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Abstract The Multiple-Try Metropolis is a recent exten-
sion of the Metropolis algorithm in which the next state
of the chain is selected among a set of proposals. We pro-
pose a modification of the Multiple-Try Metropolis algo-
rithm which allows for the use of correlated proposals, par-
ticularly antithetic and stratified proposals. The method is
particularly useful for random walk Metropolis in high di-
mensional spaces and can be used easily when the proposal
distribution is Gaussian. We explore the use of quasi Monte
Carlo (QMC) methods to generate highly stratified samples.
A series of examples is presented to evaluate the potential of
the method.

Keywords Antithetic variates . Markov Chain Monte
Carlo . Extreme antithesis . Korobov rule . Latin Hypercube
sampling . Quasi Monte Carlo . Sobol’ sequence .

Multiple-Try Metropolis . Random-Ray Monte Carlo

1 Introduction

Is is well recognized that the Markov Chain Monte Carlo
(MCMC) methods provide huge support for realistic statisti-
cal modelling. In recent years, as the statistical models have
increased in complexity and size, there is a greater demand
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for fast MCMC algorithms and more reliable convergence
diagnostics. A promising direction is represented by the so-
called local search samplers and adaptive algorithms. For
examples, we refer to the papers by Atchade and Perron
(2005), Atchade and Rosenthal (2005), Liu et al. (2000),
Gilks et al. (1994), Chen and Schmeiser (1993). In this pa-
per we discuss possible accelerations of the Multiple-Try
Metropolis (MTM) of Liu et al. (2000, henceforth denoted
LLW) via correlated proposals. LLW introduce the MTM as
a generalization of the classical Metropolis algorithm which
allows one to select, at each update, among multiple propos-
als. The main advantage of the MTM is that it explores a
larger portion of the sample space resulting in better mixing
and shorter running times. In addition, LLW propose the use
of MTM with the Adaptive Direction Sampling of Gilks et
al. (1994) as well as the hit-and-run algorithm (Chen and
Schmeiser, 1993) and the griddy Gibbs sampler (Ritter and
Tanner, 1992). The modifications we propose here for the
MTM can be used directly in all of the above.

Recent approaches to the acceleration of MCMC algo-
rithms have included the use of antithetic variates (Frigessi
et al., 2000; Craiu and Meng, 2005), and quasi Monte Carlo
(QMC) methods (Owen and Tribble, 2004; Lemieux and
Sidorsky, 2006), in which highly-uniform point sets—such
as the one shown on Fig. 2—are used to produce structured
sampling schemes meant to improve upon random draws.
The combination of MCMC and QMC is still at an early
stage, but it seems like a promising approach since QMC
methods have been shown to be very successful in the context
of multivariate integration, especially in the area of finance
(see, for example, Paskov and Traub, 1995; Caflisch et al.,
1997).

Antithetic coupling has proven to be particularly effec-
tive in MCMC algorithms with monotone kernels, such as
Gibbs and slice samplers, or in perfect sampling processes in
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which the updating function is monotone in all arguments.
The Metropolis-Hastings algorithm, one of the most fre-
quently used MCMC algorithms in practice, does not have
the monotone properties required for an efficient antithetic
coupling. We propose the use of antithetic and stratified vari-
ates for Metropolis algorithms via the MTM. The new algo-
rithm, Multiple Correlated-Try Metropolis (MCTM) selects
among correlated proposals instead of independent ones.
Section 2 contains the general construction of MCTM. Cor-
relation among the proposals can be introduced in various
ways but in this paper we study the antithetic and stratified
approaches. Both are detailed in Section 3 in the context of a
random-walk Metropolis with either (a) univariate proposal
distribution for which the inverse cumulative distribution
function is available, or (b) multivariate Gaussian proposals.
Section 4 contains three examples for which we compare the
performances of MCTM and MTM. We end with discussion
in Section 5.

2 Multiple correlated-try metropolis

Suppose we want to draw samples from a target distribution
characterized by the density function π (x). Metropolis al-
gorithms do that by first choosing a proposal transition rule
T (x ; y), which gives the density function for the future state
y given the current state x . In the MTM algorithm proposed
by LLW, a weighting function w(x, y) defined by

w(x, y) = π (x)T (x ; y)λ(x, y),

is also specified, where λ(x, y) is a nonnegative symmet-
ric function (in x and y) that can be chosen by the user.
(To simplify the arguments, unless otherwise stated we take
λ(x, y) = 1 throughout this paper.) To update the current
state x , the MTM performs the following steps.

1. Draw k trial proposals y1, . . . , yk from T (x ; y). Compute
w(y j , x) for each j ;

2. Select y among the k proposals with probability propor-
tional to w(y j , x), j = 1, . . . , k.

3. Draw x∗
1 , . . . , x∗

k−1 variates from the distribution T (y; x)
and let x∗

k = x ;
4. Accept y with generalized acceptance probability

rg = min

{
1,

w(y1, x) + · · · + w(yk, x)

w(x∗
1 , y) + · · · + w(x∗

k , y)

}
.

