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Abstract: In conditional copula models, the copula parameter is deter-
ministically linked to a covariate via the calibration function. The latter is
of central interest for inference and is usually estimated nonparametrically.
However, in many applications it is scientifically important to test whether
the calibration function is constant or not. Moreover, a correct model of a
constant relationship results in significant gains of statistical efficiency. We
develop methodology for testing a parametric formulation of the calibration
function against a general alternative and propose a generalized likelihood
ratio-type test that enables conditional copula model diagnostics. We derive
the asymptotic null distribution of the proposed test and study its finite
sample performance using simulations. The method is applied to two data
examples.
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1. Introduction

Copulas are an important tool for modeling dependence. The recent develop-
ment of conditional copulas by Patton (2006) widely expands the range of possi-
ble applications, as it allows covariate adjustment in copula structures and thus
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enables their use in regression settings. Specifically, if X is a covariate that af-
fects the dependence between the continuous random variables Y1 and Y2, then
the conditional joint distribution Hx of Y1 and Y2 given X = x can be written as
Hx(y1, y2 | x) = Cx{F1|x(y1 | x), F2|x(y2 | x) | x}, where Fi|x is the conditional
marginal distribution of Yi given X = x for i = 1, 2 and Cx is the conditional
copula, i.e. the joint distribution of U1 ≡ F1x(Y1 | x) and U2 ≡ F2x(Y2 | x) given
X = x.

When the conditional dependence structure is in the inferential focus, one
needs to specify a functional connection between the covariateX and the copula
Cx as in Jondeau and Rockinger (2006); Patton (2006); Bartram et al. (2007);
Rodriguez (2007). Facing the problem of specifying a model for this functional
relationship, one cannot usually rely on graphical or empirical pointers and must
therefore use flexible models (e.g. semi- or non-parametric) that can potentially
capture a large variety of patterns. There is now a rich body of work on modelling
and estimating conditional copula models, e.g. Gijbels et al. (2011); Abegaz et
al. (2012); Veraverbeke et al. (2011); Craiu and Sabeti (2012). In the context
of a parametric copula family, Acar et al. (2011) have studied a nonparametric
estimator of the calibration function η(X) in

(U1, U2) | X = x ∼ Cx{u1, u2 | θ(x) = g−1(η(x))}, (1)

where g : Θ → R is a known link function that allows unrestricted estimation for
η. In this model, the copula family, i.e. the form of dependence between uniform
random variables U1 and U2 remains the same for each value of the covariate
X = x, but the strength of the dependence between U1 and U2, measured by the
copula parameter θ, is allowed to vary with X according to a smooth function
η. Hence, in order to assess the covariate effect on the strength of dependence,
one needs to infer the functional form of η(X).

It is known that if a parametric model for η(X) is suitable, then fitting a
nonparametric model leads to an unnecessary loss of efficiency. For instance, in
Table 1 in Acar et al. (2011) this loss is illustrated in the case of an underlying
linear calibration function. It is thus of great practical importance to construct
rigorous hypothesis tests for the specification of calibration functions.

Our development focuses on the hypotheses of the form H0: “η(·) is linear in
X” versus H1: “η(·) is not linear in X” under the conditional copula model in

(1). This class of hypotheses includes the important special case of H
(c)
0 : “η(·)

is constant” versus H
(c)
1 : “η(·) is not constant”. In most applications we have

encountered, the constant calibration hypothesis is most relevant scientifically.
In comparison, the precise specification of a non-constant calibration function
(linear, quadratic, cubic) is of relatively much smaller importance. Therefore,
the paper focuses on the constant/nonconstant dichotomy and uses the lin-
ear/nonlinear one to illustrate the possible generalizations of the testing proce-
dure proposed here. From a statistical viewpoint, it is important to establish
the validity of a constant calibration because then one can rely on inferential
methods developed for the classical copula model. Canonical approaches based
on likelihood ratio tests are possible when the calibration function is specified
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parametrically (Jondeau and Rockinger, 2006). Within a Bayesian approach in
which regression splines are used to model η, Craiu and Sabeti (2012) suggest

that novel criteria for testing H
(c)
0 are needed.

Hypotheses like H0 cannot be tested using the canonical likelihood ratio test
(LRT) because estimation under the alternative hypothesis is performed non-
parametrically. Exploration of the asymptotic distribution of the ratio test falls
within the scope of the generalized likelihood ratio test (GLRT) developed by
Fan et al. (2001) for testing a parametric null hypothesis versus a nonparametric
alternative hypothesis. Since nonparametric maximum likelihood estimators are
difficult to obtain and may not even exist, Fan et al. (2001) suggested using any
reasonable nonparametric estimator under the alternative model. In particular,
using a local polynomial estimator to specify the alternative model of a number
of hypothesis testing problems, Fan et al. (2001) showed that the null distri-
bution of the GLRT statistic follows asymptotically a chi-square distribution
with the number of degrees of freedom independent of the nuisance parameters.
This result, referred to as Wilks phenomenon, holds for Gaussian white-noise
model (Fan et al., 2001), varying-coefficient models, which include the regres-
sion model as a special case (Fan et al., 2001), spectral density (Fan and Zhang,
2004), additive models (Fan and Jiang, 2005) and single-index models (Zhang
et al., 2010).

We expand the GLRT-based approach to testing the calibration function in
conditional copula models. The test procedure employs the nonparametric esti-
mator proposed by Acar et al. (2011) when evaluating the local likelihood under
the alternative hypothesis. The major contribution of this work is the construc-
tion of a rigorous framework for such GLRTs in the conditional copula context.
It is worth mentioning that the proposal can easily accommodate the test for an
arbitrary parametric form specified under the null hypothesis. The description
of the test, the derivation of its asymptotic null distribution and the discussion
of practical implementation are included in Section 2. The finite sample per-
formance of the test is illustrated using simulations and two data examples in
Section 3 and 4, respectively. The paper ends with concluding remarks.

2. Generalized likelihood ratio test for copula functions

The construction of the GLRT is detailed under the assumption that the condi-
tional marginal distributions U1 ≡ F1x(Y1 | x) and U2 ≡ F2x(Y2 | x) are known.
A discussion of the impact of estimating the conditional marginal distributions
is provided at the end of this section.

Suppose that {(U11, U21, X1), . . . , (U1n, U2n, Xn)} is a random sample from
the conditional copula model (1). The null hypothesis of interest restricts the
space of calibration functions to a subspace f that is fully specified paramet-
rically. Without loss of generality, we assume f = fL = {η(·) : ∃ a0, a1 ∈
R such that η(X) = a0 + a1X, ∀X ∈ X} is the set of all linear functions
on X . Then we are interested in testing

H0 : η(·) ∈ fL versus H1 : η(·) /∈ fL. (2)
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In what follows, we assume that the density cx of Cx exists and for simplicity
we use the notation ℓ(t, u1, u2) = ln cx{u1, u2; g

−1(t)}. Furthermore, the first
and second partial derivatives of ℓ with respect to t are assumed to exist and
are denoted by ℓj(t, u1, u2) = ∂jℓ(t, u1, u2)/∂t

j , for j = 1, 2.

2.1. Proposed GLRT for the conditional copula model

A natural way to approach (2) is through the likelihood ratio of the restricted
(i.e., conditional copula with a linear calibration function) and the full (i.e., con-
ditional copula with an arbitrary calibration function) models, or equivalently,
through the difference

sup
η(·)/∈fL

{Ln(H1)} − sup
η(·)∈fL

{Ln(H0)},

where

Ln(H0) =
n∑

i=1

ℓ(a0 + a1Xi, U1i, U2i),

Ln(H1) =

n∑

i=1

ℓ(η(Xi), U1i, U2i).

The supremum of the log-likelihood function under the null hypothesis is
given by

Ln(H0, η̃) =
n∑

i=1

ℓ(η̃(Xi), U1i, U2i).

where η̃(X) = ã0 + ã1X , with ã = (ã0, ã1) denoting the maximum likelihood
estimator of the parameter a = (a0, a1).

