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The analysis of data generated by animal habitat selection studies, by family studies

of genetic diseases, or by longitudinal follow-up of households often involves fitting a

mixed conditional logistic regression model to longitudinal data composed of clusters

of matched case-control strata. The estimation of model parameters by maximum like-

lihood is especially difficult when the number of cases per stratum is greater than one.

In this case, the denominator of each cluster contribution to the conditional likelihood

involves a complex integral in high dimension, which leads to convergence problems

in the numerical maximization. In this article we show how these computational com-

plexities can be bypassed using a global two-step analysis for nonlinear mixed effects

models. The first step estimates the cluster-specific parameters and can be achieved

with standard statistical methods and software based on maximum likelihood for inde-

pendent data. The second step uses the EM-algorithm in conjunction with conditional

restricted maximum likelihood to estimate the population parameters. We use simula-

tions to demonstrate that the method works well when the analysis is based on a large

number of strata per cluster, as in many ecological studies. We apply the proposed two-

step approach to evaluate habitat selection by pairs of bison roaming freely in their

natural environment. This article has supplementary material online.
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1. INTRODUCTION

In many ecological, health, or social science studies, measures are collected on (groups
of) individuals who are followed over time. In some instances, the experimental units do
not generate a single measurement at each observation time, but rather a stratum of mea-
surements. In the following, a cluster will be the collection of all strata generated by an
individual or group of correlated individuals. For instance, in the study which motivated
this work, each pair of bison (i.e., two individuals roaming together) wearing global posi-
tioning system (GPS) collars generates a data stratum composed of m = 2 visited locations
(with covariates) and n − m random locations (with covariates), and this several times per
day for many weeks. Similar data may occur in a medical study where a number of prac-
tices are followed up over time and, for each practice at each measurement time, a group
of m cases and n − m controls are sampled.

To take within-cluster correlation and between-cluster heterogeneity into account, re-
gression models with cluster-level random effects are often fitted to such data. Though
methods to fit generalized linear mixed models to standard longitudinal data have been
thoroughly investigated (see Tuerlinckx et al. 2006; Dean and Nielsen 2007, for reviews),
the same is not true when we consider data that are both clustered and stratified. There are
nonetheless two special cases for which a treatment can be found in the literature. The first
special case is when there is a single stratum per cluster as in, for example, family studies of
gene-environment interactions. Pfeiffer, Gail, and Pee (2001) analyzed the data from such
a study where families with m = 2 or more cases of a given rare disease (nasopharyngeal
carcinoma) are sampled. They considered maximum likelihood inference for the mixed
conditional logistic regression model with family-level random effects. The optimization
of the marginal (i.e., with random effects integrated out) likelihood is solved numerically
using classic Monte Carlo integration coupled with a hybrid Newton’s method/grid search
algorithm. The second special case is when there is a single case in each stratum, that is,
m = 1. This yields the mixed multinomial logit model. This model has been studied in the
econometric literature (see Train 2003; Train and Weeks 2005, for reviews). It is usually
fitted by numerical maximization of the marginal likelihood that relies on Monte Carlo in-
tegration coupled with a Newton-type method (Bhat 2001; Sándor and Train 2004; Hesse,
Train, and Polak 2006).

Neither of the methods used in the two special cases above can be used for the type of
data produced by the bison study. First, the method must be able to handle the situation
where m > 1, which is not the case in the mixed multinomial logit model. Second, we
have many strata per cluster (several hundred strata in some clusters) which is much more
than can be found in family genetic studies where, usually, there is a single stratum per
cluster. As will be seen later, this renders numerical evaluation of the mixed conditional
logistic regression likelihood function especially difficult and unstable. Indeed, trying to
apply a combination of numerical integration and numerical optimization to such a likeli-
hood function is quite problematic and leads to slow execution and lack of convergence.
Moreover, we will see in Section 2 that having a very large number of strata per cluster
complicates the likelihood function to the point that this type of numerical approach fails
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to converge when applied to the bison data. One possibility to circumvent such numerical
issues could be to use the EM-algorithm to maximize the likelihood, but its complex form
due to the conditioning (see Section 2) makes the E- and M-steps as difficult to implement
as the numerical integration and maximization discussed above.

One viable option to fit mixed models with large clusters is to use previously developed
two-step approaches proposed for the (unconditional) mixed logistic regression model by
Korn and Whittemore (1979) and Stiratelli, Laird, and Ware (1984). But this yields highly
biased estimators when applied to the case of conditional logistic regression, even though
the large number of strata in each cluster justifies the normal approximation for the cluster-
level maximum likelihood estimates.