While it is obvious that the proposals do not need to be
independently generated, some care is required in imple-
menting the MTM with correlated proposals, especially if
we want to maintain the reversibility of the Markov chain.
Consider the MTM algorithm in which the proposals are gen-

erated jointly from T̃ (x ; y1, . . . , yk) and are exchangeable.
In other words, the transition rule now specifies how to gen-
erate a (correlated) sample y1, . . . , yk of future states given
the current state x , and T̃ (x ; y1, . . . , yk) is the conditional
joint density function of that sample given x . Furthermore,
we assume that the marginal transition kernel is equal to
the original existing kernel T (x ; y) that is used to generate
independent trials, i.e.

∫
T̃ (x ; y1, . . . , yk)dy1 . . . dyi−1dyi+1 . . . dyk = T (x ; yi ),

∀ 1 ≤ i ≤ k.

We call this approach the Multiple Correlated-Try
Metropolis (MCTM) algorithm. The motivation here is that
by carefully choosing the joint distribution of the correlated
sample y1, . . . , yk , we hope to sample the state space in a
more structured way than by using a set of independent pro-
posals, as done in the MTM. The new MCTM algorithm is
as follows:

1. Draw k trial proposals y1, . . . , yk from T̃ (x ; y1, . . . , yk).
Compute w(y j , x) = π (y j )T (y j ; x)λ(y j , x), for each j ;

2. Select y among the k proposals with probability propor-
tional to w(y j , x), j = 1, . . . , k.

3. Draw (x∗
1 , . . . , x∗

k−1) variates from the conditional transi-
tion kernel T̃ (y; x1, . . . , xk−1 | xk = x) and let x∗

k = x ;
4. Accept y with generalized acceptance probability

rg = min

{
1,

w(y1, x) + · · · + w(yk, x)

w(x∗
1 , y) + · · · + w(x∗

k , y)

}
.

Proposition 2.1. The Markov chain defined with the algo-
rithm above has stationary distribution π and satisfies the
detailed balance condition.

Proof: The proof follows closely from the one given by
LLW for the original MTM. If A(x, y) is the actual transition
probability and I (·) is the indicator function that shows which
y j has been selected at step 2, then

π (x)A(x, y) = π (x)P
[ ∪k

j=1 {Y j = y} ∩ {I = j} | x
]

= kπ (x)P[{Y1 = y} ∩ {I = 1} | x]

= kπ (x)
∫

T̃ (x ; y, y2, . . . , yk)

× w(y, x)

w(y, x) + ∑k
i=2 w(yi , x)

× min

{
1,

w(y, x) + ∑k
i=2 w(yi , x)

w(x, y) + ∑k
i=2 w(x∗

i , y)

}
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×T̃ (y; x∗
2 , . . . , x∗

k | x)dy2 . . . dykdx∗
2 . . . dx∗

k

= k
w(y, x)w(x, y)

λ(y, x)

×
∫

min

{
1

w(y, x) + ∑k
i=2 w(yi , x)

,

1

w(x, y) + ∑k
i=2 w(x∗

i , y)

}

× T̃ (y; x∗
2 , . . . , x∗

k | x)T̃ (x ; y2, . . . , yk | y)

dy2 × . . . dykdx∗
2 . . . dx∗

k = π (y)A(y, x).

In the above derivation we have used T̃ (x ; y, y2, . . . , yk) =
T (x ; y)T̃ (x ; y2, . . . , yk | y). �

3 Correlated proposals

An open question that we try to answer here is what type
of correlation between proposals will result in improvement
in efficiency over the original MTM. To simplify the expo-
sition, consider first the situation in which the proposals are
exchangeable univariate random variables, say Y1, . . . , Yk

with distribution function F . Without loss of generality we
can assume that E[Yi ] = 0. Intuitively, we would like the
proposals to be “well distributed” in the sample space. There
is not a single comprehensive mathematical definition of
what we mean by “well distributed” but two possible ap-
proaches can be outlined. First, one could consider proposals
that are, on average, as far away from one another as possible
with respect to a particular distance. If we consider the Eu-
clidean distance d(Yi , Y j ) = √

(Yi − Y j )2, then we need to
consider the pairwise correlation between proposals since
E[d2(Yi , Y j )] = 2σ 2(1 − ρ) where σ 2 = Var(Yi ) for all i
and ρ = corr(Yi , Y j ) for all i �= j . Therefore, the largest dis-
tance is achieved on average by proposals that are extremely
antithetic (EA) (Craiu and Meng, 2005), i.e. they achieve
the smallest possible pairwise correlation ρ = corr(Yi , Y j ),
subject to the constraint that the random variables Y1, . . . , Yk

are exchangeable and marginally distributed with distribu-
tion function F . However, having a larger distance between
proposals is not always the most efficient implementation
of the MCTM. An alternative is to stratify the sample of
proposals. In this case of interest is the stratification of the
proposals in the sample space. In recent years the literature
on quasi-Monte Carlo algorithms has explored a wide variety
of methods for producing stratified samples that are equidis-
tributed in the unit hypercube (e.g. L’Ecuyer and Lemieux,
2002) and we investigate some of these techniques in the
context of MCTM.

3.1 Extremely antithetic proposals

We limit our discussion of the antithetic approach to MCTM
to the situation in which the proposals are multivariate
normals and the MTM is implemented within a Random-
Walk Metropolis algorithm. This is one of the most com-
mon instances in which the Metropolis-Hastings is used
when the stationary distribution of interest is multivari-
ate. Proposition 2.1 is particularly attractive in the case of
Gaussian proposals since the conditional kernel is easy to
compute and to sample from.