Under the alternative, the general unknown form of η(·) adds significant com-
plexity to the calculation of the supremum. We use the nonparametric estimator
of η(·) proposed by Acar et al. (2011) to define the log-likelihood under the full
model. Specifically, for each observation Xi in a neighbourhood of an interior
point x, we approximate η(Xi) linearly by

η(Xi) ≈ η(x) + η′(x)(Xi − x) ≡ β0 + β1(Xi − x),

provided that η(x) is twice continuously differentiable. Estimates of β = (β0, β1)
and of η(x) = β0, are then obtained by maximizing a kernel-weighted local
likelihood function

L(β, x) =
n∑

i=1

ℓ{β0 + β1(Xi − x), U1i, U2i}Kh(Xi − x), (3)

where h > 0 is a bandwidth parameter controlling the size of the neighbour-
hood around x, K is a symmetric kernel density function and Kh(·) = K(·/h)/h
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weighs the contribution of each data point based on their proximity to x. Simi-
larly, if one uses a pth order local polynomial estimator, the local linear approxi-
mation in (3) will be replaced by

∑p
ℓ=0 βℓ(Xi−x)ℓ and the resulting estimator is

given by η̂h(x) = β̂0. The bandwidth h is chosen to maximize the cross-validation
criterion

B(h) =
n∑

i=1

ln c(U1i, U2i | θ̂
(−i)
h (Xi)),

where θ̂
(−i)
h (Xi) is the estimate of the copula parameter θ at Xi when the ith

sample (U1i, U2i) is left out.
Then we evaluate the log-likelihood function under the alternative hypothesis

of (2) as

Ln(H1, η̂h) =

n∑

i=1

ℓ{η̂h(Xi), U1i, U2i}.

The difference between the two log-likelihoods allows us to evaluate the evi-
dence in the data in favor of (or against) the null model. Hence, the generalized
likelihood ratio statistic is given by

λn(h) = Ln(H1, η̂h)− Ln(H0, η̃). (4)

While large values of λn(h) suggest the rejection of the null hypothesis, we need
to determine the rejection region for the test. In order to inform the decision in
finite samples we investigate the asymptotic distribution of the GLRT statistic
under the null hypothesis.

2.2. Asymptotic distributions of proposed GLRT statistic

To facilitate our presentation we introduce the following notation. Let f(x) > 0
be the density function of X with support X and denote by |X | the range of the
covariate X . Also, denote by K ∗K the convolution of the kernel K and define

µn =
|X |
h

(
K(0)− 1

2

∫
K2(t)dt

)
=

|X |
h

cK ,

νn =
2|X |
h

∫
(K(t)− 1

2
K ∗K(t))2dt,

cK = K(0)− 1

2

∫
K2(t)dt.

The following result states that the GLRT statistic follows asymptotically a
normal or equivalently a chi-square distribution in the case of negligible bias,
where the mean and variance are related to the quantities µn and νn, respec-
tively. The technical conditions and proofs are deferred to Appendix I.

Theorem 1. Assume that the conditions (A1)–(A7) in Appendix I hold and
the GLRT statistic λn(h) is constructed from (4) with a local linear estimator.
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Then, as h → 0 and nh3/2 → ∞,

ν−1/2
n (λn(h)− µn + dn)

L−→ N(0, 1), (5)

where dn = Op(nh
4 + n1/2 h2).

Furthermore, if η is linear or nh9/2 → 0, then, as nh3/2 → ∞,

rKλn(h)
asym∼ χ2

rK µn
, (6)

where rK = 2 µn/νn.

2.3. Practical implications and further aspects

In order to use the asymptotic result proven in Theorem 1 in a practical setting,
one needs to choose values for the bandwidth parameter and the order of the
polynomial fitting. We give below guidelines for these choices and discuss other
aspects relevant to the implementation of the GLRT.

Choice of bandwidth parameter. It should be noted that when η is linear, the
asymptotic bias dn becomes exactly zero, as shown in (8) in the Appendix I,
and thus the condition nh9/2 → 0 is not needed (the optimal bandwidth for
estimation is of the order n−1/5, see Acar et al., 2011). More importantly, this
facilitates the calculation of the GLRT statistic λn(h) in practice, since one
can use directly the bandwidth used for estimation, chosen by the leave-one-out
cross-validated likelihood (Acar et al., 2011). Our simulation study in Section 3
provides empirical support for this suggestion.

Order of local polynomial fitting and testing polynomial functions. The asymp-
totic results in Theorem 1 can be easily extended to the case where λn(h) is
based on a pth order local polynomial estimator, by substituting the kernel
function K with its equivalent kernel K∗ in cK and rK (see Fan and Gijbels,
1996, page 64, for the expression of K∗) induced by the local polynomial fit-
ting (Fan et al., 2001). The asymptotic chi-square distribution (6) continues to
hold if either η is a polynomial of degree p or nh(4p+5)/2 → 0, as the asymp-
totic bias dn = Op(nh

2p+2 + n1/2hp+1). The practical implication of such an
extension is that, if the interest is to test a null hypothesis of a polynomial
form η(x) =

∑p
ℓ=0 βℓx

ℓ, it is recommended to calculate λn(h) using the local
polynomial estimator with the corresponding degree p. This avoids the possible
necessity of undersmoothing in order to have the asymptotic bias negligible.

Testing constancy of the copula parameter. As pointed out earlier, the hypoth-
esis of η being constant is a special case of the linearity constraint and leads
to the classical copula model (i.e., no covariate adjustment is required). If this
hypothesis is of interest, using a local constant estimator, i.e., p = 0, to calculate
λn(h) may be more appealing (as confirmed by the simulations in Section 3)
than using a local linear estimator. The latter tends to overfit even with large
bandwidth when H0 indeed holds, thus resulting in an inflated type I error.
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Testing independence. While the test is quite general and can be used, in prin-
ciple, to test any preset copula parameter value, extra caution is needed when
testing independence. Under the null hypothesis of independence, the copula pa-
rameter is at the boundary of the parameter space (e.g., θ = 0 for the Frank and
Clayton families, and θ = 1 for the Gumbel family), and the asymptotic result in
Theorem 1 does not hold. For the canonical likelihood ratio test, the asymptotic
null distribution is known to be a mixture of chi-squares when some parameters
lie on boundary of the parameter space (Self and Liang, 1987). A similar result
is expected to hold for the GLRT as the two tests are fairly similar in nature (see
the next paragraph). However, an investigation in this direction may not be too
much of practical value, considering that there are a number of independence
tests in the copula literature (see, for instance, Genest and Rémillard, 2004).

Relationship to the canonical likelihood ratio test. One can conclude from The-
orem 1 that the GLRT is fairly similar to the classical likelihood ratio test.
The tabulated value of the scaling constant rK is close to 2 for commonly used
kernels. For instance, rK = 2.115 for the commonly used Epanechnikov kernel
K(u) = 0.75(1 − u2)1{|u|≤1}. The degrees of freedom (df) rK cK |X |/h of the
asymptotic null distribution of the GLRT tends to infinity when h → 0, due
to the nonparametric nature of the alternative hypothesis. One can interpret
the quantity |X |/h as the number of nonintersecting intervals on X , and thus
rK cK |X |/h approximates the effective number of parameters in the nonpara-
metric estimation. For the Epanechnikov kernel with cK = 0.45, the degrees of
freedom is given by 0.968 |X |/h.
Impact of estimating conditional marginal distributions. An important aspect in
(conditional) copula model implementation is the estimation of unknown (con-
ditional) marginal distributions. Although the proposed GLRT procedure was
presented assuming that the conditional marginal distributions are known, The-
orem 1 provides a basis for more general approach where estimation is performed
jointly or using a two-step method (i.e., parameters for the marginal distribu-
tions are estimated first and only subsequently the inference for the conditional
copula parameters is performed).

In a conditional copula model with parametric conditional marginal distri-
butions, one can easily accommodate joint estimation under the null hypoth-
esis since the model for the calibration function is then parametric. On the
other hand, joint analysis under the alternative requires iterative estimation
of parametric conditional marginal distributions and nonparametric calibration
function model. Although, such iterative procedures have been long studied for
nonparametric regression problems, for instance in partially linear models, the
problem of joint estimation has not been addressed yet in the conditional copula
setting.