The approach that proved to be most efficient and stable to obtain valid results in our
case is the two-step method based on restricted maximum likelihood (REML) estimation,
as suggested by Chervoneva, Iglewicz, and Hyslop (2006). In this approach, ordinary (fixed
effects) regression models are fitted separately to each cluster in the first step. Then the
cluster-level estimates are combined in the second step using REML. However, unlike
Chervoneva, Iglewicz, and Hyslop (2006) who used the Newton–Raphson approach of
Lindstrom and Bates (1988), in this article we follow Meng and van Dyk (1998) and derive
an EM-algorithm to implement the REML estimation in the second step. From a practical
point of view, the resulting methodology leads to fast and stable computation of consistent
estimators of the parameters of a mixed conditional logistic regression model when the
number of strata per cluster is large. More importantly, it is the only method, to our knowl-
edge, that can be used to handle computation for the conditional logistic regression model
under such conditions. As an added benefit, we note that this approach can also be used
to fit any mixed model where the cluster-level estimates are approximately normal and for
which a large number of observations per cluster makes the use of maximum likelihood
methods or two-step methods with Newton-type maximization at the second step unstable.

The article is organized as follows. In Section 2 we describe the model and our proposed
EM-REML method for inference on the model parameters. Finite sample performance of
the estimators, including a comparison with maximum likelihood, is done in Section 3.
We apply the method to real data from a habitat selection study of pairs of female bison
traveling together in Prince Albert National Park (Canada) in Section 4. We conclude with
a discussion in Section 5.

2. MODEL AND METHODS

The data consist of observations gathered together in K clusters, each cluster consisting
of a number of strata, each strata containing m cases and n − m controls. For instance, in
the ecological study described in Section 4, each cluster consists of all observations relating
to the same pair of animals and each stratum consists of the data on the characteristics of
m = 2 locations the two animals have visited and n − m = 10 randomly sampled locations
these two animals could have chosen instead.

To illustrate the computational difficulties associated with the model, let us present a
simple example of the sampling mechanism. Consider a single pair of animals that is fol-
lowed for 4 time steps and that measurements are taken at the 4 pairs of locations visited
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at these time steps. At each time step, in addition to the 2 visited locations (cases), a ran-
dom selection of 3 additional sites (controls) that could have been chosen by the animals
instead of the visited ones are measured. In this case, there are 4 strata (one per time step)
and each stratum contains the data from the 2 cases and 3 controls. The cluster consists of
all observations in all 4 strata. The measurements for stratum s ∈ {1,2,3,4} thus contain

(i) the vector of binary responses ỹs = (ys1, . . . , ys5) where ysj = 1 if the location j is
one of the two visited locations and is zero otherwise,

(ii) the covariate values x̃s = {xs1, . . . , xs5} where xsj are the characteristics of the lo-
cation j .

Naturally, the responses in the same cluster are not independent since they are produced
by the same pair of animals. In a prospective study where the stratum sums would not be
fixed before sampling, such longitudinal binary data could be modeled using a mixed lo-
gistic regression model, that is, a logistic regression model where unobserved cluster-level
random effects are added in the linear predictor to induce within-cluster correlation and
between-cluster heterogeneity. Conditional on the cluster-specific random effects b whose
distribution in the population has c.d.f. F(b|θ), the observations are assumed independent.
So the cluster’s contribution to the (observed data) likelihood is∫ 4∏

s=1

5∏
i=1

P(Ysi = ysi |xsi,b) dF (b|θ). (2.1)

Throughout the article we use the logit link, that is,

P(Ysi = ysi |xsi,b) = exp{ysi(β
�xsi + b�zsi)}

1 + exp(β�xsi + b�zsi)
, (2.2)

where the zsi are the subset of the covariates for which we assume random coefficients.
However, the standard mixed effects model defined by (2.1) and (2.2) does not account

for the fact that the number of cases per stratum is fixed by sampling design. We must
therefore consider a retrospective conditional logistic model that conditions on the stratum
sums. The contribution of the cluster to the likelihood becomes

L(β, θ |x̃, ỹ) = P

(
Ỹs = ỹs ,1 ≤ s ≤ 4

∣∣∣X̃s = x̃s ,

5∑
i=1

Ysi = 2,1 ≤ s ≤ 4

)

= P(Ỹs = ỹs ,1 ≤ s ≤ 4|x̃s ,1 ≤ s ≤ 4)

P(
∑

i Ysi = 2,1 ≤ s ≤ 4|x̃s ,1 ≤ s ≤ 4)

=
∫ ∏4

s=1
∏5

i=1 P(Ỹsi = ỹsi |X̃s = x̃s ,b) dF (b|θ)∫ ∏4
s=1 P(

∑
i Ysi = 2|x̃s ,b) dF (b|θ)

. (2.3)

The main difficulty comes from the denominator in (2.3) that involves a product of sums
of

(5
2

) = 10 terms corresponding to all the unordered vectors of length 5 containing 3 zeros
and 2 ones.
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2.1 NOTATION, MODEL, AND LIKELIHOOD

Although the above description is illustrative for the dependence structure of the data,
the dimensionality of the real application is much higher and thus, the computational com-
plexity is seriously amplified. The methods that we propose in this article are appropriate
for situations where the number of strata is large in every cluster; in the application studied
in Section 4, this number varies between 31 and 349, with most clusters containing more
than 100 strata.