More precisely, consider an r -dimensional sample space
for the Markov chain Xt constructed via MTM with mul-
tivariate Gaussian proposals. More specifically, the original
MTM algorithm generates k proposals from Nr (x̃, �) when-
ever the current state is x̃ . A general version of the original
MTM uses at each step k proposals which are jointly normal
from Nkr (x̃k, �kr ). To simplify the notation we assume that
r = 2 but the discussion is true in general.

If the independent proposals are sampled from
N2((x, y)T , �), then a pair of correlated proposals is

(x1, y1, x2, y2)T ∼ N4

(
(x, y, x, y)T ,

(
� �

� �

))
,

where � =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
and � =

(
ρ1σ

2
1 ρ2σ1σ2

ρ2σ1σ2 ρ1σ
2
2

)
.

We seek a correlation structure, as determined by (ρ1, ρ2),
so that the average Euclidean distance between pro-
posals is maximized. It can be assumed without loss
of generality that � is diagonal, say � = diag(σ 2

1 , σ 2
2 ).

Otherwise one can apply an orthogonal transforma-
tion (x ′

1, y′
1)T = C(x1, y1)T and (x ′

2, y′
2)T = C(x2, y2)T so

that, if d((x, y), (x ′, y′)) =
√

(x − x ′)2 + (y − y′)2, then
d((x ′

1, y′
1), (x ′

2, y′
2)) = d((x1, y1), (x2, y2)) and x ′

i is indepen-
dent of y′

i . The marginal distribution of

(
x1 − x2

y1 − y2

)
∼ N

(
(0, 0)T ,

(
2σ 2

1 − 2ρ1σ
2
1 −2ρ2σ1σ2

−2ρ2σ1σ2 2σ 2
2 − 2ρ1σ

2
2

))
.

Therefore

E[d((x1, y1), (x2, y2))] = 2
(
σ 2

1 + σ 2
2

)
(1 − ρ1)

is maximized when ρ1 is equal to its smallest possible value.
In our experience, the choice of ρ2 does not influence the
efficiency of the MCTM. In addition, any choice different
than ρ2 = 0 increases the complexity of the constraint on ρ1

since the covariance matrix of all the proposals must be
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1. Draw k proposals using the uniform deviates u1 . . . ,uk constructed via the LHS algo -

rithm using permutation τ .

2. Assuming that y = yj0 is selected, generate x∗
i = F−1

y (u∗
i ) where the u∗

i
,
s are sampled

using the LHS construction by ensuring that the balance condition is satisfied. More

precisely, take j0 = τ−1[k ∗ Fy(x)] (where [u] is the integer part of u) and for all

0 ≤ j ≤ k − 1, j �= j0 construct u∗
j = (τ(j) + wj)/k where the wj ∼ Uniform(0 ,1) are

independent.

3. For each j �= j0, x
∗
j = F−1

y (u∗
j) and x∗

j0
= x.

Fig. 1 MCTM with LHS
proposals

positive definite. In our applications we used ρ2 =
0. Therefore, for the MCTM with Gaussian pro-
posals, yi ∼ Nr (x̃, �), one can use (yT

1 , . . . , yT
k )T ∼

N ((x̃ T , x̃ T , . . . , x̃ T )T , �kr ) with

�kr =

⎛
⎜⎜⎜⎝

� � . . . �

� � � �

. . . . . . . . . . . .

� � � �

⎞
⎟⎟⎟⎠

where � =diag(ρσ 2
1 , . . . , ρσ 2

r ) ∈ Rr×r andρ =−1/(k − 1).
The lower bound ρ = − 1

k−1 is obtained from the constraint
that the joint correlation matrix of all the proposals, �kr , is
a positive semi-definite matrix.

3.2 Quasi Monte Carlo proposals

A situation in which it is straightforward to implement
MCTM is one in which the proposals are univariate and
can be generated using the inverse cumulative distribution
function. In such a case the stratified sample of proposals
can be obtained from a stratified sample in the unit interval.
One of the most widely used techniques to obtain the lat-
ter is the Latin Hypercube Sampling (LHS) which has been
introduced by McKay et al. (1979) and has been studied in-
tensively in the literature ever since (see also Stein, 1987;
Owen, 1992; Loh, 1996; Craiu and Meng, 2005). The gen-
eration of k uniform variates via LHS involves the following
three steps.

Step I Generate independently v1, . . . vk ∼ Uniform(0, 1).
Step II Select a random permutation τ of {0, . . . , k − 1}.
Step III Construct ui = (vi + τ (i))/k, for all 1 ≤ i ≤ k.

It can be noticed that the LHS adds little computational
overhead when compared to the independent generation of
samples. In addition, there is no requirement for a symmetric

distribution of the proposals. It is easy to use LHS within
MCTM as described in Fig. 1.

