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Finding our Way in the Dark: Approximate
MCMC for Approximate Bayesian Methods∗

Evgeny Levi† and Radu V. Craiu‡,§

Abstract. With larger data at their disposal, scientists are emboldened to tackle
complex questions that require sophisticated statistical models. It is not unusual
for the latter to have likelihood functions that elude analytical formulations.
Even under such adversity, when one can simulate from the sampling distribu-
tion, Bayesian analysis can be conducted using approximate methods such as Ap-
proximate Bayesian Computation (ABC) or Bayesian Synthetic Likelihood (BSL).
A significant drawback of these methods is that the number of required simula-
tions can be prohibitively large, thus severely limiting their scope. In this paper
we design perturbed MCMC samplers that can be used within the ABC and BSL
paradigms to significantly accelerate computation while maintaining control on
computational efficiency. The proposed strategy relies on recycling samples from
the chain’s past. The algorithmic design is supported by a theoretical analysis
while practical performance is examined via a series of simulation examples and
data analyses.
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1 Introduction

Since the early 1990s Bayesian statisticians have been able to operate largely due to the
rapid development of Markov chain Monte Carlo (MCMC) sampling methods (see, for
example Craiu and Rosenthal, 2014, for a recent review). Given observed data y0 ∈ Xn

with sampling density f(y0|θ) indexed by parameter θ ∈ Rq, Bayesian inference for
functions of θ relies on the characteristics of the posterior distribution

π(θ|y0) =
p(θ)f(y0|θ)∫

Rq p(θ)f(y0|θ)dθ
∝ p(θ)f(y0|θ), (1.1)

where p(θ) denotes the prior distribution. When the posterior (1.1) cannot be studied
analytically, we rely on MCMC algorithms to generate samples from π. While traditional
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MCMC samplers such as Metropolis-Hastings or Hamiltonian MCMC (see Brooks et al.,
2011, and references therein) can sample distributions with unknown normalizing con-
stants, they rely on the closed form of the unnormalized posterior, p(θ)f(y0|θ).

The framework we just described has been altered in multiple ways by the advent
of large data. First, larger data tend to yield likelihood functions that are much more
expensive to compute, thus exposing the liability inherent in the iterative nature of
MCMC samplers. In response to this challenge, new computational methods based on
divide and conquer (Scott et al., 2016; Wang and Dunson, 2013; Entezari et al., 2018),
subsampling (Bardenet et al., 2014; Quiroz et al., 2015), pre-computation (Boland et al.,
2018), or sequential (Balakrishnan et al., 2006; Maclaurin and Adams, 2015) strategies
have emerged. Second, it is understood that larger data should yield answers to more
complex problems. This implies the use of increasingly complex models, in as much as
the sampling distribution is no longer available in closed form.

In the absence of a tractable likelihood function, statisticians have developed approx-
imate methods to perform Bayesian inference when, for any parameter value θ ∈ Rq,
data y ∼ f(y|θ) can be sampled from the model. Here we consider two alternative ap-
proaches that have been proposed and gained considerable momentum in recent years:
the Approximate Bayesian Computation (ABC) (Marin et al., 2012; Baragatti and
Pudlo, 2014; Sisson et al., 2018a; Drovandi, 2018) and the Bayesian Synthetic Likeli-
hood (BSL) (Wood, 2010; Drovandi et al., 2018a; Price et al., 2018). Both algorithms
are effective when they are combined with Markov chain Monte Carlo sampling schemes
to produce samples from an approximation of π and both share the need for generat-
ing many pseudo-data sets y ∼ f(y|θ). This comes with serious challenges when the
data is large and generating a pseudo-data set is computationally expensive. In this
paper we tackle the reduction of computational burden by recycling draws from the
chain’s history. The latter is achieved by reusing the quantities central to running the
MCMC-ABC and MCMC-BSL chains, i.e. the parameter values and the corresponding
pseudo-data discrepancies (for ABC) and summary statistics (for BSL). The informa-
tion in past variates is incorporated using a k-Nearest-Neighbour (kNN) approach to
estimate the transition kernel. The idea of using the past draws and simulations to
accelerate the likelihood-free methods was addressed previously – the references to the
appropriate literature are presented in Sections 2 and 4. The alternative approaches
use Gaussian Processes (GP) to borrow information from past realizations of the chain
that are close to the proposed next state. However, unlike kNN, the GP model does not
guarantee that the estimated likelihood would approach the true unknown likelihood.
Moreover, the kNN approach is easier to implement and computationally faster than
the GP since the latter requires inversion of large-dimensional matrices and crucially
depends on the choice of the covariance function. We demonstrate that we can con-
trol the approximating error introduced when perturbing the original kernel using some
of the error analysis for perturbed Markov chains developed recently by Mitrophanov
(2005), Johndrow et al. (2015b) and Johndrow and Mattingly (2017).

The paper is structured as follows. Section 2 briefly reviews the ABC method and
Section 3 introduces the proposed MCMC algorithms for ABC. Section 4 reviews BSL
sampling and extends the proposed methods to this class of approximations. The practi-
cal impact of these algorithms is evaluated via simulations in Section 5 and data analyses
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in the Supplementary Material (Levi and Craiu, 2020). The theoretical analysis showing
control of perturbation errors in total variation norm is in Section 6. The paper closes
with ideas for future work and conclusions.

