d = 2 for DAC-based samplers, coreset-based samplers,
and subsampling-based samplers. Abbreviations: C, correlated index expansion; CO, coreset; D, data expansion; DAC, divide and
conquer; ESS, effective sample size; ESS/cpu, ESS per second of central processing unit time; P, parameter expansion; PG,
Polya–Gamma; R, random index selection; RMSE, root mean square error; RW, random walk; SS, subsampling.

From Figures 1 and 2 a few lessons emerge. Combining PG with DAC produces good results,
likely because the Gaussian approximation is accurate for such a large sample.The ESS/cpu grows
with the number of batches.

The performance of the coreset-based algorithm yields a relatively high RMSE. To shed some
light on this performance, we can recover from Huggins et al. (2016) the discrepancy, ϵ, between
the original likelihood and the coreset one, as a function of the coreset size, mean sensitivity, and
parameter dimension for δ = 0.10.

Table 1 shows the average (over 50 replicates) discrepancy ϵ for different values of the sample
size N, parameter dimension d, and data fraction f divided by the average maximum value of the
full data likelihood. It is not surprising that ϵ increases as the fraction (i.e., the coreset size) de-
creases, but we also can see that the discrepancy is generally quite large, and this explains the poor
performance of the sampler. The ESS/cpu measure beats PG only when using 1% of the samples,
but this comes at the expense of a vastly inflated RMSE.

Overall, subsampling techniques show good results with very high ESS/cpu without sacrificing
the accuracy of the posterior, when d = 2. The logistic posterior tends to be unimodal, so the
parameter expansion methodology is more suitable, and clearly a larger concentration is achieved
for d = 2 than for d = 10. The deterioration of the performance is clearly visible for d = 10,
although the method still controls the RMSE at the PG level. Since the data do not exhibit any
clusters, it is not surprising that the data expansion techniques are not competitive to the parameter
expansion ones.

Note that the computational time for the calculation of the log-likelihood can be significantly
reduced using the vectorization trick available in R. This method allows much faster calculation
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Figure 2

Logistic model: Relative RMSE and relative ESS/cpu when N = 10,000 and d = 10 for DAC-based samplers, coreset-based samplers,
and subsampling-based samplers. Abbreviations: C, correlated index expansion; CO, coreset; D, data expansion; DAC, divide and
conquer; ESS, effective sample size; ESS/cpu, ESS per second of central processing unit time; P, parameter expansion; PG,
Polya–Gamma; R, random index selection; RMSE, root mean square error; RW, random walk; SS, subsampling.

by executing operations on the entire vectors of data instead of using a for loop that goes through
all the N records one by one. This technique enabled us to increase the sample size to 100,000.
The comparison of the samplers using the vectorization-induced speed-up can be found in the
Supplemental Appendix.

5.2.1. German credit data. This concerns data with a sample size that is not exceedingly large,
but the dimension of the parameter is higher than we have considered so far. Specifically, the
German credit data consist of 1,000 records and 49 predictors including the intercept (for more
information, see Biswas et al. 2019). Most predictors are dummy variables taking only 0 and 1
values. The target/response is binary, with 70% of them being cases, so the response variable is
quite balanced. Logistic regression is implemented to predict Pr(Y = 1) from the set of features.

Table 1 Coreset (logistic model): relative average discrepancy ϵ for different values of
sample size N, parameter dimension d, and data fraction f

Fraction

ϵ

N = 1,000 N = 10,000
d = 2 d = 10 d = 2 d = 10

f = 0.50 3.217 3.602 0.685 1.160
f = 0.10 7.845 9.717 3.570 3.154
f = 0.05 11.992 13.972 6.138 4.461
f = 0.01 28.595 31.663 16.383 10.091

The numbers represent the average discrepancy divided by the average maximum value of the full data likelihood.
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Figure 3

German credit data: Relative |bias| and relative ESS/cpu for DAC-based samplers, coreset-based samplers, and subsampling-based
samplers. Abbreviations: C, correlated index expansion; CO, coreset; D, data expansion; DAC, divide and conquer; ESS, effective
sample size; ESS/cpu, ESS per second of central processing unit time; P, parameter expansion; PG, Polya–Gamma; R, random index
selection; RW, random walk; SS, subsampling.