While the LHS method can be extended to generation of
multivariate uniforms, a better way of producing a corre-
lated set of proposals is to use a randomized quasi Monte
Carlo (RQMC) method. These methods are often used in the
context of high-dimensional numerical integration to pro-
vide more accurate estimators than the Monte Carlo method,
which corresponds to using independent sampling. When not
randomized, QMC methods offer a deterministic approxima-
tion that can be proved to be asymptotically better than Monte
Carlo for some classes of functions (Niederreiter, 1992), but
their performance on specific problems with a fixed sample
size is difficult to assess because no error estimate comes with
them. Their randomized versions, RQMC methods, avoid
this problem by using the following idea: suppose we want
to generate a sample y1, y2, . . . , yk with the requirement that
each yi has a given marginal distribution. (Note that we do not
specify what should be the joint distribution of the sample,
which means the yi ’s could be independent or correlated.)
Assume the sampling space for each yi has dimension r ,
and that we have a function G : [0, 1)r → R

r such that for
a random vector u uniformly distributed over [0, 1)r , G(u)
has the desired distribution for yi . In other words, G(·) rep-
resents the transformation used to generate observations yi ’s
having the desired distribution. Now, let Pk = {u1, . . . , uk}
be a deterministic highly-uniform point set such as those
used by QMC methods, and assume P̃k = {ũ1, . . . , ũk} is a
randomized version of Pk such that (i) each ũi is uniformly
distributed over [0, 1)r , and (ii) P̃k has the same highly-
uniform properties as Pk (examples of such constructions are
given below). Then one can generate the sample y1, . . . , yk

by letting yi = G(ui ), i = 1, . . . , k and in this way, each yi

has the desired distribution, and the structure of Pk induces
correlation among the yi ’s.

For a real-valued function f , the sample y1, . . . , yk thus
obtained can be used to estimate µ = E( f (Y )) via the
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Fig. 2 Two-dimensional Korobov rule with k = 1024 and a = 139

unbiased estimator

µ̂RQMC = 1

k

k∑
i=1

f (yi ),

whose variance can be estimated by generating m indepen-
dent randomizations of Pk .

Before we explain how to use RQMC methods in the
context of the MCTM algorithm, let us give an example
illustrating how the above procedure can be applied in prac-
tice. Suppose each yi is multinormal. More precisely, as-
sume our goal is to have yi ∼ N ((µ1, . . . , µr )T , �), where
� is an r × r covariance matrix that we assume can be
written as � = AAT , with A a lower-triangular matrix. Let
�(·) be the CDF of a standard normal random variable. If
u = (u1, . . . , ur )T is uniformly distributed over [0, 1)r , then
yi = (yi,1, . . . , yi,r )T can be obtained as follows:

⎛
⎜⎜⎝

yi,1

...

yi,r

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

µ1

...

µr

⎞
⎟⎟⎠ + A

⎛
⎜⎜⎝

�−1(u1)
...

�−1(ur )

⎞
⎟⎟⎠ . (3.1)

In other words, the function G(u) in this case is given by the
right-hand side of (3.1).

For the highly-uniform point set, let us use a Korobov
rule, which is defined as follows: choose an integer a ∈
{1, . . . , k − 1}, and let

Pk =
{

i − 1

k
(1, a, . . . , ar−1) mod 1, i = 1, . . . , k

}
.

Figure 2 gives an example of a Korobov rule with k = 1024
and a = 139. As suggested in Cranley and Patterson (1976),
this type of point set can be randomized by generating a
random vector v uniformly in [0, 1)r , and adding it to each

point of Pk (modulo 1). That is, let P̃k = {ũi , i = 1, . . . , k},
where

ũi = (ui + v) mod 1.

Putting everything together, the sample y1, . . . , yk can be
generated by a randomly-shifted Korobov rule as follows:

1. Generate a uniform vector v over [0, 1)r .
2. For each i = 1, . . . , k:

(a) Let ui = (i − 1)(1, a, . . . , ar−1)/k mod 1, and ũi =
(ui + v) mod 1.

(b) Let yi = G(ũi ), where G(·) is defined on the right-hand
side of (3.1).

In the context of the MCTM algorithm, RQMC methods
can be used in a way that mimics the LHS implementa-
tion described at the beginning of this section. In Fig. 3,
we describe an implementation based on a randomly-shifted
highly-uniform point set (not necessarily a Korobov rule). In
what follows, we assume Gx (·) is such that y = Gx (u) has
distribution T (x ; y) for a uniform u, and G y(·) is such that
x = G y(u) has distribution T (y; x).

In other words, once we have our set of trial proposals
y1, . . . , yk and one of them, y, is chosen, we fix x∗

1 to be
the current state x , find the shift w such that the first point
(corresponding to the origin) of a point set randomized by
that shift w would have generated x , and then we generate
the other x∗’s using the remaining points of that point set.
By doing so, the joint distribution of x∗

1 , . . . , x∗
k given y

is the same as the joint distribution of y1, . . . , yk given x ,
which is required for the balance condition to hold. Note
that technically, for this method to produce exchangeable
proposals, one should first randomly permute the order of the
points in P̃k . However, as explained in the next proposition,
in practice this is not necessary since the order in which the
proposals yi are produced is not important.

Proposition 3.1. Let MCTM1 be a version of the MCTM
algorithm based on an unpermuted randomly-shifted point
set, and MCTM2 be based on a randomly permuted version
of the same randomly-shifted point set. Then for a given
input x, MCTM1 and MCTM2 can be implemented so that
they produce the same output y.

Proof: First, note that under MCTM2, the proposals are
exchangeable. Let yi = Gx (ũi ) for i = 1, . . . , k and let zi =
Gx (ũπ(i)), i = 1, . . . , k, where π is a random permutation of
[1, . . . , k]. So the yi are the proposals used in MCTM1 and
the zi are the ones used in MCTM2. Note that the samples
{y1, . . . , yk} and {z1, . . . , zk} are the same.
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1. Draw k trial proposalsy1 ,...,

,...,

yk using a randomly-shifted point setPk. More precisely,

let yi = Gx(ui), for i = 1 k. Compute w(yj,x) = π(yj)T (yj;x).