2 Approximate Bayesian Computation

In order to illustrate the ABC sampler, let us consider the following Hidden Markov
Model (HMM)

X0 ∼ p(x0), Xi|xi−1 ∼ p(Xi|xi−1, θ), Yi|xi ∼ p(Yi|xi, θ), i = 1, . . . , n. (2.1)

Unless Gaussian distributions are used to specify the transition and emission laws given
in (2.1), the marginal distribution P (y1, · · · , yn|θ) cannot be calculated in closed form. It
is possible to treat the hidden random variables Xi as auxiliary and sample them using
Particle MCMC (PMCMC) (Andrieu et al., 2010) or ensemble MCMC (Shestopaloff
and Neal, 2013). However, computations become increasingly difficult as n increases.
For some financial time series models such as Stochastic Volatility for log return, the
α-Stable distribution may be useful to model transition and/or emission probabilities
(Nolan, 2003). However, the stable distributions do not have closed form densities,
thus rendering the particle and ensemble MCMC impossible to use. Other widely used
examples where the likelihood functions cannot be expressed analytically include various
networks models (e.g., Kolaczyk and Csárdi, 2014) and Markov random fields (Rue and
Held, 2005). For such models with intractable or computationally expensive likelihood
evaluations, simulation based algorithms such as ABC are frequently used for inference.
In its simplest form, the ABC is an accept/reject sampler. Given a user-defined summary
statistic S(y) ∈ Rp, the Accept/Reject ABC is described in Algorithm 1.

Algorithm 1 Accept/Reject ABC.

1: Given observed y0 and required number of samples M .
2: for t = 1, · · · ,M do
3: Match = FALSE
4: while Not Match do
5: ζ∗ ∼ p(ζ) and y ∼ f(y|ζ∗)
6: if S(y) = S(y0) then
7: θ(t) = ζ∗,
8: Match = TRUE.
9: end if

10: end while
11: end for

We emphasize that a closed form equation for the likelihood is not needed, only the
ability to generate from f(y|θ) for any θ. If S(y) is a sufficient statistic and Pr(S(y) =
s0) > 0 then the algorithm yields posterior samples from the true posterior π(θ|y0),
where we defined s0 = S(y0). Alas, the level of complexity for models where ABC is
needed, makes it unlikely for these two conditions to hold. In order to implement ABC
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under more realistic assumptions, a (small) constant ε is chosen and ζ∗ is accepted
whenever d(S(y), s0) < ε, where d(S(y), s0) is a user-defined distance function. The
introduction of ε > 0 and the use of non-sufficient statistics remove layers of exactness
from the target distribution. The approximating distribution is πε(θ|s0) and we have

lim
ε↓0

πε(θ|s0) = π(θ|s0). (2.2)

In light of (2.2) one would like to have S(y) = y, but if the sample size of y0 is
large, then the curse of dimensionality leads to Pr(d(y,y0) < ε) ≈ 0. Consequently,
obtaining even a moderate number of samples using ABC becomes an unattainable
goal. In almost all cases of interest, S is not a sufficient statistic, implying that some
information about θ is lost. Not surprisingly, much attention has been given to finding
appropriate low-dimensional summary statistics for inference (see, for example Robert
et al., 2011; Fearnhead and Prangle, 2012; Marin et al., 2014; Prangle, 2015). In this
paper we assume that the summary statistic S(y) is given.

In the absence of information about the model parameters, the prior and posterior
distributions may be misaligned, having non-overlapping regions of mass concentration.
Hence, parameter values that are drawn from the prior will be rarely retained making the
algorithm very inefficient. Algorithm 2 presents the ABC-MCMC algorithm of Marjoram
et al. (2003) which avoids sampling from the prior and instead relies on building a chain
with a Metropolis-Hastings (MH) transition kernel, with state space {(θ,y) ∈ Rq×Xn},
proposal distribution q(ζ|θ)× f(y|ζ) and target distribution

πε(θ,y|y0) ∝ p(θ)f(y|θ)1{δ(y0,y)<ε}, (2.3)

where δ(y0,y) = d(S(y), s0). Note that the goal is the marginal distribution for θ which
is:

πε(θ|y0) =

∫
πε(θ,y|y0)dy ∝

∫
p(θ)f(y|θ)1{δ(y0,y)<ε}dy = p(θ)Pr(δ(y0,y) < ε|θ).

(2.4)

Algorithm 2 ABC MCMC.

1: Given y0, s0, ε > 0 and required number of samples M .
2: Find initial θ(0) and y ∼ f(y|θ(0)) such that d(S(y), s0) < ε.
3: for t = 1, · · · ,M do
4: Generate ζ∗ ∼ q(·|θ(t−1)).
5: Simulate y∗ ∼ f(y|ζ∗) and let δ(y∗,y0) = d(S(y∗), s0).

6: Calculate α = min
{
1,1{δ(y∗,y0)<ε}

p(ζ∗)q(θ(t−1)|ζ∗)
p(θ(t−1))q(ζ∗|θ(t−1))

}
7: Set θ(t) = ζ∗ with probability α, and θ(t) = θ(t−1) otherwise.
8: end for

There are alternatives to Algorithm 2. For instance, Lee et al. (2012) approximates

P (δ(y0,y) < ε|θ) via one of its unbiased estimators, J−1
∑J

j=1 1{δ(y0,yj)<ε} where J ≥ 1
and each yj is simulated from f(y|θ). The use of unbiased estimators for P (δ(y0,y) <
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ε|θ) when computing the MH acceptance ratio can be validated using the theory of
pseudo-marginal MCMC samplers (see the seminal paper of Andrieu and Roberts, 2009).
Clearly, when the probability P (δ < ε|θ) is very small, this method would require
simulating a large number of δs (or, equivalently, y’s) in order to move to a new state.
Other MCMC designs suitable for ABC can be found in Bornn et al. (2014).