As shown in Appendix I, the asymptotic distribution of the GLR statis-
tic λn(h) is governed by the nonparametric part λ1n(h) since the parametric
part λ2n, which corresponds to the canonical likelihood ratio statistic, vanishes
compared to λ1n(h). Hence, even one employs joint maximum likelihood esti-
mation or a less efficient inference for margins approach (Joe, 2005) under the
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null hypothesis, the result in Theorem 1 will not change. Generally speaking,
the proposed test remains valid as long as the conditional marginal distributions
are estimated with the usual parametric rate

√
n, both under the null and under

the alternative (see Remark 1 at the end of Appendix I). A two-step approach
can be safely employed in the testing procedure provided that the conditional
marginal distributions are estimated parametrically. This observation, in fact,
motivated the use of parametric models to specify the conditional marginal dis-
tributions in the data examples of Section 4. Note that an alternative two-step
approach is to use kernel-based smoothing methods as in Abegaz et al. (2012) in
the first stage. However, this case requires a careful treatment as both the null
and the alternative models will have nonpararametric convergence rates due to
nonparametric specification of the conditional marginal distributions.

Choice of copula family. The proposed GLRT approach assumes that the true
copula family is used in the test procedure. If the copula is misspecified, the
asymptotic result in Theorem 1 would not hold. This phenomenon is similar to
the departures from the chi-squared asymptotic limit exhibited by the canonical
likelihood ratio tests under misspecified models. Furthermore, copula misspec-
ification can lead to serious bias in the estimation results. Nonetheless, in our
simulations we have observed a good performance of the cross-validated predic-
tion error criterion of Acar et al. (2011) in choosing the true copula family.

3. Simulation study

We conduct simulations to evaluate the finite sample performance of the pro-
posed test for the linear hypothesis given in (2). We consider four simulation
scenarios corresponding to four calibration functions,

M
(F )
0 : η0(X) = 8,

M
(F )
1 : η1(X) = 25− 4.2X,

M
(F )
2 : η2(X) = 1 + 2.5(3−X)2,

M
(F )
3 : η3(X) = 12 + 8 sin(0.4X2).

The copula used belongs to the Frank family and has the form

C(u1, u2|θ) = −1

θ
ln

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
, θ ∈ (−∞,∞) \ {0}.

Since the range of θ is R \{0} for the Frank copula, an identity link is used, i.e.,
θk(X) = ηk(X) for k = 0, 1, 2, 3. Similar findings, summarized in Appendix II,
were obtained in simulations produced using the Clayton and Gumbel copulas
in the true generating models.

As mentioned earlier, the copula family describes the overall shape of the
dependence. For the Frank family, this shape is symmetric and shows no tail
dependence as shown in the left panel of Figure 1. The four calibration models
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Fig 1. Contour plot of the density of Frank copula under M
(F )
0 , illustrated with standard

normal marginal distributions (left panel), and graphical summary of the four calibration
models (middle panel) and the corresponding Kendall’s tau values (right panel).

are displayed in the middle panel of Figure 1 over the covariate range (2, 5).
For a scale-free interpretation of the strength of dependence, we also provide a
graphical summary of the variation in Kendall’s tau for each η (see the right
panel of Figure 1) obtained using the conversion

τ = 1 +
4

θ
{D1(θ) − 1},

where D1(θ) =
1
θ

∫ θ

0
t

et−1dt is the Debye function.
Our Monte Carlo experiment consists of 200 replicated samples of sizes n =

50, 100, 200 and 500 generated from each calibration model M
(F )
k , k = 0, 1, 2, 3.

Specifically, under model M
(F )
k , we first simulate the covariate values Xi from

Uniform(2, 5). Then, for each i = 1, . . . , n, we calculate the copula parame-

ter θk(Xi) = ηk(Xi) induced by the calibration model M
(F )
k , and simulate the

uniform pairs (U1i, U2i) conditional on Xi from the Frank family with copula
parameter θk(Xi). Throughout the simulations we have used the Epanechnikov
kernel. For each Monte Carlo sample, the leave-one-out cross-validated likeli-
hood method of Acar et al. (2011) is employed to select, out of 12 pilot values
ranging from 0.33 to 2.96 and equally spaced in logarithmic scale, the opti-
mum bandwidth h for the local polynomial estimation of the calibration func-
tion.

We have followed the suggestion made in Section 2 and have calculated the
nonparametric estimator for η using a local polynomial of the same degree as
specified by the null hypothesis. For instance, in Table 1, when testing H0 :
η = c, we consider a local constant estimator (with p = 0) for η under the
alternative model. Subsequently, the GLRT statistic λn(h) is computed using
the same bandwidth h that is used for estimation. We also assume that in
practice one would first test for constant calibration function and, conditional
on rejection, would test for linear calibration. For this reason, in Table 1 we
do not report the results of testing H0 : η(x) = a0 + a1x when the generating

model is M
(F )
0 .
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Table 1

Demonstration of the proposed GLRT for testing the linear/constant null hypothesis H0 at
α = 0.10, 0.05 and 0.01, respectively, under the Frank copula. Shown are the rejection

frequencies assessed from 200 Monte Carlo replicates. The sample sizes are n = 50, 100, 200
and 500; the generating calibration models are shown in the “True Model” column. Those
entries in the table reflecting the power of the testing procedure are shown in bold face

Null Model
True Model H0 : η(x) = a0 + a1x H0 : η = c

n .10 .05 .01 .10 .05 .01
50 — — — .075 .025 .015
100 — — — .110 .055 .010
200 — — — .105 .040 .020M

(F )
0

500 — — — .110 .045 .005
50 .060 .020 .005 .695 .520 .255

100 .100 .060 .010 .910 .870 .760

200 .100 .055 .005 .995 .990 .955M
(F )
1

500 .085 .055 .010 1.00 1.00 1.00

50 .425 .285 .085 .640 .515 .255

100 .650 .510 .245 .940 .860 .620

200 .895 .790 .560 1.00 1.00 .975M
(F )
2

500 1.00 1.00 .980 1.00 1.00 1.00

50 .735 .635 .435 .755 .645 .385

100 .865 .840 .780 .965 .945 .870

200 1.00 1.00 1.00 1.00 1.00 1.00M
(F )
3

500 1.00 1.00 1.00 1.00 1.00 1.00

One can notice from Table 1 that the rejection rates under the null are very
close to the target values of the type I error probabilities α ∈ {0.1, 0.05, 0.01},
for both linear and constant nulls (models M

(F )
0 and M

(F )
1 ), except for the case

with n = 50, which is slightly conservative. Since nonparametric methods often
require relatively large samples, the latter observation confirms that caution is
recommended when working with small samples. Overall, our approach leads to
high power in detecting departures from the null, as one can see from the results

generated under models M
(F )
1 , M

(F )
2 and M

(F )
3 . For clearer visualization, the

entries in the table that correspond to power are shown in bold face. As expected,
the rejection rates increase with the sample size and the nonlinearity of the
underlying calibration function (see the middle or right panel of Figure 1 for a
visual comparison). For instance, when testing the linear calibration hypothesis,

we observe lower rejection rates for M
(F )
2 , which is quadratic, than for M

(F )
3 ,

which exhibits more variation.

4. Data application

In this section, we apply the GLRT to the two data examples studied in Acar
et al. (2011). Our aim is to check whether a constant copula model or a condi-
tional copula model with a linear calibration function fits these examples rea-
sonably well, i.e. whether the nonparametric calibration estimates of Acar et al.
(2011) are in fact necessary.
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Fig 2. Scatterplot of transformed birth weights (left panel), and the plots of calibration func-
tion estimates (middle panel) and the corresponding Kendall’s tau values (right panel) under
the Frank copula: maximum likelihood estimate of the constant calibration function (solid
line), maximum likelihood estimate of the linear calibration function (long-dashed line), lo-
cal constant estimates (dot-dashed line), local linear estimates (dashed line), 90% pointwise
confidence intervals for the local linear estimates (dotted lines).