Before fitting the model, we transform all the quantitative features by subtracting the minimum
value and dividing by the range so their values are in the [0, 1] interval.

All the samplers are run for N = 100,000 iterations, burn-in is B = 50,000, and adaptation
occurs every 500 chain updates. The performance of the samplers is presented in Figure 3. Note
that the absolute values of the biases reported in the top row panels are calculated with respect
to the maximum likelihood estimates, as the true parameter values are not known. We refer the
reader to the Supplemental Appendix for additional metrics and details.

The results are similar to the ones obtained in the previous subsection, but some additional
elements emerge.We can see that with five batches, the DAC approach loses a bit in terms of bias
and even more on the ESS/cpu side. None of the subsampling-based methods (including coreset-
based) can compete with the PG sampler, likely because the signal-to-noise ratio is altered too
much when implementing any of these methods. We should also recognize that PG is a Gibbs
sampler, which, unlike RWM samplers, will move at every iteration. This makes a bigger differ-
ence when the parameter space has large dimensions since then the RWM chain often gets stuck,
especially if the posterior exhibits strong dependence.

Based on these numerical experiments, we conclude that with a very large sample size, the
first choice would be to use a DAC technique as long as the Gaussian approximation is likely to
be accurate. The latter assessment will have to take into account the number of parameters and
the nature of the model and data. If the Gaussian approximation is unsuitable, the subsampling
methods can be used. The user will need to decide if the posterior is likely to be concentrated, so
that they can use a parameter expansion, or if the data exhibit multiple clusters, in which case a
data expansion is needed. In the latter case, an exploratory analysis is recommended to determine
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reasonable values for the number of centroids,K. The size of the subsamplem is typically decided
based on the computational power available at the time of the analysis—we recommend using the
largest possible value that can be handled by the system.

5.3. Stochastic Volatility

When analyzing stationary time series, it is frequently observed that there are periods of high and
low volatility, a phenomenon known as volatility clustering (see, for example, Lux & Marchesi
2000). One way to model such behavior is through a stochastic volatility model, where variances
of the observed time series depend on hidden states that themselves form a stationary time series.
We work with the following model, which is indexed by parameter θ = (θ1, θ2, θ3):

x1 ∼N (0, 1/(1 − θ2
1 )); vi

i.i.d.∼ N (0, 1); wi
i.i.d.∼ N (0, 1), i = {1, . . . ,N};

xi = θ1xi−1 + vi, i = {2, . . . ,N};

yi =
√
exp[θ2 + exp(θ3 )xi]wi, i = {1, . . . ,N}. 17.

Only data y = (y1, . . . , yN) are observed, and (x1, . . . , xN) are latent/hidden states. The parameter
θ1 � (−1, 1) controls the auto-correlation of hidden states, while θ2 and θ3 are unrestricted and
relate to the hidden states’ influence on the variability of the observed series. Given a hidden
state, the distribution of the observed variable is Gaussian. We introduce the following priors,
independently for each parameter:

θ1 ∼ Unif[0, 1],

θ2 ∼ N (0, 1), and

θ3 ∼ N (0, 1). 18.

We set the true parameters to θ true = (0.95,−2,−1) and consider three lengths of the time series,
N = 100, 500 and 1,000. Note that the model does not admit a closed form log-likelihood but
allows simulations of pseudodata sets. Therefore, for this model, we only consider simulation-
based ABC samplers: AABC, BSL, ABSL, and the benchmark ABC SMC. The summary statistic
used for all the samplers is S(y) � R6 and has the following components:

1. Average of y2

2. Standard deviation of y2

3. Sum of the first 5 auto-correlations of y2

4. Sum of the first 5 auto-correlations of binary series {1{y2i <quantile(y2 ,0.1)}}Ni=1

5. Sum of the first 5 auto-correlations of binary series {1{y2i <quantile(y2 ,0.5)}}Ni=1

6. Sum of the first 5 auto-correlations of binary series {1{y2i <quantile(y2 ,0.9)}}Ni=1

The quantile(y, τ ) is defined as the τ th quantile of the sequence y. We focus here on y2 and its
auto-correlations because the model parameters only affect its variability; the auto-correlation of
y is zero for any lag.Components 4–6 have been considered because the auto-correlations of those
binary series, defined under different quantiles, are useful in characterizing a time series (Dette
et al. 2015, Schmitt et al. 2015). The ABC, AABC, BSL, and ABSL samplers are run for M =
55,000 iterations. The burn-in period is of length B = 15,000, with adaptation taking place every
other 200 iterations.