Sequential Monte Carlo (SMC) samplers have also been successfully used for ABC
(henceforth denoted ABC-SMC) (Sisson et al., 2007; Lee, 2012; Filippi et al., 2013).
ABC-SMC requires a specified decreasing sequence of tolerances, ε0 > · · · > εJ . The
method of Lee (2012) uses the Particle MCMC design (Andrieu et al., 2010) in which
samples are updated as the target distribution evolves with ε. More specifically, it starts

by sampling θ
(1)
0 , . . . , θ

(M)
0 from πε0(θ|y0) using Accept-Reject ABC. Subsequently, at

time t+ 1 all samples are sequentially updated so their distribution is πεt+1(θ|y0) (see
Lee, 2012, for a complete description). The advantage of this method is not only that
it starts from large ε, but also that it generates independent draws. A comprehensive
coverage of computational techniques for ABC can be found in Sisson et al. (2018b) and
references therein. We also note a general lack of guidelines concerning the selection of ε,
which is unfortunate as the performance of ABC sampling depends heavily on its value.
To make a fair comparison between different methods, we revise ABC-MCMC algorithm
by introducing a decreasing sequence ε0 > · · · > εJ (J is number of “steps”) similar to
ABC-SMC and “learning” transition kernel during the burn-in as in Algorithm 3. Since

Algorithm 3 ABC MCMC modified (ABC-MCMC-M).

1: Given y0, s0, sequence ε0 > · · · > εJ , constant c, burn-in period B and required
number of samples M .

2: Define ε = ε0 and find initial θ(0) with simulated y such that d(S(y), s0) < ε.
3: Let μ̃ = Ep(θ) and Σ̃ = cΣ where Σ = Varp(θ).
4: Define, b = �(B/J)	 and define sequence (a1, · · · , aJ) = (b, 2b, · · · , Jb).
5: for t = 1, · · · ,M do
6: if t = aj for some j = 1, · · · , J then

7: Set ε = εj and set μ̃ as mean of {θ(t)} t = 1, · · · , (aj − 1) and Σ̃ = cΣ where
Σ is covariance of {θ(t)} t = 1, · · · , (aj − 1).

8: end if
9: Generate ζ∗ ∼ q(·|θ(t−1), μ̃, Σ̃).

10: Simulate y∗ ∼ f(y|ζ∗) and let δ∗ = d(S(y∗), s0).

11: Calculate α = min
{
1,1{δ∗<ε}

p(ζ∗)q(θ(t−1)|ζ∗,μ̃,Σ̃)

p(θ(t−1))q(ζ∗|θ(t−1),μ̃,Σ̃)

}
12: Set θ(t) = ζ∗ with probability α and θ(t) = θ(t−1) otherwise.
13: end for

the choice of proposal distribution q(·|θ) can considerably influence the performance
of the ABC-MCMC sampler, we consider finite adaptation during the burn-in period
of length B. In addition, during the burn-in the ε also varies, starting with a higher
value (which makes it easier to find the initial θ(0) value) and gradually decreasing in
accordance to a pre-determined scheme. In our implementations we use independent
MH sampling or RWM. In the former case, the proposal is Gaussian N (·|μ̃, Σ̃) with
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c = 3. The RWM proposal is N (·|θ(t−1), Σ̃) with c = 2.382/q (following Roberts et al.,
1997; Roberts and Rosenthal, 2001). All the algorithms discussed so far rely on nu-
merous generations of pseudo-data. Researchers have recognized that the latter can be
computationally costly to produce, so proposals for reducing the simulation cost have
been made by Wilkinson (2014), Drovandi et al. (2018b), Järvenpää et al. (2018) and
Sherlock et al. (2017), among others. Järvenpää et al. (2018) utilized the simulated pairs
(ζ, δ) to estimate the conditional distribution of δ|ζ using a Gaussian Process (GP) ap-
proach which allowed, for a new proposal ζ∗, a fast calculation of P (δ < ε|ζ∗). Instead
of estimating the conditional distribution, Wilkinson (2014) uses a GP approach to link
ζ and log P̂ (δ < ε), hence to approximate the log likelihood for any ζ∗. Similar ideas
can also be used for Bayesian Synthetic Likelihood sampling methods. For instance,
in Drovandi et al. (2018b) the GP model is used to estimate the true likelihood or its
unbiased estimate. The implementation of GP may not be universally appropriate as it
assumes that the distribution of log P̂ (δ < ε) is normal and has constant variance for
all ζ which is clearly not true when the number of pseudo-data simulations (for each
ζ) is small. Also the final likelihood estimates (from GP) are generally no longer un-
biased and thus theoretical justifications for the proposed methods are necessary. The
proposed idea in this paper is related to the work of Sherlock et al. (2017), where au-
thors reduce the computational burden by utilizing a delayed-acceptance MCMC. The
delayed-acceptance methods involve two acceptance ratios at each MCMC iteration. In
the first one the likelihood is estimated using an estimator that involves a small compu-
tational cost (the authors use kNN) and, conditional on the proposal being accepted in
stage one, the second acceptance ratio is calculated with the computationally expensive
likelihood. The advantage of this method is that there is no need to compute the expen-
sive likelihood if the proposal is not accepted in the first stage. One obvious limitation
is that the expensive log-likelihood still must be calculated each time the chain moves.

To accelerate ABC-MCMC we consider a different approach and propose to store
and utilize past simulations (with appropriate weights) in order to speed up the cal-
culation while keeping under control the resulting approximating errors. The objective
is to approximate P (δ < ε|ζ∗) for any ζ∗ at every MCMC iteration using past simu-
lated (ζ, δ) proposals, making the whole procedure computationally faster. The changes
proposed perturb the chain’s transition kernel and we rely on the theory developed by
Mitrophanov (2005) and Johndrow et al. (2015a) to assess the approximating error for
the posterior. The k-Nearest-Neighbor (kNN) method is used to integrate past obser-
vations into the transition kernel. For a large enough chain history, we can control the
error between the intended stationary distribution and that of the proposed accelerated
MCMC as shown in Section 6.