4.1. Twin birth data

This data set contains information on 450 pairs of twins from the Matched
Multiple Birth Data Set (MMB) of the National Center for Health Statistics.
We consider the birth weights (BW1, BW2) of the first- and second-born twins
who survived their first year, and whose mothers were between 18 and 40 years
old. The gestational age GA is an important factor for fetal growth and is
therefore included in the analysis as a covariate. The question of interest here
is whether the dependence between the weights BW1 and BW2 varies with GA.
Subsequent interrogations regarding the exact parametric forms of η are much
less relevant. We transform the data on the uniform scale, as shown in the left
panel of Figure 2, after fitting parametric marginal regression models. We use
the Frank family of copulas to model the dependence structure, as this was the
family chosen by Acar et al. (2011) according to their cross-validated prediction
error criterion. The middle panel of Figure 2 shows the maximum likelihood
estimates obtained under the constant calibration assumption (solid line), linear
calibration assumption (long-dash line), the nonparametric estimates with p = 0
(dot-dashed line), p = 1 (dashed line) and 90% pointwise confidence intervals
for the local linear estimates (dotted lines), obtained as in Acar et al. (2011).
These results are also displayed in terms of Kendall’s tau in the right panel of
Figure 2.

As seen in Figure 2, the maximum likelihood estimates under constant and
linear calibration assumptions are not within the pointwise confidence inter-
vals of the local linear estimates, suggesting that these simple parametric for-
mulations may not be appropriate. This empirical observation is confirmed by
the GLRT tests, which yielded p-values smaller than 10−5 for both tests (test
statistics are 13.58 on 3.92 df and 12.95 on 3.36 df for the constant and linear
hypothesis, respectively).

Thus, we conclude that the variation in the strength of dependence between
the twin birth weights at different gestational ages, as represented by the non-
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Fig 3. Scatterplot of the transformed log-pulse pressures (left panel), and the plots of cali-
bration function estimates (middle panel) and the corresponding Kendall’s tau values (right
panel) under the Frank copula: maximum likelihood estimate of the constant calibration func-
tion (solid line), maximum likelihood estimate of the linear calibration function (long-dashed
line), local constant estimates (dot-dashed line), local linear estimates (dashed line), 90%
pointwise confidence intervals for the local linear estimates (dotted lines).

parametric estimates in the right panel of Figure 2 is statistically significant.
The estimated nonlinear pattern indicates a relatively stronger dependence be-
tween the birth weights of the preterm (28-32 weeks) and post-term (38-42
weeks) twins compared to the twins delivered at term (33-37 weeks). While the
factors affecting the twin fetal growth patterns are not fully known, the rela-
tively stronger intra-twin dependence for preterm twins may be due to the fact
that fat accumulation only begins in the third trimester of gestation (around 28
weeks). Hence, during the weeks 28-32, twins are expected to be still very simi-
lar in their growth. The increase in the strength of dependence after week 38, on
the other hand, is more puzzling, but perhaps can be explained by intrauterine
growth restriction factors.

4.2. Framingham heart study data

This data set comes from the Framingham Heart Study (FHS) and contains
the log-pulse pressures of 348 subjects at the first two examination periods
(1956 and 1962), denoted by log(PP1) and log(PP2), respectively, as well as
the change in body mass index ∆BMI between these periods. Pulse pressure,
defined as the difference between systolic and diastolic blood pressure, reflects
arterial stiffness and is associated with an increased risk in stroke incidence.
For the 348 subjects, who experienced a stroke during the rest of follow-up
period, of interest is to investigate the dependence structure between log(PP1)
and log(PP2) conditional on ∆BMI. The left panel of Figure 3 displays the
conditional marginal distributions of the log-pulse pressures given ∆BMI, which
are obtained parametrically as in Acar et al. (2011).

In conditional copula selection, Acar et al. (2011) used the cross-validated
prediction errors only for the second log-pulse pressure as the selection criterion,
and chose the Frank copula family. Proceeding with their choice, we obtained the
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calibration function estimates using the maximum likelihood estimation with
constant and linear calibration forms and the nonparametric estimation with
p = 0 and p = 1. The results are shown in the middle panel of Figure 3, and
converted to the Kendall’s tau scale in the right panel.

Based on the Figure 3 we suspect that a constant copula model may be appro-
priate, even though it is not fully contained in the pointwise confidence intervals.
Note that the latter provides only partial guidance, and simultaneous confidence
intervals are needed for a decisive visual conclusion. To decide whether the fit-
ted constant copula model is appropriate, we perform the GLRT using the local
constant estimates at the bandwidth value h = 3.45. This bandwidth choice
leads to 2.66 df of the chi-square distribution. The difference between the log-
likelihoods of the alternative and null conditional copula models is 0.91 and
consequently the p-value is 0.514. Thus, we conclude that the change in body
mass index does not have any significant effect on the strength of dependence
between the two log-pulse pressures.

5. Conclusion

Adjusting statistical dependence for covariates via conditional copulas is an ac-
tive area of research where model fitting and validation are currently in early de-
velopment. This paper takes a first step towards establishing conditional copula
model diagnostics by presenting a formal test of hypothesis for the calibration
function. Inspired by the generalized likelihood ratio idea of Fan et al. (2001),
the proposed test uses the local likelihood estimator of Acar et al. (2011) to
specify the model under the alternative when testing a parametric calibration
function hypothesis. The asymptotic null distribution of the test statistic, shown
to be a chi-squared distribution with the number of degrees of freedom deter-
mined by the estimation-optimal bandwidth, is used to determine the rejection
region in finite samples. Simulations suggest that the method has high power of
detecting departures from the null model and yields the targeted type I error
probability.

The GLRT procedure presented here can be easily adapted to test an ar-
bitrary parametric calibration function. Furthermore, the approach can be ex-
tended to employ other nonparametric estimators, such as smoothing splines,
although with additional effort of deriving the asymptotic null distribution. Nev-
ertheless, the asymptotic null distribution may not always be appropriate for
determining the rejection region in finite samples. While conditional bootstrap
is usually used to assess the null distribution of the GLRT in regression-based
problems, defining a similar bootstrap procedure in the conditional copula set-
ting is not straightforward and requires further study.

Although the focus of the paper is on bivariate copulas, the GLRT approach
is potentially applicable to multivariate copulas. However, complications arise
in the latter case since the number of copula parameters is likely to increase
and simultaneous testing is therefore necessary. This represents an interesting
direction for future research.
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One current restriction of the test is that it requires the covariate to be uni-
variate. This restriction is mainly due to the lack of a nonparametric estimation
procedure that can accommodate multiple covariates. The latter is subject of
ongoing research together with a covariate selection method based on the GLRT
framework.

Appendix I: Regularity conditions and technical proofs

The asymptotic distribution of the GLRT statistic relies on the following tech-
nical conditions. The conditions (A1)–(A3) are standard in nonparametric esti-
mation and the conditions (A4)–(A7) are required to regularize the conditional
copula density.

(A1) The density function f(X) > 0 of the covariate X is Lipschitz continuous,
and X has a bounded support X .

(A2) The kernel function K(t) is a symmetric probability density function that
is bounded and Lipschitz continuous.

(A3) The functions η and g−1 have (p+1)th continuous derivatives, where p = 1
when a local linear estimator is used for λn(h).

(A4) The functions ℓ1{η(x), u1, u2} and ℓ2{η(x), u1, u2} exist and are continuous
on X × (0, 1)2, and can be bounded by integrable functions of u1 and u2.

(A5) E
∣∣{ℓ1(η(x), u1, u2) | x}

∣∣4 < ∞.
(A6) E{ℓ2(η(x), u1, u2) | x} is Lipschitz continuous.
(A7) The function ℓ2(t, u1, u2) < 0 for all t ∈ R, and u1, u2 ∈ (0, 1). For some

integrable function k, and for t1 and t2 in a compact set,

|ℓ2(t1, u1, u2)− ℓ2(t2, u1, u2)| < k(u1, u2)|t1 − t2|.

In addition, for some constants ξ > 2 and k0 > 0, j = 1, 2, 3,

E
{

sup
x,||m||<k0/

√
nh

|ℓ2(η̄(x,X) +mTzx, U1, U2)|

×
∣∣∣X − x

h

∣∣∣
j−1

K
(X − x

h

)}ξ

= O(1),

where η̄(x,X) = η(x) + η′(x)(X − x).

Before proving Theorem 1, we shall introduce additional notation. Let γn =
1/

√
nh and define

αn(x) =
γ2
n

σ2(x)f(x)

n∑

i=1

ℓ1(η(Xi), U1i, U2i) K((Xi − x)/h),

Rn(x) =
γ2
n

σ2(x)f(x)

n∑

i=1

{
ℓ1(η̄(x,Xi), U1i, U2i)− ℓ1(η(Xi), U1i, U2i)

}

×K((Xi − x)/h),
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where σ2(x) = −E
[
ℓ2 {η(x),U1,U2} | X = x

]
denotes the Fisher Information

for η(x) at any x ∈ X .