Let us now consider a general situation with more than one cluster, then assume that
in the cth cluster we observe Sc strata where, in the sth stratum, we have nc

s observations
each made of a binary response y and a vector of covariates x = (x1, . . . , xp)�. By study
design, the sum of the y’s in the sth stratum of the cth cluster is fixed to mc

s . Note that in
many applications, all strata have the same size (i.e., nc

s = n for all s, c) and the sum of
the y’s in all clusters is fixed to m (i.e., mc

s = m for all s, c).
More precisely, let Y c

si denote the ith response in the sth stratum of the cth cluster and
let xc

si be the corresponding vector of covariates. The covariate vector for the whole stratum
is denoted xc

s . Let bc be a vector of cluster-level random effects. The contribution of the cth
cluster to the likelihood is

Lc(β, θ) = P

[
Y c

si = yc
si ,∀s, i

∣∣∣xc
si ,

∑
i

Y c
si = mc

s,∀s, i.

]

=
∫ ∏

s

∏
i P[Y c

si = yc
si |bc,xc

si]dF(bc; θ)∫ ∏
s P[∑i Y

c
si = mc

s |bc,xc
s ]dF(bc; θ)

. (2.4)

Combining (2.2) and (2.4) yields the likelihood function

L(β, θ) =
K∏

c=1

exp(
∑

si y
c
siβ

�xc
si)

∫
exp(

∑
si y

c
sib

�zc
si)d

c(β,b) dF (b; θ)∫
dc(β,b)

∏
s

∑
�∈Lc

s
exp{∑i v

c
�si(β

�xc
si + b�zc

si)}dF(b; θ)
, (2.5)

where dc(β,b) = ∏
s

∏
i{1 + exp(β�xc

si + b�zc
si)}−1 and

∑
�∈Lc

s
denotes the sum over all

vectors vc
�s = (vc

�s1, v
c
�s2, . . . , v

c
�snc

s
)� such that vc

�si ∈ {0,1} and
∑

i v
c
�si = mc

s .
The “direct maximization” of (2.5) using, for instance, the method proposed by Pfeiffer,

Gail, and Pee (2001), leads to a heavy computational load and numerical instability. More-
over, in cases where the number of observations in a cluster is large (e.g., in our case study,
we have well over a hundred strata of size 12 in most clusters), both the numerator and
denominator in (2.5) involve sums of products of thousands of probabilities which quickly
becomes indistinguishable from zero in double precision. To overcome this problem, we
have to implement the numerical evaluation of the likelihood with all figures coded in nor-
malized scientific notation. The probabilities are stored using two distinct values: a double
for the significand and an integer for the exponent. This allows working with much smaller
numbers compared to using a unique double precision value. For example, the number
6.25 × 10−355 is too small to be stored as one double precision number. However, one can
store its significand 6.25 as a double precision number and its exponent −355 as an integer
number. The numerical algorithm that we used relied on iterating quasi-Monte Carlo inte-
gration and the variable metric quasi-Newton algorithm (the BFGS option of the function
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optim in R; see, for instance, Broyden, Dennis, and Moré 1973) for finding the maximum
likelihood estimates.

Though this type of approach works well for generalized linear mixed models with clus-
ters that are not too big or with the models used in genetic studies or in econometrics, with
our specific model we will see in Section 3 that it only achieves moderate success when
the number of strata in a cluster is relatively small. As a matter of fact, we were unable to
get this approach to converge when we applied it to the bison data considered in Section 4.
One should also note that the denominator in (2.5) makes it very difficult to implement the
usual EM- or Monte Carlo EM-algorithms one can sometimes use for generalized mixed
effects models (McCulloch 2003; Caffo, Jank, and Jones 2005, McCulloch, Searle, and
Neuhaus 2008). We thus have to find a different approach that is numerically efficient and
stable to make inferences about β and θ .

2.2 TWO-STEP ESTIMATION

For the remainder of this article, we make the assumption that F(b; θ) is the multi-
variate normal distribution with mean 0 and variance–covariance matrix �. Various struc-
tural forms can be assumed for � depending on the subject-matter knowledge, with more
structured forms (e.g., diagonal) sometimes entailing faster convergence of the iterative
algorithm proposed below. Assuming a joint normal distribution for unobserved random
effects in mixed models is usually the norm in practice (Tuerlinckx et al. 2006). Several
authors have investigated the robustness of the inferences to departures from this normality
assumption. In the case of mixed models for binary responses, Agresti, Caffo, and Ohman-
Strickland (2004) have found that inferences tend to be unbiased under general departures
from normality and only found a drop in efficiency when the random effects’ true distri-
bution is discrete with large variance. As a matter of fact, for this type of model Litière,
Alonso, and Molenberghs (2007) formally showed (see their theorem 1 and corollary 1)
that a significant finding (i.e., β significantly different from zero) is a reliable result even
under a misspecified distribution of the random effects. We make this normality assump-
tion because (i) it allows us to use two-step estimation methods instead of direct maximum
likelihood and (ii) it yields closed-form E- and M-steps in the EM-algorithm that we pro-
pose for the second step of the two-step estimation procedure.