3 Approximated ABC-MCMC (AABC-MCMC)

In this section we describe an ABC-MCMC algorithm that utilizes past simulations to
significantly improve computational efficiency. As noted previously, the ABC-MCMC
with threshold ε targets the density

πε(θ|y0) ∝ p(θ)P (δ(y0,y) < ε|θ), (3.1)
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where δ(y0,y) = d(S(y), s0) with y ∼ f(y|θ) and θ ∈ Θ. Denote h(θ) := P (δ(y0,y) <
ε|θ) and note that if h were known for every θ then we could run an MH-MCMC
chain with the target proportional to p(θ)h(θ). Alas, h is usually unknown and unbi-
ased estimates can be computationally expensive or statistically inefficient. We build
an alternative approach that hinges on consistent estimates of h. The latter use the
chain’s past history, are much cheaper to compute, and require a new theoretical treat-
ment.

To fix ideas, suppose that at time t we set the proposal (ζt+1,wt+1) ∼ q(ζ|θ(t))f(w|ζ)
and suppose that at iteration N , all the proposals ζn, regardless whether they were
accepted or rejected, along with corresponding distances δn = δ(wn,y0) are available
for 0 ≤ n ≤ N − 1. This past history is stored in the set ZN−1 = {ζn, δn}N−1

n=1 . Given a
new proposal ζ∗ ∼ q(|θ(t)), we generate w∗ ∼ f(·|ζ∗) and compute δ∗ = d(S(w∗), s0).
Set ζN = ζ∗, wN = w∗, ZN = ZN−1 ∪ {(ζN , δN )} and estimate h(ζ∗) using

ĥ(ζ∗) =

∑N
n=1 WNn(ζ

∗)1{δn<ε}∑N
n=1 WNn(ζ∗)

, (3.2)

where WNn(ζ
∗) = W (‖ζn − ζ∗‖) are weights and W : R → [0,∞) is a decreasing

function. We discuss a couple of choices for the function W (·) below.
Remark 1. Note that the Markovian property of the chain is violated since the ac-
ceptance probability does not depend solely on the current state, but also on the past
ones. We defer the theoretical considerations for dealing with adaptation in the context
of perturbed Markov chains to a future communication. Below, we modify slightly the
construction above while respecting the core idea.

In order to separate the samples used as proposals from those used to estimate h
in (3.2), we will generate at each time t two independent samples ζt+1 ∼ q(ζ|θ(t)) and
(ζ̃t+1, w̃t+1) from q(ζ|θ(t))f(w|ζ). Then, the history Z collects the (ζ̃ , δ̃) samples while
the proposal used to update the chain is the ζ sample. With this notation (3.2) becomes

ĥ(ζ∗) =

∑N
n=1 WNn(ζ

∗)1{δ̃n<ε}∑N
n=1 WNn(ζ∗)

, (3.3)

where δ̃n = δ(w̃,y0) and WNn(ζ
∗) = W (‖ζ̃n − ζ∗‖).

Remark 2. Even when δ∗ is greater than ε, if there is a close neighbour of ζ∗ whose
corresponding δ is less than ε, then the estimated h(ζ∗) is not zero and the chain may
move to a different state.

Remark 3. The consistent estimator ĥ(ζ∗) =
∑N

n=1 WNn(ζ
∗)1{δ̃n<ε}∑N

n=1 WNn(ζ∗)
is expected to out-

perform the unbiased estimator h̃(ζ∗) = 1
K

∑K
j=1 1{δ̃j<ε}, for both small and large K.

For small K, the variability in the acceptance probabilities will be reduced, while for
larger K the computational costs will be much smaller without sacrificing much in terms
of precision. Since the proposed weighted estimate is no longer an unbiased estimator
of h(θ), a new theoretical evaluation is needed to study the effect of perturbing the
transition kernel on the statistical analysis. Central to the algorithm’s utility is the
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Algorithm 4 Approximated ABC MCMC (AABC-MCMC).

1: Given y0 with summary statistics s0, sequence ε0 > · · · > εJ , constant c, burn-in
period B, required number of samples M , initial simulations ZN = {ζ̃n, δ̃n}Nn=1 with
ζ̃n ∼ p(ζ), w̃n ∼ f(·|ζ̃n) and δ̃n = d(S(w̃n), s0).

2: Define ε = ε0 and set initial θ(0) with simulated y such that d(S(y), s0) < ε.
3: Let μ̃ = Ep[θ], Σ̃ = cΣ where Σ = Varp(θ).
4: Define, b = �(B/J)	 and define sequence (a1, · · · , aJ) = (b, 2b, · · · , Jb)
5: for t = 1, · · · ,M do
6: if t = aj for some j = 1, · · · , J then

7: Set ε = εj and set μ̃ as mean of θ(t) t = 1, · · · , (aj − 1) and Σ̃ = cΣ where Σ
is covariance of θ(t) t = 1, · · · , (aj − 1).

8: end if
9: Generate ζ∗ ∼ N (·; μ̃, Σ̃) and ζ̃∗ ∼ N (·; μ̃, Σ̃).

10: Simulate w̃∗ ∼ f(·|ζ̃∗) and let δ̃∗ = d(S(w̃∗), s0).
11: Add the dual simulated pair of parameter and discrepancy to the past set: ZN =

ZN−1 ∪ {ζ̃∗, δ̃∗} and set N = N + 1.

12: Set ĥ(ζ∗) =
∑N

n=1 WNn(ζ
∗)1{δ̃n<ε}∑N

n=1 WNn(ζ∗)
and ĥ(θ(t)) =

∑N
n=1 WNn(θ

(t))1{δ̃n<ε}∑N
n=1 WNn(θ(t))

.