394 Craiu • Levi

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

23
.1

0:
37

9-
39

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

93
.4

9.
16

7.
13

 o
n 

03
/1

1/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



ST10CH16_Craiu ARjats.cls February 14, 2023 12:37

Figure 4

Stochastic volatility model: Relative RMSE and ESS/cpu when N = 500 for ABC-based samplers and BSL-based samplers.
Abbreviations: ABC, approximate Bayesian computation; BSL, Bayesian synthetic likelihood; ESS/cpu, effective sample size per second
of central processing unit time; RMSE, root mean square error.

Figures 4 and 5 present the simulation results when, respectively, N = 500 and N = 1,000.
The ABC and BSL samplers exhibit loss in terms of both RMSE and ESS/cpu when compared
to the benchmark. The BSL is more costly since we generate 20 pseudodata sets at each iteration.
Not surprisingly, using precomputation designs reduces the CPU time, so we see a bump in effi-
ciency for AABC and ABSL. Less obvious is the reduction in RMSE, which is due to the increase
in the number of pseudodata one can use while still saving computational time and the higher
acceptance rate. These findings mirror those of Levi & Craiu (2022), and we refer the reader to
that article for more in-depth explanations. In this example, ABC-based samplers outperform BSL
ones. The likely reason is that the Gaussian approximation on which BSL relies is not accurate
for this choice of the summary statistic, S(y).

Overall, we find reasons for cautious optimism in these numerical results. They show that
careful and controlled injection of noise in the transition kernel can bring real practical benefits.

6. CONCLUSION AND FUTURE DIRECTIONS

The Bayesian computational community finds itself at an inflection point. Traditional MCMC
computation is no longer tenable for complex problems. The new ideas and developments
discussed here significantly reduce the computational costs or bypass the intractability of the like-
lihood but introduce additional layers of approximation. The latter requires a careful theoretical
analysis to make sure that incurred errors are realistically controllable via tuning parameters.

Complex models are often defined using high-dimensional parameters. MCMC methods ef-
ficiently sample high-dimensional spaces as long as there are no bottlenecks or regions of small
probability that the chain has difficulty traversing. Adaptive MCMCmethods (Andrieu & Thoms
2008, Hoffman & Gelman 2014, Yang et al. 2019, Pompe et al. 2020) have been proven effec-
tive for sampling in high-dimensional spaces with unfriendly geometries. Injecting adaptive ideas
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Figure 5

Stochastic volatility model: Relative RMSE and ESS/cpu when N = 1,000 for ABC-based samplers and BSL-based samplers.
Abbreviations: ABC, approximate Bayesian computation; BSL, Bayesian synthetic likelihood; ESS/cpu, effective sample size per second
of central processing unit time; RMSE, root mean square error.

into the world of sampling with intractable targets is hindered by stringent conditions that need
to be satisfied by an adaptive transition kernel, e.g., the containment condition (Bai et al. 2011,
Łatuszyński &Rosenthal 2014). Some inroads have beenmade into eliminating the latter by Craiu
et al. (2015) and Rosenthal & Yang (2018), so we expect to see more adaptive designs permeating
in pseudodata-generation-type samplers.

Constraints on article length and considerations of subject matter consistency have prevented
us from discussing methods that do not rely on MCMC sampling to perform Bayesian inference,
such as variational Bayes (Blei et al. 2017) or integrated nested Laplace approximation (Rue et al.
2017). These are active research threads that continue to develop rapidly under the impetus pro-
vided by the expansion of data science and the explosive growth of machine learning methods and
other computationally demanding domains of information processing. Creative intertwining of
most of the ideas and methods mentioned in this article will likely continue well into the future,
but we believe that entirely new perspectives are also necessary in order to create the automati-
zation of computation that is required if widespread use of Bayesian methods is to be seen in the
twenty-first century.
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