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Daniel Fortin
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A General description of the proposed em-reml al-

gorithm

Let us stack the {β̂c, c = 1, . . . , K} obtained in the first step in a column vector

β̂1st = (β̂
⊤

1 , . . . , β̂
⊤

K)⊤ of length Kp. Let D denote the between-cluster variance-
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covariance matrix of the K random effect vectors: D = V ar[(b⊤

1 , . . . ,b⊤

K)⊤]. Thus D

is block diagonal with K identical blocks, each equal to Σ and the parameters θ in

F (b; θ) are the distinct elements of Σ.

Now let D̂ be an estimate of D, Q be the p×Kp matrix given by 1⊤

K ⊗Ip, with 1h,

Ih and ⊗ respectively denoting a vector of 1’s of length h, the h × h identity matrix

and the Kronecker product. Set R̂ = diag{R̂1, . . . , R̂K}. Then β is estimated by

β̂ =
(
QV̂−1Q⊤

)−1

QV̂−1β̂1st, (A-1)

where V̂ = D̂ + R̂. The variance of β̂ given by (A-1) can be estimated by

V̂ ar(β̂) =
(
QV̂−1Q⊤

)−1

. (A-2)

All quantities in (A-1) are obtained in the first step except D̂ which is obtained

in the second step as follows. Let β̃ denote the subset of dimension q of β that

corresponds to the random regression coefficients and
̂̃
βc be the corresponding cluster-

level first-step estimates that are stacked in the Kq vector ̂̃β. We define {(b̃c, R̃c), c =

1 . . .K}, D̃, Σ̃ and R̃ in similar fashion. Define φ = (b̃⊤

1 , . . . , b̃⊤

K)⊤ and put Ucj =
̂̃
βcj.

Then φ ∼ NKq(0, D̃), with D̃ depending on a vector of parameters, say θ. Under the

considered scenario, given the vectors b̃c, we have the following linear mixed model

for the regression coefficient estimates:

U = W1β̃ + W2φ + ε, (A-3)

where U = (U11, . . . , U1q, . . . , UKq)
⊤, β̃ = (β̃1, . . . , β̃q)

⊤, ε = (ε11, . . . , εKq)
⊤, W1 =

1K ⊗ Iq, W2 = IKq, and ε⊤ = (εc1, . . . , εcq), c = 1, . . . , K are independent Nq(0, R̃c).

Hence R̃ = V ar(ε) is the block diagonal matrix R̃ = diag(R̃c, c = 1, . . . , K) and

ε ∼ NKq(0, R̃).

Now let m1, . . . ,md, d = Kq − rank(W1) = q(K − 1), be vectors such that

m⊤

ℓ W1 = 0, ℓ = 1, . . . , d, and put M = [m1, . . . ,md]. Given the specific form of

W1 here, this can be done by setting mℓ equal to the ℓth column of IKq −
1
K
W1W

⊤

1 .

Then γ = M⊤U|φ ∼ Nd(M
⊤φ,M⊤R̃M), with φ ∼ NKq(0, D̃). The corresponding

likelihood function is the restricted (or residual) likelihood and it forms the basis for
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reml inference about θ. Numerical maximization of the residual likelihood with

respect to θ in our case was easy to implement and stable when using the em-

algorithm defined below. Assume that the “complete data” (γ, φ) are observed and

recall that at this step M and R̃ are considered known. Then the complete data

loglikelihood is proportional to

lcom ∝ −
K

2
ln det(Σ̃) −

1

2
φ⊤Σ̃−1φ.

In the E-step, we must compute the expected value of lcom with respect to the

distribution of the unobserved φ given the observed γ and a current value D̃∗ of D̃:

Q(D̃|D̃∗) = −
K

2
ln det(Σ̃) −

1

2
E

D̃∗ [φ
⊤D̃−1φ|γ].

Since φ|γ ∼ NKq(µ
D̃, SD̃) with SD̃ = {M(M⊤R̃M)−1M⊤ + D̃−1}−1 and µD̃ =

SD̃M(M⊤R̃M)−1γ, we get

Q(D̃|D̃∗) = −
K

2
ln det(Σ̃) −

1

2
E

D̃∗ [tr(φ
⊤D̃−1φ)|γ]

= −
K

2
ln det(Σ̃) −

1

2
tr(E

D̃∗ [D̃−1φφ⊤|γ])

= −
K

2
ln det(Σ̃) −

1

2
tr{D̃−1(SD̃

∗

+ µD̃
∗

µD̃
∗
⊤)}.