13: Calculate α = min
{
1, p(ζ∗)ĥ(ζ∗)N (θ(t);μ̃,Σ̃)

p(θ(t))ĥ(θ(t))N (ζ∗;μ̃,Σ̃)

}
14: Set θ(t+1) = ζ∗ with probability α and θ(t+1) = θ(t) otherwise..
15: end for

ability to control the total variation distance between the desired distribution of inter-
est given in (3.1) and the modified chain’s target. As will be shown in Section 6, we rely
on three assumptions to ensure that the chain would approximately sample from (3.1):
1) compactness of Θ; 2) uniform ergodicity of the chain using the true h and 3) uniform

convergence in probability of ĥ(θ) to h(θ) as N → ∞.

The k-Nearest-Neighbor (kNN) regression approach (Fix and Hodges, 1951; Biau and
Devroye, 2015) has a property of uniform consistency (Cheng, 1984). Define K = g(N)
(in our numerical experiments we have used g(·) =

√
(·)). Without loss of generality we

relabel the elements of ZN = {ζ̃n, δ̃n}Nn=1 according to distance ‖ζ̃n−ζ∗‖ so that (ζ̃1, δ̃1)
and (ζ̃N , δ̃N ) corresponds to the smallest and largest among all distances {‖ζ̃j − ζ∗‖ :
1 ≤ j ≤ N}, respectively. The kNN method sets WNn(ζ

∗) to zero for all n > K. For
n ≤ K, we focus on the following two weighting schemes:

(U) The uniform kNN with WNn(ζ
∗) = 1 for all n ≤ K;

(L) The linear kNN with WNn(ζ
∗) = W (‖ζ̃n − ζ∗‖) = 1 − ‖ζ̃n − ζ∗‖/‖ζ̃K − ζ∗‖ for

n ≤ K so that the weight decreases from 1 to 0 as n increases from 1 to K.

The kNN’s theoretical properties that are used to validate our sampler rely on the
independence between the pairs {ζ̃n, δ̃n}n≥1. Therefore, throughout the paper, we use
an independent proposal in the MH sampler, i.e. q(·|θ(t)) = q(·) and q is Gaussian. The
entire procedure is outlined in Algorithm 4.
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Therefore, at the end of a simulation of size M the MCMC samples are
{θ(1), . . . , θ(M)} and the history used for updating the chain is {(ζ̃1, δ̃1), . . . , (ζ̃M , δ̃M )}.
Note that for any N > 0, the elements in ZN are independent of the chain’s history up
to time N . Therefore, the transition kernel of the chain depends only on the current
state so it is Markovian and non-adaptive. Note also that ĥ(θ(t)) is required in order to
determine the acceptance probability at step t+ 1. In this case the h-value may be up-
dated if ‖θ(t) − ζ̃∗‖ is small enough. We could use the pseudo marginal MCMC method
(Andrieu and Roberts, 2009; Andrieu and Vihola, 2015) to update only the numerator
at each iteration, but this can result in slow mixing (see Drovandi et al., 2018b) since
one large, “lucky” likelihood estimate can hinder the chain’s prospect of moving on to
a new state. However, updating both log-likelihoods at each iteration can significantly
improve the mixing (see, for instance, Beaumont, 2003), but may change significantly
the target distribution. We adopt an approach in which both estimates are updated.
The computational cost of updating the denominator is very small in this case and the
procedure is theoretically sound (see Section 6). The algorithm proposed here imple-
ments “naive” kNN which can be computationally burdensome as the chain progresses
and the volume of historical data increases. Generally it requires O(1) operations to add
a new value to the history set and O(M) operations to compute the distances between
the proposal and all the past draws. Clearly this is inefficient for very large M . To
reduce the number of operations, one can implement a more efficient KD-tree approach
(Bentley, 1975; Friedman et al., 1977), in which past samples are stored in a multidi-
mensional binary array. Along with the work of Sherlock et al. (2017) who proposed
an adaptive variation of KD-tree, the required number of operations is O(q log(M)) in
order to add a new point or to search for the nearest neighbours. This can considerably
speed up the proposed algorithms, but we do not pursue it in this paper.

In the next section we extend the approximate MCMC construction to Bayesian
Synthetic Likelihood. In Section 5 of the Supplementary Material (Levi and Craiu,
2020) we use simulations to show that the proposed procedure generally improves the
mixing of a chain.

4 BSL and Approximated BSL (ABSL)

An alternative way to bypass the intractability of the sampling distribution is pro-
posed by Wood (2010). His indirect inference approach assumes that the conditional
distribution for a user-defined statistic S(y) given θ is Gaussian with mean μθ and
covariance matrix Σθ. The Synthetic Likelihood (SL) procedure assigns to each θ the
likelihood SL(θ) = N (s0;μθ,Σθ), where as before s0 = S(y0) and N (x;μ,Σ) denotes
the density of a normal with mean μ and covariance Σ. SL can be used for maximum
likelihood estimation as in Wood (2010) or within the Bayesian paradigm as proposed
by Drovandi et al. (2018a) and Price et al. (2018). The latter work proposes to sam-
ple the approximate posterior generated by the Bayesian Synthetic Likelihood (BSL)
approach, π(θ|s0) ∝ p(θ)N (s0;μθ,Σθ), using a MH sampler. Direct calculation of the
acceptance probability is not possible because the conditional mean and covariance are
unknown for any θ. However, both can be estimated based on m statistics (s1, · · · , sm)
sampled from their conditional distribution given θ. More precisely, after simulating
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yi ∼ f(y|θ) and setting si = S(yi), i = 1, · · · ,m, one can estimate

μ̂θ =

∑m
i=1 si
m

and Σ̂θ =

∑m
i=1(si − μ̂θ)(si − μ̂θ)

T

m− 1
, (4.1)

so that the synthetic likelihood is SL(θ|y0) = N (s0; μ̂θ, Σ̂θ). The pseudo-code in Al-

Algorithm 5 Bayesian Synthetic Likelihood (BSL-MCMC).