Recall that η̄(x,Xi) = η(x) + η′(x)(Xi − x), define

Rn1 =

n∑

k=1

ℓ1(η(Xk), U1k, U2k) Rn(Xk),

Rn2 = −
n∑

k=1

ℓ2(η(Xk), U1k, U2k) αn(Xk) Rn(Xk),

Rn3 = −1

2

n∑

k=1

ℓ2(η(Xk), U1k, U2k) R
2
n(Xk).

and set

Tn1 = γ2
n

n∑

i=1

n∑

k=1

ℓ1(η(Xk), U1k, U2k)

σ2(Xk)f(Xk)
ℓ1(η(Xi), U1i, U2i) K((Xi − x)/h),

Tn2 = γ4
n

n∑

i=1

n∑

j=1

ℓ1(η(Xi), U1i, U2i) ℓ1(η(Xj), U1j , U2j)

×
{

n∑

k=1

ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2
K((Xi − x)/h)K((Xi − x)/h)

}
.

Lemma 1–3 are used in our derivations, and their proofs are given at the end
of this appendix.

Lemma 1. Under conditions (A1)–(A7),

η̂h(x) − η(x) = {αn(x) +Rn(x)} (1 + op(1)).

Lemma 2. Under conditions (A1)–(A7), as h → 0 and nh3/2 → ∞

Tn1 =
1

h
K(0)E[f−1(X)] +

1

n

∑

k 6=i

ℓ1(η(Xk),U1k,U2k)

σ2(Xk)f(Xk)
ℓ1(η(Xi),U1i,U2i)

Kh (Xi −Xk) + op(h
−1/2),

Tn2 = − 1

h
E[f−1(X)]

∫
K2(t)dt − 2

nh

∑

i<j

ℓ1(η(Xi),U1i,U2i)

σ2(Xi)f(Xi)

× ℓ1(η(Xj), U1j , U2j)K ∗K((Xj −Xi)/h) + op(h
−1/2).

To introduce Lemma 3, we first restate a proposition in de Jong (1987), where
the notation is adapted to ours. Let X1, X2, . . . be independent variables, and
wijn(·, ·) Borel functions such that W (n) =

∑
1≤i≤n

∑
1≤j≤n wijn(Xi, Xj), and

Wij = wijn(Xi, Xj) + wjin(Xj , Xi), where the index n is suppressed in Wij .
Following de Jong (1987, Definition 2.1), Wn is called clean if the conditional
expectations of Wij vanish: E[Wij |Xi] = 0 a.s. for all i, j ≤ n.
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Proposition 3.2 (de Jong, 1987) Let W (n) be clean with variance ν∗n, if GI ,
GII and GIV be of lower order than ν∗2n , then

ν∗−1/2
n W (n)

L−→ N(0, 1), n → ∞,

where

GI =
∑

1≤i<j≤n

E(W
4
ij), GII =

∑

1≤i<j<k≤n

{E(W 2
ijW

2
ik) + E(W

2
jiW

2
jk) + E(W

2
kiW

2
kj)},

GIV =
∑

1≤i<j<k<l≤n

{E(WijWikWljWlk) + E(WijWilWkjWkl) + E(WikWilWjkWjl)}.

We now define the following U-statistic,

W (n) =

√
h

n

∑

i6=j

1

(σ2(Xi)f(Xi))2
ℓ1(η(Xj), U1j , U2j) ℓ1(η(Xi), U1i, U2i)

{2Kh(Xj −Xi)−Kh ∗Kh(Xj −Xi)}. (7)

Lemma 3. Under conditions (A1)–(A7), Wn defined in (7) is clean and, as h →
0 and nh3/2 → ∞, W (n)

L−→ N(0, ν∗), where ν∗ = 2 ||2K−K∗K||22 E[f−1(X)].

Proof of Theorem 1. To provide a general framework, we use η(Xk) and η̃(Xk)
to denote the true value under the null hypothesis and its maximum likelihood
estimator, respectively. Then, the GLRT statistic can be written as

λn(h) =

n∑

k=1

[ℓ(η̂h(Xk), U1k, U2k)− ℓ(η(Xk), U1k, U2k)

− {ℓ(η̃(Xk), U1k, U2k)− ℓ(η(Xk), U1k, U2k)}]
≡ λ1n(h)− λ2n.

Here λ2n corresponds to the canonical likelihood ratio statistic and it is λ1n(h)
that governs the asymptotic distribution of λn(h).

To derive the asymptotic distribution of λ1n(h), first approximate ℓ(η̂h(Xk),
U1k, U2k) around η(Xk)

λ1n(h) ≈
n∑

k=1

ℓ1(η(Xk), U1k, U2k) {η̂h(Xk)− η(Xk)}

+
1

2

n∑

k=1

ℓ2(η(Xk), U1k, U2k) {η̂h(Xk)− η(Xk)}2.

Applying Lemma 1 and 2 yields

− λ1n(h) = − h−1E[f−1(X)]

{
K(0)−

∫
K2(t)dt/2

}



2838 E. F. Acar et al.

− n−1
∑

i6=j

ℓ1(η(Xi), U1i, U2i)

(σ2(Xi)f(Xi))2
ℓ1(η(Xj), U1j , U2j)Kh (Xj −Xi)

+ n−1
∑

i<k

ℓ1(η(Xi), U1i, U2i)

(σ2(Xi)f(Xi))2
ℓ1(η(Xj), U1j , U2j)Kh ∗Kh(Xj −Xi)

−Rn1 +Rn2 +Rn3 + Op

(
n−1h−2

)
+ op(h

−1/2).

By calculating of the leading terms Rn1, Rn2 and Rn3, one can show that

Rn1 =

n∑

k=1

h2

2
ℓ1(η(Xk), U1k, U2k)η

′′(Xk)

∫
t2 K(t)dt(1 + op(1))

= Op(n
1/2h2)

−Rn2 =

n∑

k=1

h2

4

ℓ1(η(Xk), U1k, U2k)

σ2(Xk)f(Xk)
η′′(Xk) ω0(1 + op(1)) = Op(n

1/2h2)

−Rn3 =
nh4

8
Eη′′(X)2σ2(X) ω0(1 + op(1)) = Op(nh

4)

where ω0 =
∫ ∫

t2(s+ t)2K(t)K(s+ t) ds dt. Thus,

Rn3 − (Rn1 −Rn2) = Op(nh
4 + n1/2h2).

This results in

− λ1n(h) = −µn + dn − h−1/2 W (n)/2 + op(h
−1/2)

where Wn is as defined in (7). Applying Lemma 3, we arrive at W (n)
L−→

N(0, ν∗), where ν∗ = 2 ||2K −K ∗K||22 E[f−1(X)]. Hence,

ν−1/2
n (λ1n(h)− µn + dn)

L−→ N(0, 1),

where νn = (4h)−1ν∗. For the asymptotic null distribution of λn(h), this result
can be re-written as

ν−1/2
n {(λ1n(h)− λ2n)− µn + dn + λ2n} L−→ N(0, 1).

Since λ2n = Op(1), it vanishes compared to λ1n(h) = Op(h
−1) and we obtain

ν−1/2
n (λn(h)− µn + dn)

L−→ N(0, 1).

For the second result, note that the distribution N(an, 2an) is approximately
same as the chi-square distribution with degrees of freedom an, for a sequence
an → ∞. Letting an = 2µ2

n/νn and rK = 2µn/νn, we have

(2an)
−1/2(rKλn(h)− an)

L−→ N(0, 1),

provided that dn vanishes.
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Proof of Lemma 1. Define

b = γ−1
n (β0 − η(x), h(β1 − η′(x)))T ,

so that each component has the same rate of convergence. Then, we have

β0 + β1(Xi − x) = η̄(x,Xi) + γnb
Tzi,x,

where zi,x = (1, (Xi−x)/h)T . The local log-likelihood function can be re-written
in terms of b,

L(b) =
n∑

i=1

ℓ(η̄(x,Xi) + γnb
Tzi,x, U1i, U2i)Kh(Xi − x).