2. Select y = yj among the k trials with probability proportional to w(yj,x).

3. Let x∗
1 = x and findw such that Gy(w) = x.

4. Set x∗
j =Gy((uj +w) mod 1) for j > 1.

Fig. 3 MCTM with QMC
proposals

Let us introduce some notation: for i = 1, . . . , k, let

wi = w(yi , x)∑k
i=1 w(yi , x)

, Wi =
i∑

j=1

w j , and W0 = 0.

Note that wi = w(zπ−1(i), x).
Now suppose that in MCTM1, we choose y j0 as our pro-

posal using the following procedure: generate U ∼ U (0, 1),
let j0 be such that W j0−1 < U ≤ W j0 . For MCTM2, assume
that zi0 is chosen as follows: generate U ∼ U (0, 1), let l0

be such that Wl0−1 < U ≤ Wl0 , and then let i0 = π−1(l0).
In other words, in MCTM2, the bins used to choose the
index i0 are ordered according to the unpermuted sam-
ple {y1, . . . , yk}. It is clear that in MCTM1, the probabil-
ity of choosing index I is proportional to wI = w(yI , x),
and for MCTM2, this probability is proportional to wπ(I ) =
w(yπ(I ), x) = w(zI , x), as desired. We can also see that for a
given value u for U , l0 = j0 above and so if MCTM1 chooses
y j0 , then MCTM2 chooses the sample point zi0 = zπ−1( j0) =
y j0 , i.e., both implementations choose the same y.

For the rest of the MCTM step, if we assume that
the first point ũ1 in the randomly-shifted point set
corresponds to the non-randomized point u1 = 0, then
the only difference between MCTM1 and MCTM2
is that in the latter, we would set x∗

π−1(1) = x and let

x∗
j = G y((uπ( j) + w) mod 1) for j �= π−1(1), instead of

having x∗
1 = x and x∗

j = G y((u j + w) mod 1). Hence for
a given x and y (which are the same for MCTM1 and
MCTM2), the sample {x∗

1 , . . . , x∗
k } will be the same under

MCTM1 and MCTM2, which means the probability rg of
acceptance is the same under both approaches. Hence if
we use the same uniform V ∼ U (0, 1) in both MCTM1
and MCTM2 to decide whether we keep y or not (based on
whether V ≤ rg or not), then the decision of keeping y or
not will be the same under both MCTM1 and MCTM2.

Note that similar arguments can be used to show that, in
practice, it is not necessary to randomly permute the order
of the points in the one-dimensional LHS approach outlined
at the beginning of this section. �

3.2.1 Transformations over the unit hypercube

As we will see in Section 4.2, for some problems it might be
helpful to transform the points of the randomized QMC point
set to be used in the MCTM algorithm before generating the
QMC proposals. The intuition here is that in some cases, we
may be interested in having more points in some regions of
the unit hypercube. For instance, if the proposals are mul-
tivariate gaussian variables, then perhaps we would like to
generate more proposals in the tails of the gaussian distribu-
tion, which means we would like to have more points in the
“corners” (0, . . . , 0) and (1, . . . , 1) of the unit hypercube.
Here, we explain how this can be achieved in the context of
the MCTM algorithm.

Suppose g : [0, 1] → [0, 1] is a bijection, and let
g(u) = (g(u1), . . . , g(ur )). Now let Qk = g(P̃k) =
{g(ũ1), . . . , g(ũk)}. That is, Qk is the point set ob-
tained after applying g to each point of a randomized point
set P̃k . Let T̂ (x ; y) be the probability density function of
Gx (y), where y = g(u). Similarly, T̂ (y; x) is the density
function of G y(x). Note that since we assumed that g(·) was
a bijection, T̂ (·; ·) is indeed a probability density function.

If we assume that the ratio

	(x ; y) = T (x ; y)

T̂ (x ; y)

is symmetric in x and y, then we can set λ(x, y) = 	(x ; y)
in the MCTM algorithm based on the point set Qk , which is
then performed as shown in Fig. 4.

In this algorithm, we choose the shift ŵ so that if we had
used the first point (corresponding to the origin) of Pk to
generate x∗

1 , then after the shift and the transformation, we
would have obtained x , i.e., G y(g(ŵ)) = x . Also, the reason
why we used λ(x, y) = 	(x ; y) is two-fold: first, doing so
prevents us from having to evaluate T̂ (y; x), which typically
is harder to compute than T (y; x); second, numerical experi-
ments suggested that when using this type of transformation,
better results were obtained by choosing this λ(x, y) instead
of just taking λ(x, y) = 1.
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Fig. 4 MCTM with QMC
proposals to which a
transformation has been applied

Example 3.1. In Section 4.2, we will be using the transfor-
mation

g(u) = sin((u − 0.5)π ) + 1

2
(3.2)

illustrated on Fig. 5.

One can easily verify that g(·) is a bijection with the
following properties: g(0) = 0, g(1) = 1, g(1/2) = 1/2, and
g(u) + g(1 − u) = 1 for any u ∈ (0, 1).