1: Given s0, number of simulations m and required number of samples M .
2: Get initial θ(0), estimate μ̂θ(0) , Σ̂θ(0) by simulating m statistics given θ(0).
3: Define h(θ(0)) = N (s0; μ̂θ(0) , Σ̂θ(0)).
4: for t = 1, · · · ,M do
5: Generate ζ∗ ∼ q(·|θ(t−1)).
6: Estimate μ̂ζ∗ , Σ̂ζ∗ by simulating m pseudo-data points {y(j) : 1 ≤ j ≤ m} and

corresponding statistics {S(y(j)) : 1 ≤ j ≤ m} given ζ∗.
7: Calculate h(ζ∗) = N (s0; μ̂ζ∗ , Σ̂ζ∗).

8: Calculate α = min
{
1, p(ζ∗)h(ζ∗)q(θ(t−1)|ζ∗)

p(θ(t−1))h(θ(t−1))q(ζ∗|θ(t−1))

}
9: Set θ(t) = ζ∗ with probability α, and θ(t) = θ(t−1) otherwise.

10: end for

gorithm 5 shows the steps involved in the BSL-MCMC sampler. Since each MH step
requires calculating the ratios of two SLs calculated at different parameter values, one
can anticipate the heavy computational load involved in running the chain for thousands
of iterations, especially if sampling data y is expensive. Note that even though these
estimates for the conditional mean and covariance are unbiased, the estimated value of
the Gaussian likelihood is biased and therefore pseudo marginal MCMC theory is not
applicable. Price et al. (2018) presented an unbiased Gaussian likelihood estimator and
have empirically showed that using biased and unbiased estimates generally perform
similarly. They have also noted that this procedure is robust with respect to m, and
showed that using any m ∈ {50, . . . , 200} produce similar results. The normality as-
sumption for summary statistics is certainly a strong one and may not hold in practice.
An et al. (2018) replaced the joint Gaussian assumption with a Gaussian copula with
non-parametric marginal estimates (NONPAR-BSL). The estimation is based, as in the
BSL framework, on m pseudo-data samples simulated for each θ.

Clearly, BSL is computationally costly and requires many pseudo-data simulations
to obtain Monte Carlo samples of even moderate sizes. As in the case of ABC, attempts
were made to reduce its computational cost. In addition to ideas proposed in Wilkinson
(2014) and Drovandi et al. (2018b) which can also be used for BSL, Meeds and Welling
(2014) proposed to fit a GP model to pairs (s, ζ) and to use it to approximate μζ and Σζ

instead of simulating new pseudo-data sets. Since the SL approach assumes normality
of each summary statistic (conditional on ζ) the GP approach is justified. However,
the estimated likelihood based on GP is no longer unbiased and, therefore, there is
no guarantee that the perturbed chain converges to the true posterior distribution. It
is further assumed that the covariance matrix Σθ is diagonal. To alleviate this strong
restriction, Everitt (2017) proposed to use a bootstrap approach for the estimation of
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the conditional covariance and a local linear regression model for conditional mean of
the summary statistics. He also uses an SMC sampler along with the SL formulation to
arrive at the final approximate posterior distribution. In this paper, instead of relying
on GP or local linear regression, we implement kNN to approximate the conditional
mean and covariance for any proposal ζ∗. Under weak assumptions the estimate is
proved to be uniformly weakly consistent. In particular, we propose to store and utilize
past simulations of (ζ, s) to approximate μζ∗ ,Σζ∗ for any ζ∗ ∈ Θ, greatly reducing
the computational burden. As in the previous section, we separate the samples used
to update the chain from the samples used to enrich the history of the chain. The
approach can be extended for NONPAR-BSL but we will not pursue this development
here. The K-Nearest-Neighbor (kNN) method is used as a non-parametric estimation
tool for different quantities described above. As will be shown in Section 6 with the
proposed method we can control the error between the intended stationary distribution
and that of the proposed accelerated MCMC.

Approximated Bayesian Synthetic Likelihood (ABSL)

If we set s0 = S(y0) and assume the conditional normality for s0, the objective is to
sample from

π(θ|s0) ∝ p(θ)N (s0;μθ,Σθ). (4.2)

During the MCMC run, the proposal ζ∗ is generated from q(·) and the history ZN is

enriched using ζ̃∗ ∼ q(·), {ỹ∗(j)}mj=1
iid∼ f(y|ζ̃∗) and {s̃∗(j) = S(ỹ∗(j))}mj=1. Then for any

ζ, the conditional mean and covariance of interest is estimated using past samples as
weighted averages:

μ̂ζ =

∑N
n=1[WNn(ζ)

∑m
j=1 s̃

(j)
n ]

m
∑N

n=1 WNn(ζ)
,

Σ̂ζ =

∑N
i=1[WNn(ζ)

∑m
j=1(s̃

(j)
n − μ̂ζ)(s̃

(j)
n − μ̂ζ)

T ]

m
∑N

i=1 WNn(ζ)
.

(4.3)

The weights are functions of distance between proposed value and parameters’ values
from the past, i.e. WNn(ζ) = W (‖ζ − ζ̃n‖), where ‖ · ‖ is the Euclidean norm. To get
appropriate convergence properties we use the kNN approach to calculate weights WNn,
where only the K =

√
N closest values to ζ are used in the calculation of conditional

means and covariances. As in the previous section, uniform (U) and linear (L) weights
are used. We expect that the use of the chain’s cumulated history can significantly
speed up the whole procedure since it relieves the pressure to simulate many data sets
y at every step. The use of the independent Metropolis kernel ensures that ZN contains
independent draws which is required for theoretical validation in Section 6. We will also
prove that under mild assumptions and if Θ is compact, the proposed algorithm exhibits
good error control properties. In order to get a rough idea about the proposal, we propose
to perform finite adaptation using J updates of the transition kernel during the burn-in
period. Section A in the Supplementary Material (Levi and Craiu, 2020) details the
proposed Approximated BSL (ABSL) method. For the simulations reported in the next
section, we have used c = 1.5 and J = 15 to be consistent with ABC-related procedures.
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5 Numerical Experiments

We analyze the following statistical models:

(MA2) Simple Moving Average model of lag 2 (Supplementary Material (Levi and
Craiu, 2020));

(R) Ricker’s model;

(SVG) Stochastic volatility with Gaussian emission noise (Supplementary Material
(Levi and Craiu, 2020));

(SVS) Stochastic volatility with α-Stable errors.