Note that b̂ = γ−1
n (β̂0−η(x), h(β̂1−η′(x)))T maximizes L(b). It also maximizes

following normalized function,

L∗(b) =
n∑

i=1

{
ℓ(η̄(x,Xi)+γnb

Tzi,x, U1i, U2i)−ℓ(η̄(x,Xi), U1i, U2i)
}
K((Xi−x)/h),

which can be written as

L∗(b) = hγn

n∑

i=1

ℓ1(η̄(x,Xi), U1i, U2i) b
Tzi,xKh(Xi − x)

+ h
γ2
n

2

n∑

i=1

ℓ2(η̄(x,Xi) +mn

T zi,x, U1i, U2i) (b
Tzi,x)

2 Kh(Xi − x)

= bT
{
γn

n∑

i=1

ℓ1(η̄(x,Xi), U1i, U2i)zi,xK((Xi − x)/h)
}

+ 2−1bT
{ 1

n

n∑

i=1

ℓ2(η̄(x,Xi) +mn

Tzi,x, U1i, U2i) zi,xz
T
i,x Kh(Xi − x)

}
b.

In the following, we will show that

n−1
n∑

i=1

ℓ2(η̄(x,Xi) +mn

T zi,x, U1i, U2i) zi,xz
T
i,x Kh(Xi − x) = −∆+ op(1),

where ∆ = σ2(x)fX(x)( µ0, µ1

µ1, µ2
), with µi =

∫
tiK(t)dt, and op(1) is uniform

in x ∈ X and ||b|| < m0, for some fixed constant m0 > 0. To show this, we
need the following smoothness result. Let An(x,m) = ℓ2(η̄(x,X) +mT zx, U1,
U2) zxz

T
x Kh(X − x), with ||m|| < 1. Then, under the conditions (A1)–(A6),

we can show that

|An(x1,m1)−An(x2,m2)| ≤ h−3 k(X,U1, U2)(||m1 −m2||+ |x1 − x2|)
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for some integrable function k(X,U1, U2). Thus, using the triangle inequality,
∣∣∣∣∣
1

n

n∑

i=1

ℓ2(η̄(x,Xi) +mn

Tzi,x, U1i, U2i) zi,xz
T
i,x Kh(Xi − x)− (−∆)

∣∣∣∣∣

≤ 1

n

n∑

i=1

∣∣∣{ℓ2(η̄(x,Xi) +mn

T zi,x, U1i, U2i)− ℓ2(η̄(x,Xi), U1i, U2i)}

× zi,xz
T
i,xKh(Xi − x)

∣∣∣+ sup
η,x

[
1

n

∣∣∣
n∑

i=1

{ℓ2(η̄(x,Xi), U1i, U2i)− ℓ2(η(Xi),

U1i, U2i)} × zi,xz
T
i,x Kh(Xi − x)

∣∣∣
]

+ sup
η,x

[∣∣∣ 1
n

n∑

i=1

ℓ2(η(Xi), U1i, U2i)

× zi,xz
T
i,x Kh(Xi − x)− E{ℓ2(η(X), U1, U2) zxz

T
x Kh(X − x)|x}

∣∣∣

+
∣∣∣E{ℓ2(η(X), U1, U2) zxz

T
x Kh(X − x)|x} +∆

∣∣∣
]
,

for η in a compact set and x ∈ X . The first sum goes to zero by the previous
argument and the Dominated Convergence theorem. Similarly, the second sum
converges to zero provided that hn(ξ−2)/ξ = O(1) and ||b|| < m0, for some fixed
constant m0 > 0. The first part in the last term goes to zero with probability
one by the uniform weak law of large numbers and the second part vanishes by
direct calculation. We thus obtain

L∗(b) = bT Wn(x)− 2−1bT∆b (1 + op(1)),

uniformly for x ∈ X , where

Wn(x) = γn

n∑

i=1

ℓ1(η̄(x,Xi), U1i, U2i) zi,xK((Xi − x)/h).

Using the quadratic approximation lemma (Fan and Gijbels, 1996, p. 210),

b̂ = ∆−1 Wn(u) + op(1),

provided that Wn is a stochastically bounded sequence of random vectors. The
first entry of b̂ directly yields the result, i.e.

γ−1
n {η̂h(x) − η(x)} =

γn
σ2(x)f(x)

[
n∑

i=1

ℓ1(η(Xi), U1i, U2i)K((Xi − x)/h)

+

n∑

i=1

{
ℓ1(η̄(x,Xi), U1i, U2i)− ℓ1(η(Xi), U1i, U2i)

}
K((Xi − x)/h)

]
(1 + op(1)).

Note that, when η is linear, then the second sum directly becomes zero as for
each i = 1, . . . , n

η̄(x,Xi) = a0 + a1x+ a1(Xi − x) = η(Xi). (8)

This is clearly also the case when η is constant.
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Proof of Lemma 2. Note that

Tn1 = γ2
n

n∑

k=1

1

σ2(Xk)f(Xk)
[ℓ1(η(Xk), U1k, U2k)]

2 K (0)

+ γ2
n

∑

k 6=i

1

σ2(Xk)f(Xk)
ℓ1(η(Xi), U1i, U2i)ℓ1(η(Xk), U1k, U2k) K((Xi −Xk)/h).

The approximation of the first term

γ2
n

n∑

k=1

[ℓ1(η(Xk), U1k, U2k)]
2

σ2(Xk)f(Xk)
K (0) = h−1K(0)E f−1(X) + op(h

−1/2)

yields the first result. We can decompose Tn2 = Tn21 + Tn22, where

Tn21 =
1

(nh)2

n∑

i=1

[ℓ1(η(Xi), U1i, U2i)]
2

n∑

k=1

ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2
K2((Xi −Xk)/h),

Tn22 =
1

n2

∑

i6=j

ℓ1(η(Xi), U1i, U2i) ℓ1(η(Xj), U1j , U2j)
{ n∑

k=1

ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2

Kh(Xi −Xk)Kh(Xj −Xk)
}
.

We deal with Tn21 and Tn22 separately. For Tn21, note that

Tn21 =
1

(nh)2

n∑

k=1

ℓ1(η(Xk), U1k, U2k)]
2 ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2
K2(0)

+
1

(nh)2

∑

i6=k

[ℓ1(η(Xi), U1i, U2i)]
2 ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2
K2((Xi −Xk)/h).

The first sum can be shown to be

1

(nh)2

n∑

k=1

σ2(Xk)
ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2
K2(0) + op(h

−1/2) = Op(n
−1h−2).

Therefore, let

Vn =
2

n(n− 1)

∑

i<k

{σ2(Xi)
ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2

+ σ2(Xk)
ℓ2(η(Xi), U1i, U2i)

(σ2(Xi)f(Xi))2
}K2

h

(
Xk −Xi

)
,

and the second sum becomes (Vn + o(1))/2 + Op

(
n−3/2h−2

)
+ op(h

−1/2). The
decomposition theorem for U-statistics (Hoeffding, 1948) allows us to show that
V ar(Vn) = O(n−1h−2) as follows. First note that the leading term of Vn is
−h−1

E f−1(X)
∫
K2(t)dt. Hence, as nh → ∞ and h → 0, we obtain

Tn21 = −h−1
E f−1(X)

∫
K2(t)dt+ op(h

−1/2).
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Similarly, we can decompose Tn22 = Tn221 + Tn222 with

Tn221 =
2

n

∑

i<j

ℓ1(η(Xi), U1i, U2i) ℓ1(η(Xj), U1j , U2j)
1

n

{ ∑

k 6=i,j

ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2

Kh(Xi −Xk)Kh(Xj −Xk)
}
,

Tn222 =
K(0)

n2h

∑

i6=j

ℓ1(η(Xi), U1i, U2i) ℓ1(η(Xj), U1j , U2j)

×
{ℓ2(η(Xi), U1i, U2i)

(σ2(Xi)f(Xi))2
+

ℓ2(η(Xj), U1j , U2j)

(σ2(Xj)f(Xj))2

}
Kh(Xi −Xj).

For k 6= i, j, define

Qijk,h =
ℓ2(η(Xk), U1k, U2k)

(σ2(Xk)f(Xk))2
Kh(Xk −Xi)Kh(Xk −Xj).