Two-step estimation methods are among the first approaches used to make inferences
on the parameters of mixed regression models for binary responses (Korn and Whitte-
more 1979; Stiratelli, Laird, and Ware 1984). Because in these models the observations
are assumed independent given the value of the cluster-level random effects, cluster-level
inferences on the model parameters can be done using ordinary (fixed-effects) regression
models. Hence in a first step, classical regression models are fitted by maximum likelihood
separately to each of the K clusters and cluster-level estimates of the regression coefficients
are obtained, along with an estimate of their variance matrix. If the number of observations
in each cluster is large, then likelihood theory implies that each of these K regression
coefficient estimates is approximately normal. When combined with the normality of the
random effects, we then have that estimating the population-level coefficients amounts to
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estimating the mean of a multivariate normal distribution based on K independent observa-
tions (the cluster-level estimates from the first step) with different variances (the variance
estimates from the first step). The procedures designed by Davidian and Giltinan (1993)
and Chervoneva, Iglewicz, and Hyslop (2006) consist in using REML estimation for linear
mixed models in the second step to estimate the population parameters on the basis of the
cluster-level estimates obtained in the first step. We show in Section 2.3 that under condi-
tional logistic regression and our sampling scheme, inferences will be valid and efficient.

Mathematically, given p covariates we generally assume that the model has q random
coefficients and p − q fixed coefficients. The linear predictor for observation (s, i) in the
cth cluster is thus of the form (β + bc)

�xc
si . If p > q , bc is extended to dimension p by

adding p−q zeros in positions corresponding to nonrandom coefficients, with correspond-
ing elements in � also set to zero. For instance, if we have that p = 3 and that the coeffi-
cients in front of x1 and x3 are random, then β = (β1, β2, β3)

� and bc = (bc1,0, bc3)
�. Let

{β̂c, c = 1, . . . ,K} denote the K cluster-specific estimators of β , obtained by fitting the
model that assumes only fixed effects separately to each cluster and let {R̂c, c = 1, . . . ,K}
be their respective variance estimates. In the case of the conditional logistic regression
model, procedures that fit the Cox model using the exact method to handle ties (Gail, Lu-
bin, and Rubinstein 1981) can be used to obtain the β̂c and R̂c.

These first-step estimates must then be “combined” to obtain population-level estimates
of β and θ . In our initial trials we followed Korn and Whittemore (1979) and Stiratelli,
Laird, and Ware (1984) and used maximum likelihood to estimate θ in the second step.
This was unsatisfactory because the variance parameters in θ were badly underestimated,
which led to biased estimates of β . Following a suggestion made by Stiratelli, Laird, and
Ware (1984) and implemented elsewhere by Lindstrom and Bates (1990), Davidian and
Giltinan (1993), and Chervoneva, Iglewicz, and Hyslop (2006), we derived a REML ap-
proach to estimate θ in the second step. Unlike these authors, however, we implemented
REML estimation using the EM-algorithm instead of the Newton–Raphson method. As
discussed by Meng and van Dyk (1998), using the EM-algorithm has certain advantages
over Newton-type methods in the context of mixed effects models: it requires less monitor-
ing and it does not produce negative variance estimates. Moreover, in the precise context
of mixed conditional logistic regression, the retrospective sampling design implies that the
data might not contain much information about some parameters in θ and hence numerical
robustness and stability of the algorithm is preferable to numerical efficiency (for more
detail, see Pfeiffer, Gail, and Pee (2001), who actually performed a grid search instead of
Newton–Raphson for maximization over some elements of θ ). Note that in our case the
price to pay in terms of numerical efficiency was not significant: in our simulated and real
analyses, the proposed two-step EM-REML method is fast and stable and never took more
than a few seconds to run. Nevertheless, the algorithm proposed can still be further sped-up
if need be by adapting the general algorithm and strategies for REML estimation in linear
mixed-effects models presented by Meng and van Dyk (1998) to the situation in which the
noise variance–covariance matrix is known.