For all these models, the simulation of pseudo data for any parameter is simple and
computationally fast, but the use of standard estimation methods can be quite challeng-
ing, especially for (R), (SVG) and (SVS). Before running the proposed algorithms, we
define the discrepancy function as δ = d(S(y), s0) = (S(y) − s0)

TA(S(y) − s0) where
matrix A along with the sequence of thresholds ε0 < ε1 < . . . < ε15 are estimated
from a pilot run (details are provided in the Supplementary Material (Levi and Craiu,
2020)). Moreover we introduce a large number L = 1010 to restrict prior distributions
for several models in order to guarantee the compactness assumption of the parameter
space. In all the examples below this assumption is satisfied. We compare the following
algorithms:

(SMC) Standard Sequential Monte Carlo for ABC;

(ABC-RW) The modified ABC-MCMC algorithm which updates ε and the random
walk Metropolis transition kernel during burn-in;

(ABC-IS) The modified ABC-MCMC algorithm which updates ε and the Independent
Metropolis transition kernel during burn-in;

(BSL-RW) Modified BSL where it adapts the random walk Metropolis transition kernel
during burn-in;

(BSL-IS) Modified BSL where it adapts the independent Metropolis transition kernel
during burn-in;

(AABC-U) Approximated ABC-MCMC with independent proposals and uniform (U)
weights;

(AABC-L) Approximated ABC-MCMC with independent proposals and linear (L)
weights;

(ABSL-U) Approximated BSL-MCMC with independent proposals and uniform (U)
weights;

(AABC-L) Approximated BSL-MCMC with independent proposals and linear (L)
weights;

(Exact) Likelihood is computable and posterior samples are generated using an
MCMC algorithm that is example-specific.
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For SMC, 500 particles were used, total number of iterations for ABC-RW, ABC-
IS, AABC-U, AABC-L, ABSL-U and ABSL-L is 50000 with 10000 for burn-in. Since
BSL-RW and BSL-IS are much more computationally expensive, the total number of
iterations were fixed at 10000 with 2000 burn-in and 50 pseudo-data simulations for
every proposed parameter value (i.e. m = 50). The Exact chain was run for 5000
iterations and 2000 for the burn-in. It must be pointed out that all approximate samplers
are based on the same summary statistics, same discrepancy function and the same ε
sequence, so that they all start with the same initial conditions.

For more reliable results we compare these sampling algorithms under data set repli-
cations. In this study we set the number of replicates R = 100, so that for each model
100 data sets were generated and each one was analyzed with the described above sam-
pling methods. Various statistics and measures of efficiency were calculated for every

model and data set, letting θ
(t)
rs represent posterior samples from replicate r = 1, · · · , R,

iteration t = 1, · · · ,M and parameter component s = 1, · · · , q and similarly θ̃
(t)
rs poste-

rior from an exact chain (all draws are after the burn-in period). We let θtrues denote
the true parameter that generated the data. Moreover let Drs(x), D̃rs(x) be estimated
density function at replicate r = 1, · · · , R and components s = 1, · · · , q for approximate
and exact chains respectively. Then the following quantities are defined:

Diff in mean (DIM) = Meanr,s(|Meant(θ
(t)
rs )−Meant(θ̃

(t)
rs )|),

Diff in covariance (DIC) = Meanr,s(|Covt(θ
(t)
rs )− Covt(θ̃

(t)
rs )|),

Total Variation (TV) = Meanr,s

(
0.5

∫
|Drs(x)− D̃rs(x)|dx

)
,

Bias2 = Means

((
Meantr(θ

(t)
rs )− θtrues

)2
)
,

VAR = Means(V arr(Meant(θ
(t)
rs ))),

MSE = Bias2 +VAR,

where Meant(ast) is defined as the average of {ast} over index t and in similar manner
V art(ast) and Covt(ast) represent variance and covariance respectively. The first three
measures are useful in determining how close are the posterior draws from different
samplers to the draws generated by the exact chain (when it is available). On the other
hand, the last three are standard quantities that measure how close are the posterior
means to the true parameters that generated the data. To study the efficiency of the
proposed algorithms we need to take into account the CPU time needed to run a chain
as well as the auto-correlation properties. Define the auto-correlation time (ACT) for

every parameter’s component and replicate of samples θ
(t)
rs as:

ACTrs = 1 + 2

∞∑
a=1

ρa(θ
(t)
rs ), (5.1)

where ρa is the auto-correlation coefficient at lag a. In practice we sum all the lags up
to the first negative correlation. Letting M − B to be the number of chain iterations
(after burn-in) and CPUr correspond to the total CPU time to run the whole chain
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during replicate r, we use Effective Sample Size (ESS) and Effective Sample Size per
CPU (ESS/cpu) as:

ESS = Meanrs((M −B)/ACTrs),

ESS/cpu = Meanrs((M −B)/ACTrs/CPUr).
(5.2)