It can be easily shown that V ar(n−1
∑

k 6=i,j Qijk,h) = O(n−1h−2). Then,

Tn221 = 2n−2(n− 2)
∑

i<j

ℓ1(η(Xi), U1i, U2i) ℓ1(η(Xj), U1j , U2j)

× E(Qijk,h|Xi, Xj) + op(h
−1/2),

where

E(Qijk,h|Xi, Xj) = − {h σ2(Xi)f(Xi)}−1

∫
K(t) K((Xj −Xi)/h)dt.

It is also easy to show V ar(Tn222) = O
(
n−2h−3

)
, implying Tn222 = op(h

−1/2).
Combining Tn21, Tn221 and Tn222 yields

Tn2 = − 1

h
E f−1(X)

∫
K2(t)dt− 2

nh

∑

i<j

ℓ1(η(Xi), U1i, U2i)

σ2(Xi)f(Xi)
ℓ1(η(Xj), U1j , U2j)

×K ∗K((Xj −Xi)/h) + op(h
−1/2).

Proof of Lemma 3. Recall that

W (n) = n−1h1/2
∑

i6=j

{σ2(Xi)f(Xi)}−2ℓ1(η(Xj), U1j , U2j) ℓ1(η(Xi), U1i, U2i)

{2Kh(Xj −Xi)−Kh ∗Kh(Xj −Xi)}.

We shall show that Wn satisfies conditions in Proposition 3.2. Let

Wij = n−1h1/2Bn(i, j)ℓ1(η(Xi), U1i, U2i) ℓ1(η(Xj), U1j , U2j),
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where
Bn(i, j) = b1(i, j) + b2(i, j)− b3(i, j)− b4(i, j),

and

b1(i, j) = 2Kh(Xj −Xi){σ2(Xi)f(Xi)}−2, b2(i, j) = b1(j, i),

b3(i, j) = Kh ∗Kh(Xj −Xi){σ2(Xi)f(Xi)}−2, b4(i, j) = b3(j, i).

Thus we can write W (n) =
∑

i<j

Wij , and W (n) is clean directly follows from

the first Bartlett identity. For the variance of W (n), note that V ar(W (n)) =∑
i<j E(W 2

ij). Thus we calculate E[{Bn(i, j)ℓ1(θ(Xi), U1i, U2i) ℓ1(θ(Xj), U1j ,

U2j)}2]. To simplify our presentation, let ℓ1i = ℓ1(θ(Xi), U1i, U2i) and denote the
m-fold convolution at t by K(t,m) = K ∗· · ·∗K(t). Through direct calculations,
we obtain

E(b21(i, j) ℓ
2
1i ℓ

2
1j) = E

[
4

h2

ℓ21i ℓ
2
1j

{σ2(Xi)f(Xi)}2
K2

(
Xj −Xi

h

)]

=
4

h2

∫
σ2(X1)

{σ2(X1)f(X1)}2
{∫

σ2(X2)K
2

(
X2 −X1

h

)
f(X2)dX2

}
f(X1)dX1

=
4

h

∫
f−2(X1)

σ2(X1)

∫
σ2(X1)f(X1)K

2(t)dtf(X1)dX1(1 +O(h))

=
4

h
K(0, 2)Ef−1(X)(1 +O(h)).

Similarly,

E(b22(i, j) ℓ
2
1i ℓ

2
1j) = 4h−1K(0, 2)Ef−1(X)(1 +O(h)),

E(b23(i, j) ℓ
2
1i ℓ

2
1j) = h−1K(0, 4)Ef−1(X)(1 +O(h)),

E(b24(i, j) ℓ
2
1i ℓ

2
1j) = h−1K(0, 4)Ef−1(X)(1 +O(h)),

E(b1(i, j)b2(i, j) ℓ
2
1i ℓ

2
1j) = 4h−1K(0, 2)Ef−1(X)(1 +O(h)),

E(b1(i, j)b3(i, j) ℓ
2
1i ℓ

2
1j) = 2h−1K(0, 3)Ef−1(X)(1 +O(h)),

E(b1(i, j)b4(i, j) ℓ
2
1i ℓ

2
1j) = 2h−1K(0, 3)Ef−1(X)(1 +O(h)),

E(b2(i, j)b3(i, j) ℓ
2
1i ℓ

2
1j) = 2h−1K(0, 3)Ef−1(X)(1 +O(h)),

E(b2(i, j)b4(i, j) ℓ
2
1i ℓ

2
1j) = 2h−1K(0, 3)Ef−1(X)(1 +O(h)),

E(b3(i, j)b4(i, j) ℓ
2
1i ℓ

2
1j) = h−1K(0, 4)Ef−1(X)(1 +O(h)).

Thus,

E[Bn(i, j)ℓ
2
1i ℓ

2
1j ] = h−1{16K(0, 2)− 16K(0, 3)+ 4K(0, 4)}Ef−1(X)(1+O(h)).

The leading term of n−2h
∑

i<j

E[{Bn(i, j)ℓ
2
1i ℓ

2
1j ] yields

ν∗ = 2{4K(0, 2)− 4K(0, 3)+K(0, 4)}Ef−1(X) = 2 ||2K −K ∗K||22 Ef−1(X).
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For the condition on GI , note that E(b1(1, 2)ℓ11ℓ12)
4 = E(b3(1, 2)ℓ11ℓ12)

4 =
O(h−3). Then E(W 4

12) = n−4h2O(h3), which implies GI = O(n−2h−1) = o(1).
Similarly, the condition on GII can be verified by noting that E(W 2

12W
2
13) =

O(E(W 4
12)) = O(n−4h−1). Thus, GII = O(n−1h−1) = o(1). For the last con-

dition we need to check the order of E(W12W23W34W41). Calculations for few
terms yield,

E(b21(1, 2)b
2
1(2, 3)b

2
1(3, 4)b

2
1(4, 1) ℓ

′2
1 ℓ′22 ℓ′23 ℓ′24 ) = O(h−1)

E(b21(1, 2)b
2
1(2, 3)b

2
1(3, 4)b

2
3(4, 1) ℓ

′2
1 ℓ′22 ℓ′23 ℓ′24 ) = O(h−1)

E(b21(1, 2)b
2
1(2, 3)b

2
3(3, 4)b

2
3(4, 1) ℓ

′2
1 ℓ′22 ℓ′23 ℓ′24 ) = O(h−1)

E(b21(1, 2)b
2
3(2, 3)b

2
3(3, 4)b

2
3(4, 1) ℓ

′2
1 ℓ′22 ℓ′23 ℓ′24 ) = O(h−1)

E(b23(1, 2)b
2
3(2, 3)b

2
3(3, 4)b

2
3(4, 1) ℓ

′2
1 ℓ′22 ℓ′23 ℓ′24 ) = O(h−1).

Since terms with other combinations will be of the same order, we conclude that

E(W12W23W34W41) = n−4h2O(h−1) = O(n−4h),

and GIV = O(h) = o(1). This completes the proof.

Remark 1. In the case where conditional marginal distributions are estimated,
say by Û1 and Û2, both under the null and under the alternative, the GLR
statistic takes the form

λn(h) =

n∑

k=1

[ℓ(η̂h(Xk), Û1k, Û2k)− ℓ(η̃(Xk), Û1k, Û2k)],

which can be re-written as

λn(h) =

n∑

k=1

[ℓ(η̂h(Xk), Û1k, Û2k)− ℓ(η(Xk), U1k, U2k)

−{ℓ(η̃(Xk), Û1k, Û2k)− ℓ(η(Xk), U1k, U2k)}].
≡ λ1n(h)− λ2n.