We now illustrate the EM-REML algorithm with a simple example. The general method
is detailed in the Appendix (available as supplemental file from the JCGS website). Sup-
pose that we have three pairs of animals, so that c = 1,2,3 and that we would like to fit
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a model with one random coefficient (β1 + bc1) for covariate x1 and one fixed coefficient

(β2 + 0) for covariate x2. Thus here K = 3, p = 2, q = 1, � = ( θ2
1
0

0
0

)
, var(bc1) = θ2

1 , and
D = I3 ⊗ �, where I3 denotes the identity matrix and ⊗ denotes the Kronecker product.
The two-step method proceeds in this way:

Step 1—Cluster-level estimation: For each c ∈ {1,2,3}: obtain β̂c = (β̂c1, β̂c2)
�, the

maximum likelihood estimator of β = (β1, β2)
�, and its variance–covariance esti-

mate R̂c using only the data from the cth pair of animals and under the assumption
that all strata in cluster c are independent. It should be noted that by separately
fitting the model to each cluster we perform conditional inference so β̂c1 actually
estimates β1 + bc1. Put β̂1st = (β̂�

1 , β̂�
2 , β̂�

3 )�.

Step 2—EM-REML estimation of β and �:
1. In line with the notation used in the Appendix, here we set �̃ = θ2

1 , U =
(β̂11, β̂21, β̂31)

�, R̃ = diag(R̃1, R̃2, R̃3) where R̃c = v̂ar(β̂c1), and D̃ = θ2
1 I3.

2. Compute W1 = (1 1 1)� and M = I3 − W1W�
1 /3.

Put SD̃ = {M(M�R̃M)−1M� + D̃−1}−1 and μD̃ = SD̃M(M�R̃M)−1M�U.

3. Set an initial value for θ2
1 .

4. Iterate the E- and M-steps of the EM-algorithm described below until conver-
gence:
E-step: Compute

Q(D̃|D̃∗) = − 3
2 ln(θ2

1 ) − 1
2 tr

{
D̃−1(SD̃∗ + μD̃∗

μD̃∗�)}
.

M-step: Get

θ2
1 = 1

3

3∑
c=1

(
SD̃∗

cc + μD̃∗
c μD̃∗�

c

)
,

where SD̃∗
cc is the cth element on the diagonal of SD̃∗

and μD̃∗
c is the cth entry

in the vector μD̃∗
.

5. Compute Q = (1 1 1) ⊗ I2 and V̂ = D̂ + R̂. The estimator β̂ and its variance
are respectively given by

β̂ = (QV̂−1Q�)−1QV̂−1β̂1st

and

v̂ar(β̂) = (QV̂−1Q�)−1. (2.6)

2.3 PROPERTIES OF THE ESTIMATORS

The estimation strategy used in the article falls within the general scope of two-step con-
ditional restricted maximum likelihood (CREML) introduced by Chervoneva, Iglewicz,
and Hyslop (2006). The assumptions made by CREML are that the first-step estimates,
{β̂c}1≤c≤K , are consistent and asymptotically normal and the variance estimates R̂c are
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consistent. Maximum likelihood estimators for conditional logistic regression do fulfill
these requirements as the number of strata tends to infinity (Arbogast and Lin 2004). Be-
cause these estimators still fulfill these requirements if data are missing completely at ran-
dom (MCAR) or missing at random (MAR) (Ibrahim and Molenberghs 2009), the method
proposed here yields valid inferences under these two missing-data schemes.

It should be noted that the estimates obtained with the above EM-REML algorithm
are different from standard REML estimates since we assume the noise covariance ma-
trix known. Under mild regularity conditions the CREML estimators of D and β , de-
noted D̂CREML and β̂CREML respectively, are consistent estimators with rate of convergence
OP [max{K−1/2, (min1≤c≤K nc

sS
c)−1/2}] (Chervoneva, Iglewicz, and Hyslop 2006). In ad-

dition, if minc nc
sS

c/K → ∞, then β̂CREML is asymptotically efficient with
√

K(β̂CREML − β)
L−→ N(0,D). (2.7)

In studies where the number of strata is much larger than the number of clusters, the asymp-
totic result (2.7) provides reasonable approximations for standard errors and confidence
intervals. But in finite samples D̂CREML generally underestimates the variance of β̂CREML.
Our simulations in the next section show that the variance estimate given in (2.6) provides
an accurate estimate of the variance of β̂CREML.

2.4 HYBRID ESTIMATOR

As a compromise between full maximum likelihood estimation and the proposed two-
step EM-REML estimator, we can consider a hybrid estimate, in which the two-step es-
timate is used as the starting value of the quasi-Newton algorithm which is run for only
one iteration. The latter is actually the traditional one-step maximum likelihood estima-
tor (Simpson, Ruppert, and Carroll 1992, for instance) but we prefer to call it “hybrid”
here because “one-step” might cause confusion with “two-step.” It is hoped that the hybrid
estimator has better efficiency than the two-step estimator, but without the numerical insta-
bility of the full maximum likelihood estimator. We investigate this question empirically
in the simulation study section.

3. SIMULATION STUDY

The purpose of the simulations is: (1) to compare the performance of the proposed two-
step estimator with that of the hybrid estimator and the MLE obtained using a numerical
quasi-Newton method, and (2) to study the behavior of the two-step estimator when the
competing methods do not converge.