These properties imply that, if U ∼ Uniform(0, 1) then
the density function of �−1(g(U )) is symmetric around 0—
just like that of a standard N (0, 1) given by �−1(U )—but
with fatter tails than the N (0, 1) distribution.

The inverse of g is given by

g−1(z) = arcsin(2z − 1)

π
+ 0.5,

and we can show that if Z j = �−1(g(U j )), j = 1, . . . , r ,
where the U j ’s are i.i.d. Uniform(0, 1), then Z1, . . . , Zr has

u

g(
u)

0.0 0.25 0.50 0.75 1.00
0.0

0.25

0.50

0.75

1.00

Fig. 5 Transformation g(u) used in Section 4.2

joint density

fZ1,...,Zr (z1, . . . , zr ) =
r∏

j=1

e−z2
j /2

√
2π

1

π
√

�(z j )(1 − �(z j ))
.

Thus if T (x ; y) is a multivariate gaussian with no correlation
(as in Section 4.2) given by

T (x ; y) =
r∏

j=1

e−(y j −x j )2/2σ 2
j√

2πσ 2
j

then

T̂ (x ; y) =
r∏

j=1

e−(y j −x j )2/2σ 2
j√

2πσ 2
j

1

π
√

�( y j −x j

σ j
)(1 − �( y j −x j

σ j
))

and thus

	(x ; y) = T (x ; y)

T̂ (x ; y)
=

r∏
j=1

1

π
√

�( y j −x j

σ j
)(1 − �( y j −x j

σ j
))

=
r∏

j=1

1

π
√

(1 − �( x j −y j

σ j
))�( x j −y j

σ j
)
,

which means 	(x ; y) is symmetric, as required.
One may wonder whether the transformation defined by

(3.2) is optimal in its class. More precisely, suppose we are
interested in studying a general transformation of the form

fα(u) = sin[(uα − 1/2)π ] + 1

2
.

If Zα = �−1( fα(U )), with U ∼ Uniform(0, 1), then

P(Zα ≤ t) =
[

arcsin(2�(t) − 1)

π
+ 1

2

]1/α
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Fig. 6 Plot of αopt (t)

has density gα(z) = d P(Zα≤z)
d z . Unless α = 1 the density gα

is not symmetric. One can study the tail probability of gα

in comparison to the tail probability of g1 by looking at the
ratio gα(z)/g1(z) for large values of z. It turns out that

gα(t)

g1(t)
= 1

α

[
arcsin(2�(t) − 1)

π
+ 1

2

] 1−α
α

.

Maximizing the previous ratio with respect to α yields:

αopt (t) = − log

[
arcsin

2�(t) − 1

π
+ 1/2

]
.

The function αopt (t) is plotted in Fig. 6 for various values
of t . It is seen that for |t | moderately large the value of
αopt seem to stabilize around limt→∞ αopt (t) ≈ 0.1937 and
limt→−∞ αopt (t) ≈ 1.737. In our applications we will use the
symmetric gα given by α = 1.

4 Examples

We examine three instances for which the performance of
the MCTM is compared to MTM. In all examples shown the
MTM is doing better than the classical Metropolis-Hastings
algorithm with only one proposal.

4.1 MCTM for local search MCMC

We begin with a simple example in which the MCTM algo-
rithm is used with univariate proposals in combination with
a random-ray Monte Carlo algorithm. LLW have shown that
MTM can be used within the random-ray Monte Carlo, the
hit-and-run algorithm (Chen and Schmeiser, 1993) or the
Adaptive Direction Sampling algorithm (Gilks et al., 1994).
The random-ray Monte Carlo is a modified form of the hit-

and-run algorithm and is especially effective when the dis-
tribution of interest is multimodal and the modes are aligned
on a direction which is not parallel to any of the coordinate
axes. We consider here one target density from a bimodal
family of bivariate distributions constructed by Gelman and
Meng (1991). More precisely, the density

f (x1, x2) ∝ exp
{ − (

9x2
1 x2

2 + x2
1 + x2

2 − 8x1 − 8x2
)/

2
}

(4.1)

has the property that the two conditional densities f (x1|x2)
and f (x2|x1) are normal but the joint density is not normal.
A three-dimensional plot of the density f (x1, x2) is shown
in Fig. 7.

The construction of the random-ray Monte Carlo via
MTM has been detailed by LLW and is followed here. Specif-
ically, at each iteration t of the algorithm, a random direction,
say e, is generated and then, along direction e, the propos-
als y1, . . . , yk are generated from the distribution T e(x ; y)
where x is the state of the chain at time t . The proposals are
generated using yi = x + ri e where r1, . . . , rk are sampled
from Uniform[−σ, σ ]. In our implementation of MCTM, we
use k antithetic variates ri . The parameters chosen here are
σ ∈ {3, 4, 5} and k ∈ {3, 4, 5, 6}. Due to the stratification in-
duced by the hypercube sampling the MCTM has a higher
acceptance rate and thus mixes better than the original MTM.

Table 1 offers support to the previous observations. We
report the Monte Carlo MSE reduction factor, R, for different
choices of σ and k. In each case we perform 1000 updates
with each algorithm and we replicate the analysis 500 times.
The starting points are the same for the two algorithms.
The numbers reported in each cell represent the estimates
of R. The true marginal mean of X can be computed via
numerical integration and is approximately equal to 1.83. In
this example, the acceptance rates are different for the MTM
and the MCTM so are also reported in Table 2.