In this case, specific to the estimation method used in Û1 and Û2, one has to
revise Lemma 1 and Theorem 1. Nevertheless, denoting the partial derivatives
by

ℓrsq(t, u1, u2) =
∂r+s+qℓ(t, u1, u2)

∂tr ∂us
1 ∂u

q
2

,

for arbitrary integers r, s, q, we can provide a fairly general argument on the
asymptotic behaviour of λn(h) using three-dimensional Taylor approximations,

λ1n(h) ≈
n∑

k=1

ℓ100(η(Xk), U1k, U2k) {η̂h(Xk)− η(Xk)}
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+

n∑

k=1

ℓ010(η(Xk), U1k, U2k) {Û1k − U1k}

+

n∑

k=1

ℓ001(η(Xk), U1k, U2k) {Û2k − U2k}

+
1

2

n∑

k=1

ℓ200(η(Xk), U1k, U2k) {η̂h(Xk)− η(Xk)}2

+
1

2

n∑

k=1

ℓ020(η(Xk), U1k, U2k) {Û1k − U1k}2

+
1

2

n∑

k=1

ℓ002(η(Xk), U1k, U2k) {Û2k − U2k}2

+

n∑

k=1

ℓ110(η(Xk), U1k, U2k) {η̂h(Xk)− η(Xk)}{Û1k − U1k}

+

n∑

k=1

ℓ101(η(Xk), U1k, U2k) {η̂h(Xk)− η(Xk)}{Û2k − U2k}

+

n∑

k=1

ℓ011(η(Xk), U1k, U2k) {Û1k − U1k}{Û2k − U2k},

and

λ2n ≈
n∑

k=1

ℓ100(η(Xk), U1k, U2k) {η̃(Xk)− η(Xk)}

+
n∑

k=1

ℓ010(η(Xk), U1k, U2k) {Û1k − U1k}

+

n∑

k=1

ℓ001(η(Xk), U1k, U2k) {Û2k − U2k}

+
1

2

n∑

k=1

ℓ200(η(Xk), U1k, U2k) {η̃(Xk)− η(Xk)}2

+
1

2

n∑

k=1

ℓ020(η(Xk), U1k, U2k) {Û1k − U1k}2

+
1

2

n∑

k=1

ℓ002(η(Xk), U1k, U2k) {Û2k − U2k}2

+

n∑

k=1

ℓ110(η(Xk), U1k, U2k) {η̃(Xk)− η(Xk)}{Û1k − U1k}

+

n∑

k=1

ℓ101(η(Xk), U1k, U2k) {η̃(Xk)− η(Xk)}{Û2k − U2k}
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+

n∑

k=1

ℓ011(η(Xk), U1k, U2k) {Û1k − U1k}{Û2k − U2k}.

After directly cancelling out the common terms, i.e. the ones only involving the
differences {Ûik − Uik}, i = 1, 2, we obtain

λn(h) ≈
n∑

k=1

[
ℓ100(η(Xk), U1k, U2k) + ℓ110(η(Xk), U1k, U2k){Û1k − U1k}

+ ℓ101(η(Xk), U1k, U2k) {Û2k − U2k}
]
{η̂h(Xk)− η(Xk)}

+
1

2

n∑

k=1

ℓ200(η(Xk), U1k, U2k) {η̂h(Xk)− η(Xk)}2

−
n∑

k=1

[
ℓ100(η(Xk), U1k, U2k) + ℓ110(η(Xk), U1k, U2k){Û1k − U1k}

+ ℓ101(η(Xk), U1k, U2k) {Û2k − U2k}
]
{η̃(Xk)− η(Xk)}

− 1

2

n∑

k=1

ℓ200(η(Xk), U1k, U2k) {η̃(Xk)− η(Xk)}2

If the conditional marginal distributions are estimated parametric rates, for in-
stance, as in Section 4, then the second and the third terms in the first sum, and
the last two sums will vanish. Hence, the result in Theorem 1 will hold. However,
if the conditional marginal distributions are estimated with nonparametric rates
(Abegaz et al., 2012), then the terms involving Ûik, i = 1, 2 are expected to alter
the asymptotic distribution of the GLRT. The latter case requires further study.

Appendix II: Additional Simulation Results

We investigate the finite sample performance of the proposed GLRT in simu-
lations also using the Clayton and Gumbel families. Together with the Frank
family, these copulas cover wide range of dependence patterns. The Clayton
family has the copula function

C(u1, u2) =
(
u−θ
1 + u−θ

2 − 1
)− 1

θ , θ ∈ (0,∞),

and exhibits lower tail dependence; while the Gumbel copula has the form

C(u1, u2) = exp
[
−{(− lnu1)

θ(− lnu2)
θ} 1

θ

]
, θ ∈ [1,∞),

and exhibits upper tail dependence (see the top left and right panels of Figure 4).
Considering their restricted copula parameter range, the inverse link functions
are chosen as g−1(t) = exp(t) for the Clayton copula, and g−1(t) = exp(t) + 1
for the Gumbel copula.
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Fig 4. Contour plots of the densities of the Clayton (top left panel) and Gumbel copulas (top

right panel) under M
(C)
0 and M

(G)
0 , respectively, illustrated with standard normal marginal

distributions; and graphical summaries of the calibration models under the Clayton (bottom
left panel) and Gumbel copulas (bottom right panel) in the Kendall’s tau scale.

In these set of simulations, we focus on the following constant, linear and
quadratic calibration models, indexed by 0, 1 and 2, respectively. We also in-
dicate the first letter of the data generating copula as superscript. The three
calibration models for the Clayton family are

M
(C)
0 : η0(X) = 1.1,

M
(C)
1 : η1(X) = −1.2 + 0.8X,

M
(C)
2 : η2(X) = 2− 0.5 (X − 3.8)2,

and for the Gumbel family, we consider

M
(G)
0 : η0(X) = 0.5,

M
(G)
1 : η1(X) = 1.5− 0.4X,

M
(G)
2 : η2(X) = −1 + 0.5(X − 4)2.

Figure 4 displays the variations in the strength of dependence for these calibra-
tion models, summarized separately for each copula family in the Kendall’s tau
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scale using the conversions τ = θ/(θ+2) for the Clayton copula, and τ = 1−1/θ
for the Gumbel copula.

We consider sample sizes of n = 100, 200 and 500, and generate 200 replicated
samples following the same steps as in Section 3. First, we simulate the covariate
values Xi from Uniform (2, 5). Then, for each i = 1, 2, . . . , n, we obtain the cop-
ula parameter, θi imposed by the given calibration and link functions, and finally
simulate the pairs (U1i, U2i) | Xi from the underlying family with the parameter
θi. The results for testing the linear and constant null hypotheses are obtained
using the local linear and local constant estimates, respectively, at the opti-
mum bandwidth values chosen according to the leave-one-out cross-validated
likelihood method among the same 12 pilot bandwidth values considered in
Section 3. As can be seen in Table 2, the empirical rejection rates under the null
hypotheses roughly attain the nominal type I error rates α ∈ {0.1, 0.05, 0.01} for
both the Clayton (models M

(C)
0 and M

(C)
1 ) and Gumbel families (models M

(G)
0

and M
(G)
1 ). Consistent with the results in Section 3, the empirical power in de-

tecting departures from the null depends heavily on the underlying calibration
model. For instance, in both Clayton and Gumbel families, the quadratic mod-

els M
(C)
2 and M

(G)
2 show modest departures from linearity (see bottom panels

of Figure 4), therefore moderate rejection rates were observed in the cases with
smaller sample size.

Table 2

Demonstration of the proposed GLRT for testing the linear/constant null hypothesis H0 at
α = 0.10, 0.05 and 0.01, respectively, under the Clayton and Gumbel copulas. Shown are the

rejection frequencies assessed from 200 Monte Carlo replicates. The sample sizes are
n = 100, 200 and 500, where the generating calibration models are shown in the “True

Model” column. Those entries in the table reflecting the power of the testing procedure are
shown in bold face

Null Model
True Model H0 : η(x) = a0 + a1x H0 : η = c

n .10 .05 .01 .10 .05 .01
100 — — — .105 .055 .010
200 — — — .110 .040 .000M

(C)
0

500 — — — .085 .040 .005
100 .075 .040 .000 1.00 1.00 1.00

200 .130 .060 .010 1.00 1.00 1.00M
(C)
1

500 .060 .035 .000 1.00 1.00 1.00

100 .765 .665 .435 .915 .855 .670

200 .975 .930 .820 .995 .995 .960M
(C)
2

500 1.00 1.00 1.00 1.00 1.00 1.00

100 — — — .090 .045 .005
200 — — — .120 .045 .000M

(G)
0

500 — — — .140 .070 .015
100 .100 .065 .015 .520 .395 .165

200 .090 .020 .010 .615 .515 .355M
(G)
1

500 .110 .035 .005 1.00 .990 .975

100 .330 .200 .050 .775 .635 .355

200 .585 .410 .210 .970 .960 .805M
(G)
2

500 .945 .870 .685 1.00 1.00 0.995
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