Within each step of the algorithm used for computing the MLE we approximate the
value of the log-likelihood using Monte Carlo integration. For low-dimensional integrals,
the estimators based on quasi-Monte Carlo (QMC) samples have been known to often be
more efficient than those using Monte Carlo samples (Owen 2003). In our approximation
we use randomized Korobov quasi-random sequences (Lemieux 2009) to approximate the
integrals involved in (2.5) (see also Bhat 2001; Jank 2005, for other uses of QMC in sim-
ilar contexts). Although we have used large quasi-Monte Carlo samples (M = 4000) to
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estimate the likelihood function, in a few replications (about 2–5%) the numerical quasi-
Newton does not stabilize and we discard the output produced. During pilot runs it has
been found that the number of clusters has a small effect on the estimators’ performance so
we have fixed K = 30 throughout the simulation. The number of strata is S = 30 or 60 and
the covariance matrix for the random effects, � ∈ R2×2, is defined such that �ii = s and
�ij = ρs whenever i �= j . We considered values for s ∈ {0.5,1.25} and ρ ∈ {0,0.6}. In
Figures 1 and 2 we report the results when we assume, correctly, ρ = 0 (diagonal �) and
p = q = 2. In addition, while we use n = 5, we vary the number of cases in each stratum
as m = 1,2, or 3. Also fixed throughout are the fixed effects β1 = 0.75 and β2 = 1.25, and
the distribution of the two covariates, x1 and x2, which we chose as independent N(0,0.5).
The two-step EM-REML method was entirely coded in R. For the maximum likelihood and
hybrid estimates, we used R’s implementation of the quasi-Newton method (i.e., the op-
tim() function), but the quasi-Monte Carlo evaluation of the likelihood function (2.5)
was done in C. The computer code for the two-step EM-REML method is available in
package TwoStepCLogit on the Comprehensive R Archive Network (CRAN).

The results shown in Figures 1 and 2 suggest that the two-step estimators mimic the
performance of the MLEs when the latter can be computed, that is, when the quasi-Newton
converges. The two-step estimates are very accurate when the number of strata is large, and
even more so when m > 1. The hybrid estimate is usually numerically between the two-
step and maximum likelihood estimates. Numerically, it is also much more stable than the
latter. One bonus of the two-step strategy is that asymptotic estimates for the variances of
the estimators are easily obtainable via (2.6), while the Hessian of (2.5) would need to be
estimated and inverted to get standard errors for the MLEs.

Additional simulation results obtained when using an unstructured model for � are
reported in Table 1 when s ∈ {0.2,0.5}, β1 = 0.75, β2 = 1.25, K = 30, S = 60, m = 2, and
n = 12.

The results suggest that:

(i) the estimates for β remain on target even when the random effects are correlated;

(ii) the number of parameters (or covariates included in the model) affects more the
estimators’ bias than their variance;

(iii) the precision of the estimates is affected by the variance of the random effects;

(iv) additional simulations reported in the supplemental material suggest that the esti-
mates for β and the diagonal elements of � are fairly robust to misspecification of
the matrix �.

In all simulations performed, the Monte Carlo mean of the standard errors based on the
variance estimator (2.6) for the two-step method closely agrees with the observed Monte
Carlo standard deviations. It is striking that in all cases the Monte Carlo standard deviations
for the hybrid and maximum likelihood estimates are actually larger than the two-step,
which contradicts theoretical expectations. This loss in efficiency of the hybrid and MLE
is a result of the numerical integration error that is added to the statistical estimation error
when the Monte Carlo integrations are performed within the quasi-Newton algorithm.
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Figure 1. Comparison of the two-step (solid line), hybrid (short-dash line), and ML (long-dash line) estimators for β0 and β1 when � is assumed diagonal. Each segment has as

bounds CI(β) = β̂MC −β ± 1.96
√

v̂arMC(β̂) where β̂MC and v̂arMC(β̂) are, respectively, the Monte Carlo average estimate and Monte Carlo variance computed from 1000 replicates.
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Figure 2. Comparison of the two-step (solid line), hybrid (short-dash line), and ML (long-dash line) estimators for σ0 = �11 and σ1 = �22 when � is assumed diagonal. Each
segment has as bounds CI(σ ) = σ̂MC − σ ± 1.96

√
v̂arMC(σ̂ ) where σ̂MC and v̂arMC(σ̂ ) are, respectively, the Monte Carlo average estimate and Monte Carlo variance computed from

1000 replicates.
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Table 1. Simulation results when no structure is assumed for �. Throughout �11 = �22 = s, �12 = ρs, β1 =
0.75, and β2 = 1.25. True values of the parameters p,q, s, ρ are reported in the column “Scenario.”
Each cell entry shows the Monte Carlo average estimate and the Monte Carlo standard error (between
brackets) for the two-step estimator.