Fig. 7 Random-ray Monte Carlo. The bivariate density f (x1, x2)

Springer



Stat Comput

Table 1 Values of the MSE reduction factor R = MSEanti
MSEind

σ\k 3 4 5 6

3 0.35 0.53 0.64 0.81
4 0.31 0.42 0.58 0.76
5 0.29 0.40 0.49 0.62

Table 2 Probability of acceptance for MTM/MCTM

σ\k 3 4 5 6

3 26.5/46.1 31.2/47.8 35.2/50.3 38.7/49.7
4 24.5/40.9 26.6/41.8 29.8/44.5 32.3/46.2
5 18.8/35.4 22.7/37.6 26.2/40.3 29.4/42.4

4.2 Lupus data

The random-walk Metropolis is a useful method in multi-
variate settings in which the information about the station-
ary distribution is not concrete enough to help us build a
good proposal distribution. We apply our method to data
from van Dyk and Meng (2001) consisting of measurements
on 55 patients of which 18 have been diagnosed with la-
tent membranous lupus. Table 3 shows the data with two
clinical covariates, IgA and IgG, that measure the levels of
immunoglobulin of type A and of type G, respectively. Of
interest is the prediction of disease occurrence using the two
covariates IgG3-IgG4 and IgA. We consider a logit regres-
sion model in which

logi t P(Yi = 1) = β0 + β1 X1i + β2 X2i ,

where X T
i = (1, Xi1, X2i ) is the vector of covariates for the

i-th individual. We follow Tan (2006) and consider that the
prior for β = (β0, β1, β2)T is trivariate normal with zero
mean and variance diag(1002, 1002, 1002). The posterior

Table 3 The number of latent membranous lupus nephritis
cases, the numerator, and the total number of cases, the denom-
inator, for each combination of the values of the two covariates

IgA

IgG3-IgG4 0 0.5 1 1.5 2

−3.0 0/ 1 – – – –
−2.5 0/ 3 – – – –
−2.0 0/ 7 – – – 0/ 1
−1.5 0/ 6 0/ 1 – – –
−1.0 0/ 6 0/ 1 0/ 1 – 0/ 1
−0.5 0/ 4 – – 1/ 1 –

0 0/ 3 – 0/ 1 1/ 1 –
0.5 3/ 4 – 1/ 1 1/ 1 1/ 1
1.0 1/ 1 – 1/ 1 1/ 1 4/ 4
1.5 1/ 1 – – 2/ 2 –

density is then proportional to

π (β|x, y) ∝
2∏

j=0

e−0.5β j /1002

100
√

2π

×
55∏

i=1

[
exp(X T

i β)

1 + exp(X T
i β)

]yi
[

1

1 + exp(X T
i β)

]1−yi

.

The random walk Metropolis is used with multiple pro-
posals, antithetic, QMC, and independent. The proposal
T (·|β) is trivariate normal with mean β and variance � =
diag(σ 2, σ 2, σ 2). All chains are started from β = 0.

In Table 4 we report, for β1 and p25 = 1{β1>25}, the ra-
tios R = MSEanti

MSEind
and R = MSEqmc

MSEind
, where MSE represents the

Monte Carlo mean squared error, and the index refers to
the method of generating the proposals, i.e., independently,
antithetically or with QMC sampling. To be more specific,
we replicated M = 5000 samples, each of N = 1000 draws.
If we denote by bi j the j th sample point drawn in the i th
replicate from the posterior distribution of β1 then, using

b̄·· =
∑

i j bi j

M N and b̄i · =
∑

j bi j

N for all i = 1, . . . , M the MSE is
defined as

MSE = (b̄·· − E[β1|data])2 +
∑

i (b̄i · − b̄··)2

(M − 1)
.

Similar calculations can be done for p25. Numerical inte-
gration yields E[β1|data] ≈ 13.57 and E[p25|data] ≈ 0.073
(see Tan, 2006).

The QMC sampling is based on a randomly-shifted Ko-
robov point set to which the transformation described in
Example 3.1 has been applied. Note that while inversion of
the normal CDF is used to generate the QMC proposals, both
independent and antithetic proposals use instead Marsaglia’s
polar method (Marsaglia, 1962) to generate normal variates.

It is seen that the use of antithetic proposals is more ef-
fective when the number of streams is average (k = 8). But
the larger savings are obtained with the QMC stratified sam-
ples. When the number of proposals is very large (k = 16)
the benefit of antithetic or stratified proposals diminishes
as the independent MTM has already very good properties.
However, in practical applications one may not have the com-
putational power to generate a large number of proposals so
the improvement brought in by the MCTM can be important.