At the M-step, Q(D̃|D̃∗) must be maximized with respect to θ. The solution

to this maximization depends on the particular form of the blocks of D̃. First we

find the maximizer of Q(D̃|D̃∗) among all block diagonal matrices of the form D̃ =

diag(Σ̃, . . . , Σ̃). Since R̃ and D̃∗ are block diagonal matrices then so is SD̃
∗

, say

SD̃
∗

= diag(SD̃
∗

11 , . . . , SD̃
∗

KK). The maximization problem can be reformulated as

arg max
Σ

Q(Σ̃|D̃∗) = −
1

2

K∑

c=1

[
ln det(Σ̃) + tr(Σ̃−1SD̃

∗

cc ) + µD̃
∗⊤

c Σ̃−1µD̃
∗

c

]
,

= −
K

2

[
ln det(Σ̃) + tr

{
Σ̃−1

(
1

K

K∑

c=1

SD̃
∗

cc + µD̃
∗

c µD̃
∗⊤

c

)}]
(A-4)

where µD̃
∗

c = (µD̃
∗

q(c−1)+1, . . . , µ
D̃

∗

cq ). Following Watson (1964) the maximizer of (A-4)

is

Σ̃ =
1

K

K∑

c=1

(
SD̃

∗

cc + µD̃
∗

c µD̃
∗⊤

c

)
. (A-5)
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This maximization can be simplified if more restrictions are imposed on the form

assumed for Σ̃. To illustrate, if Σ̃ = diag(θ2
1, . . . , θ

2
q), then Q(D̃|D̃∗) simplifies to

Q(D̃|D̃∗) = −
K

2

q∑

j=1

ln θ2
j

−
1

2
tr{diag(1/θ2

1, . . . , 1/θ
2
q , . . . , 1/θ

2
1, . . . , 1/θ

2
q)(S

D̃
∗

+ µD̃
∗

µD̃
∗
⊤)}.

(A-6)

One can show directly that Q(D̃|D̃∗) in (A-6) is maximized when

θ̂2
j =

1

K
tr

[
K∑

c=1

A(cj)

]
=

1

K

K∑

c=1

A
(cj)
diag,

where A(cj) is a matrix of 0’s, except for its {(c − 1)q + j}th line, which is the

{(c − 1)q + j}th line of A = (SD̃
∗

+ µD̃
∗

µD̃
∗⊤).

B Additional Simulation Results

We have considered additional simulations in the case in which Σ is assumed diagonal.

The number of fixed and random effects vary, p = q ∈ {2, 8} and we vary ρ ∈ {0, 0.6}.

Note that when ρ = 0.6 the model is misspecified. In Table 1 we report the Monte

Carlo averages and standard errors based on 1000 replicates for the two-step estimates

for β1, β2, Σ11 and Σ22 for different values of ρ, p, q, s. Throughout we use β1 = 0.75,

β2 = 1.25, K = 30, S = 60, m = 2 and n = 12.

References

Watson, G. (1964), “A note on the maximum likelihood,” Sankhya A, 26, 303–304.

4



Scenario β1 = 0.75 β2 = 1.25 Σ11 = s Σ22 = s

(p = q = 2, 0.746 (0.089) 1.242 (0.092) 0.198 (0.064) 0.193 (0.063)

ρ = 0, s = 0.2)

(p = q = 2, 0.740 (0.092) 1.236 (0.095) 0.197 (0.064) 0.191 (0.063)

ρ = 0.6, s = 0.2)

(p = q = 2, 0.746 (0.135) 1.235 (0.135) 0.484 (0.148) 0.481 (0.143)

ρ = 0, s = 0.5)

(p = q = 2, 0.742 (0.132) 1.236 (0.132) 0.479 (0.143) 0.477 (0.141)

ρ = 0.6, s = 0.5)

(p = q = 8, 0.752 (0.101) 1.269 (0.102) 0.211 (0.079) 0.214 (0.083)

ρ = 0, s = 0.2)

(p = q = 8, 0.785 (0.098) 1.296 (0.099) 0.213 (0.078) 0.217 (0.085)

ρ = 0.6, s = 0.2)

(p = q = 8, 0.749 (0.147) 1.264 (0.150) 0.522 (0.165) 0.518 (0.179)

ρ = 0, s = 0.5)

(p = q = 8, 0.781 (0.145) 1.299 (0.153) 0.546 (0.172) 0.537 (0.172)

ρ = 0.6, s = 0.5)

Table 1: Simulation results when Σ is assumed diagonal. Throughout Σ11 = Σ22 = s,

β1 = 0.75 and β2 = 1, 25. True values of the parameters p, q, s, ρ are reported in the

column “Scenario”. Each cell entry shows the Monte Carlo average estimate and the

Monte Carlo standard error (between brackets) for the two-step estimator.
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