β1 = 0.75 �11 = s

Scenario β2 = 1.25 �22 = s �12 = ρs

(p = q = 2, ρ = 0, s = 0.2) 0.744 (0.093) 0.195 (0.063) 0.008 (0.046)
1.234 (0.095) 0.198 (0.066)

(p = q = 2, ρ = 0.6, s = 0.2) 0.742 (0.092) 0.196 (0.065) 0.128 (0.053)
1.238 (0.094) 0.197 (0.067)

(p = q = 2, ρ = 0, s = 0.5) 0.747 (0.132) 0.482 (0.148) 0.010 (0.100)
1.239 (0.133) 0.481 (0.144)

(p = q = 2, ρ = 0.6, s = 0.5) 0.748 (0.132) 0.484 (0.145) 0.303 (0.116)
1.240 (0.133) 0.483 (0.144)

(p = q = 8, ρ = 0, s = 0.2) 0.779 (0.099) 0.220 (0.082) 0.011 (0.058)
1.300 (0.101) 0.219 (0.084)

(p = q = 8, ρ = 0.6, s = 0.2) 0.786 (0.101) 0.236 (0.082) 0.153 (0.074)
1.310 (0.105) 0.246 (0.084)

(p = q = 8, ρ = 0, s = 0.5) 0.784 (0.146) 0.554 (0.175) 0.011 (0.129)
1.304 (0.155) 0.547 (0.176)

(p = q = 8, ρ = 0.6, s = 0.5) 0.794 (0.155) 0.588 (0.196) 0.385 (0.166)
1.318 (0.162) 0.606 (0.225)

An additional important element to consider in the comparison is the time required
for obtaining each of these estimates. Timewise, on average, the hybrid estimate and the
maximum likelihood are, respectively, between 600–1800 and 1500–3500 times more ex-
pensive than the two-step calculation. Moreover, once the number of parameters in the
model is increased (e.g., a larger number of covariates are included as in the application
example described in the next section), then the ML method cannot be completed at all due
to numerical errors.

4. APPLICATION: HABITAT SELECTION BY PAIRS OF BISON

Gregarious animals generally move as social units so it is reasonable to assume that
group members do not select their habitat independently. On the other hand, as they move
across the landscape, group members occupy a certain area that can be more or less exten-
sive, depending in part on group size and how individuals react to habitat heterogeneity.
Individuals of the same group may thus experience different habitat characteristics at any
one time, depending on the extent of the area occupied by the group and the spatial au-
tocorrelation in these characteristics. To gain a general understanding of habitat selection
by gregarious animals, multiple individuals can be followed within each group, and the
analysis can be conducted while accounting for the dependence between these individuals.

The objective of this analysis was to evaluate habitat selection by groups of free-
ranging bison. For each observed group, we followed simultaneously two individuals
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(dyad) equipped with GPS radio-collars, and evaluated the habitat selection of the bison
dyads with mixed-effects conditional logistic regression.

Bison were followed in Prince Albert National Park (53◦44′N, 106◦40′W), Saskat-
chewan (Canada). Within the park, the bison range is composed of approximately 85%
forests, 10% meadows, and 5% lakes and rivers (see Fortin et al. 2003). From 2005 to
2007, 16 bison were followed for up to 2 years each, between 15 November and 15 April
(except in 2005 when radio-tracking started on 10 March). GPS collars took a location
every 3 hours.

We considered that two radio-collared bison belonged to the same group when they
were <100 m apart for at least five consecutive locations. Because group members can
move with a certain delay, we also assumed that individuals from a given pair had remained
part of the same group even if they had been separated by >100 m for up to two locations
before reuniting.

In our analyses, we considered specific pairs of bison as our experimental units (clus-
ters). A given individual could be part of more than one dyad, but data from different dyads
involving a particular individual were never collected at the same time. It was therefore rea-
sonable to assume independence among dyads.

Habitat selection was studied based on resource selection functions (RSFs), an analyt-
ical approach commonly used in ecological studies (Fortin et al. 2009). RSFs compare
landscape attributes at animal locations and at random locations (see Manly et al. 2002),
and can be estimated based on a case-control design as in the work of Craiu, Duchesne, and
Fortin (2008). A stratum is generally composed of a visited location (Y = 1) paired with
a set of random locations (Y = 0). In our case, however, the interest was to evaluate how
bison dyads selected their habitat. A stratum was therefore composed of two GPS locations
(one for each individual) gathered at the same time, together with 10 random locations (five
drawn within 700 m of each of the two focal bison). The 700-m distance included >90%
of all distances moved by bison within the 3-hr relocation interval.