On the root scale, the reduction in RMSE obtained with
QMC correspond to savings between 20–25%. In none of
the situations explored has the use of antithetic proposals
been inflating the MSE. For the QMC proposals, we only
give results for k = 8 and k = 16 since smaller values of k
make it difficult for the high-uniformity of the QMC point
set to be significant. However, we see that for those values,
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Table 4 Values of R for β1/p25

in the logit example Antithetic QMC

k\σ 2 3 4 2 3 4

3 0.92/0.92 0.90/0.86 0.99/0.95 – – –
4 0.94/0.87 0.88/0.88 0.91/0.89 – – –
5 0.98/0.96 0.81/0.81 0.89/0.86 – – –
6 0.91/0.86 0.86/0.78 0.95/0.92 – – –
8 0.81/0.70 0.75/0.69 0.83/0.80 0.69/0.72 0.61/0.60 0.59/0.56
16 0.87/0.81 0.97/0.94 0.91/0.88 0.81/0.81 0.82/0.84 0.76/0.75

the MSE reductions are quite good, with values below 0.6
in some cases, and never much more than 0.8. We should
also point out that the transformation we used for the QMC
proposals has the effect of making the acceptance rate smaller
in this case than with independent proposals. When using
QMC without the transformation, we get larger acceptance
rates than for independent sampling, but the MSE reduction
factors are not as good as when the transformation is used.
Antithetic proposals give acceptance rates that are about the
same as for independent proposals.

In terms of computation time, the MCTM and MTM are
about the same: for instance, when k = 8, to run 100 repli-
cations of 1000 draws on a 2.0 GHz Pentium 4-M laptop
computer, the MCTM based on the Korobov point set needs
about 32 seconds, while the corresponding MTM version
requires 34 seconds. Results are reversed for the antithetic
implementation, which needs about two seconds more than
the MTM.

4.3 Orange tree data

We consider data on the growth of orange trees over time
which was originally discussed by Draper and Smith (1981)
and later on by Lindstrom and Bates (1990). The data shown

in Fig. 8 consists of circumference measurements Yi j made
for tree i at time x j , i = 1, . . . , 7 and j = 1, . . . , 5. We con-
sider the logistic growth model in which Yi j ∼ N (µi j , σ

2
c )

where

µi j = exp(θi1)

1 + (exp(θi2) − 1) exp(− exp(θi3)x j )
,

for i = 1, . . . , 5 and j = 1, . . . , 7.

A priori the parameters (θ11, . . . , θ53) are independent
and identically distributed as Gaussian with mean zero and
standard deviation σ = 10. For these experiments, we used
an inverse gamma prior with parameters (0.001,0.001) for
σ 2

c .
We implement a random walk Metropolis in which the

proposals for θ are drawn from a multivariate normal cen-
tered at the current state and the proposals for σc are drawn
independently from the proposal distribution which, in turn,
does not depend on the current state. This corresponds to
a realistic scenario in which one cannot generate correlated
proposals for all the components of the Markov chain. For
the stratified (QMC) sampling, we used a 15-dimensional
randomly-shifted Sobol’ point set (Sobol’, 1967) to con-
struct proposals for {θi1, θi2, θi3, i = 1, . . . , 5}. To illustrate

0 500 1000 1500

0
50

10
0

15
0

20
0

25
0

Days

Tr
un

k 
ci

rc
um

fe
re

nc
e

Tree 1
Tree 2
Tree 3
Tree 4
Tree 5

Fig. 8 Trunk circumference (in
millimeters) of five orange trees
data over up to 1600 days
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Table 5 Values of the MSE and variance (in parentheses) re-
duction factor R = MSEMCTM

MSEMTM

θ\k 4 6 8

θ31 0.99 (0.79) 0.99 (1.00) 0.98 (0.69)
θ32 0.97 (1.01) 1.08 (1.06) 0.96 (0.90)
θ33 0.98 (0.86) 0.83 (0.80) 1.01 (1.04)

θ41 0.95 (0.86) 0.89 (0.84) 0.71 (0.57)

θ42 0.83 (0.80) 0.80 (0.87) 0.88 (0.87)
θ43 1.04 (1.05) 0.95 (1.03) 1.17 (1.08)

our findings, we present the MSE reduction factors for the
three parameters of Tree 3 and Tree 4 in Table 5, for k = 4, 6
and 8 proposals. They were obtained using 500 replications
of 10 000 draws each. The acceptance rate was between 12%
and 18%, depending on the number of proposals.

We also give the variance reduction factors (in paren-
theses) besides each MSE ratio. As we can see from these
results, the QMC sampler never does much worse than the
independent one, and in some cases reduces the MSE by
factors of about 30%. The variance reduction factors are in
general smaller than the MSE ones, mostly because in some
cases the bias is quite large for both samplers. This suggests
that the QMC sampler cannot solve completely the slow mix-
ing of the original chain. The results obtained in Section 4.2
seem to suggest as well that the performance of the sampler
with correlated proposals builds upon the performance of the
one with independent proposals. The antithetic implementa-
tion does not produce additional savings with the exception
brought by extreme situations in which the acceptance ratio
for the original MTM is low (≈ 1%).

5 Conclusions

The MCTM algorithm requires small modifications once an
MTM is designed. Provided the acceptance rates of the two
are comparable, the MCTM is more efficient in either the
antithetic or the stratified implementation, especially if the
number of proposals is increased. Further research is nec-
essary to understand possible relations between the accep-
tance rate of MTM and the increase in efficiency brought by
MCTM.

As for which version of the MCTM is better, what we
could say is that for users who want to work with a very small
number of proposals, choosing the antithetic implementation
is probably best, since the stratified version requires about
7 or 8 proposals to start improving upon the MTM. Beyond
that point, the stratified implementation is probably a slightly
better choice than the antithetic one.

While the discussion of the present paper has focused on
Multiple-Try Metropolis, we believe that the idea of strati-

fication and antithetic sampling can be further implemented
in other local-search algorithms designed for Monte Carlo
sampling.
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