We fit the mixed conditional logistic regression model where all regression coefficients
are assumed to be independent zero-mean normal random variables, with the variance of
the j th coefficient unknown and denoted by θj . Covariates include a dummy variable indi-
cating whether bison were observed inside or outside a meadow, the proportion of meadow
in a circular plot (700 m in radius) centered at the locations, and an above-ground vegeta-
tion biomass index measured (in kg/m2) only at locations within meadows (otherwise the
index is set to zero).

We found that bison dyads selected meadows with an intermediate level of vegetation
biomass (Figure 3). Indeed, with either a backward or forward selection approach the best
relationship was quadratic, regardless of the sampling scheme considered (Table 2). Eco-
logical theory provides an explanation for this preference. Energy maximization principles
predict that grazers should select vegetation of intermediate biomass, a prediction known
as the forage maturation hypothesis (Fryxell 1991; Hebblewhite, Merrill, and McDermid
2008). As plants mature and the overall vegetation biomass increases, individual plants
become less digestible for large herbivores. On the other hand, herbivores can consume
vegetation more rapidly under high than low vegetation biomass. The combined effect is
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Figure 3. Log-odds of selection for a given value of biomass versus biomass = 0. The solid line is estimated
using all data and the dashed line is estimated using only data from dyads with at least 30 strata. The online
version of this figure is in color.

Table 2. Bison habitat selection: estimates of the regression coefficients with standard errors (between brackets),
estimates of the variance components (θ̂1 and θ̂2), number of dyads (K), and total number of strata
(
∑

c Sc).

Sampling scheme Biomass (β̂1) Biomass2 (β̂2) θ̂1 θ̂2 K
∑

c Sc

All dyads 8.59 (1.13) −7.79 (2.07) 13.8 48.4 20 1410
Dyads with S > 30 6.74 (1.07) −4.57 (1.96) 7.36 26.2 13 1261

such that the intake rate of digestible energy is often maximized at intermediate biomass.
The pattern of habitat selection that we detected for bison dyads is therefore consistent
with expectations from the forage maturation hypothesis. Because biomass was assigned
a value of 0 outside meadows, this general selection for plant biomass also implies that
bison selected meadows over other areas. We could not explain additional variation by
considering the proportion of meadow within a 700-m radius.

5. DISCUSSION

In this article we proposed a two-step method to fit the conditional logistic regression
model with mixed effects in situations where case-control strata are collected longitudi-
nally and the number of cases per stratum may be more than one. From the theoretical
investigations of Chervoneva, Iglewicz, and Hyslop (2006) and the simulation study, we



782 R. V. CRAIU ET AL.

see that the method proposed yields estimators that are consistent and efficient when the
number of strata per cluster is large enough to make cluster-level estimators approximately
normal.

The main advantages of the method proposed over maximum likelihood are its ease of
implementation, its computational efficiency, and its numerical stability. The simulation-
based comparison conveys that: (i) the two-step procedure is numerically more stable than
the numerical Monte Carlo quasi-Newton method, even in relatively small models, (ii) the
loss in inferential efficiency is negligible when the number of strata is large (>30); more-
over, the MLE variance is inflated due to the Monte Carlo variability introduced by nu-
merical integration within each quasi-Newton iteration, (iii) the hybrid procedure is stable
and may be a reasonable compromise (from a numerical standpoint) when the number of
strata is less than 30, (iv) the reduction in computation times obtained using the two-step
procedure is of order 10−2.

In our illustration on habitat selection by pairs of bison, likelihood evaluation had to
be reprogrammed in scientific notation and a single evaluation of the log-likelihood using
Korobov quasi-Monte Carlo integration with 4000 points took well over 15 minutes in C on
a Pentium 4, 3.8 GHz CPU. Moreover, we were unable to get the quasi-Newton iterations
to converge even when the estimators obtained with the two-step method were fed in as
starting values. In comparison, the entire two-step estimation process was performed in a
few seconds.

Some potential generalizations of the method could be explored. For instance, in the
prospective models, the observations from a same cluster are assumed independent con-
ditionally on the random effects. Perhaps this could be relaxed by generalizing the multi-
period multinomial probit model (Geweke, Keane, and Runkle 1997). Another avenue of
interest is to account more explicitly for the spatial sampling process in the inference, as
recently suggested by McCullagh (2008). Indeed, he showed that, in cases in which the
configuration of covariates is random, the conditional distribution of the response on the
sampling units may be different than what is inferred from the marginal model (2.4). We
are currently investigating whether the computational approach proposed here is general
enough to tackle the type of challenges encountered in the wider class of random-effects
models that incorporate sampling design into their specification.

SUPPLEMENTARY MATERIALS

Appendix: Portable document format file containing the notation for the model in its full
generality and additional simulation results. (appendix.pdf)

Simulation Code: An example of the code that we used for one batch of simulations from
Section 3. (simulation.R)

ML Estimation: C code to compute the maximum likelihood estimate and that is called
by the R code in simulation.R. (full_ml2.c)

File Description: A text file with a short description and instructions for use of all files
listed above. (README.txt)
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