Note that these indicators are averaged over the parameter components and replicates.
ESS intuitively can be thought as the approximate number of “independent” samples
out ofM−B, the higher is ESS the more efficient is the sampling algorithm, when ESS is
combined with CPU (ESS/cpu) it provides a powerful indicator for MCMC’s efficiency.
Generally, a sampler with highest ESS/cpu is preferred as it produces larger number
of “independent” draws per unit time. In the case of the SMC sampler, the formulas
above are generally not applicable and therefore ACT and ESS are not calculated for
this sampler. Instead, the efficiency of the samplers is assessed by examining the variance
of the Monte Carlo estimators of various characteristics of the posterior distribution.
Here, we fix one data set and generate R = 100 replicates of posterior samples from each
algorithm. Denote Ars represent an estimate of a population characteristic (quantile,
expectation, etc.) and CPUr the total CPU time to run the sampler for replicate r =
1, · · · , R and parameter component s = 1, · · · , q, we define the following measure of
efficiency:

VA × cpu = Means(V arr(Ars))×Meanr(CPUr). (5.3)

Generally, a sampler with lower VA×cpu is preferable. We consider three characteristics

A: F−1
θ (0.05) (A=QL, lower quantile), F−1

θ (0.95) (A=QU, upper quantile) and E(θ)
(A=E, expectation). Please note that this method can be applied for the SMC sampler
but it is less reliable than ESS/cpu since it is only based on one posterior distribution.
For fair comparisons we generate 1000 posterior samples from each sampler after burn-
in period, so that M−B = 1000 for all the samplers except for SMC, and 1000 particles
for SMC.

Additional simulations are included in the Supplementary Material (Levi and Craiu,
2020). Those are used to assess the performance of the proposed samplers with the
random walk Metropolis (RWM) kernel instead of the independent one. These samplers
are not justifiable by the theory developed in Section 6 but still show good performance
in terms of the proximity to the true target distribution and the efficiency. When the
models considered have a large-dimensional parameter space, the construction of an
independent proposal may be difficult, and RWM offers a viable alternative. Future
work will focus on developing theoretical foundations for the RWM implementation.

5.1 Ricker’s Model

Ricker’s model is frequently analyzed using Synthetic Likelihood procedures (Wood,
2010; Price et al., 2018). It is a particular instance of a hidden Markov model:

x−49 = 1; zi
iid∼ N (0, exp(θ2)

2); i = {−48, · · · , n},
xi = exp(exp(θ1))xi−1 exp(−xi−1 + zi); i = {−48, · · · , n},
yi = Pois(exp(θ3)xi); i = {−48, · · · , n},

(5.4)
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where Pois(λ) is Poisson distribution with mean parameter λ and n = 100. Only
y = (y1, · · · , yn) sequence is observed, because the first 50 values are ignored. Note
that all parameters θ = (θ1, θ2, θ3) are unrestricted, the prior is given as (each prior
parameter is independent):

θ1 ∼ N (0, 1,−L,L), θ2 ∼ Unif [−2.3, 0], θ3 ∼ N (0, 4,−L,L). (5.5)

Here N(a, b, c, d) is defined as a truncated normal distribution with mean a, variance b,
lower and upper bounds c and d, respectively. We restrict the range of θ2 as all algorithms
become unstable for θ2 outside this interval. Note that the marginal distribution of y is
not available in closed form, but the transition distribution of hidden variables Xi|xi−1

and the emission probabilities Yi|xi are known and hence we can run the Particle MCMC
(PMCMC) (Andrieu et al., 2010) or Ensemble MCMC (Shestopaloff and Neal, 2013) to
sample from the posterior distribution π(θ|y0). Here we are utilizing the Particle MCMC
with 100 particles. As suggested in Wood (2010) we set θ0 = (log(3.8), 0.9, 2.3) and
define the summary statistics S(y) as the 14-dimensional vector whose components are:

(C1) #{i : yi = 0},

(C2) Average of y, ȳ,

(C3:C7) Sample auto-correlations at lags 1 through 5,

(C8:C11) Coefficients β0, β1, β2, β3 of cubic regression

(yi − yi−1) = β0 + β1yi + β2y
2
i + β3y

3
i + εi, i = 2, . . . , n,

(C12:C14) Coefficients β0, β1, β2 of quadratic regression y0.3i = β0+β1y
0.3
i−1+β2y

0.6
i−1+εi,

i = 2, . . . , n.

Figure 1 shows trace-plots, histograms and ACF function for AABC-U, ABSL-U and
ABC-RW samplers for θ1 (red lines correspond to the true parameter). Additional plots
for all the parameters are included in the Supplementary Material (Levi and Craiu,
2020).

We show here ABC-RW instead of ABC-IS because the latter exhibits a poorer per-
formance. The main observation is that the mixing of AABC-U is much better than
that of ABC-RW with smaller auto-correlation values. ABSL-U exhibits a similar per-
formance (plot is included in the Supplementary Material (Levi and Craiu, 2020)). To
see how close are the draws from simulation-based algorithms to the draws from the
Exact chain, in the Supplementary Material (Levi and Craiu, 2020)) we include a plot
of the estimated approximate posterior marginal densities. A more general study, where
results are averaged over 100 independent replicates, is shown in Table 1. Clearly, the
proposed methods clearly outperform in terms of overall efficiency ESS/cpu, VQL ∗cpu,
VQU ∗ cpu and VE ∗ cpu. For instance, AABC-U is about 20 times more efficient than

standard ABC-RW in terms of ESS/cpu and shows improvement over SMC sampler
when variance of quantiles, multiplied by CPU time, is considered. ABSL-U is 6 times
more efficient than BSL-RW in terms of ESS/cpu and shows considerable improve-
ment in efficiency when variance of quantiles and mean, multiplied by CPU time, is
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Figure 1: Ricker’s model. Each row corresponds to AABC-U (top row), ABSL-U (middle
row) and ABC-RW (bottom row) and shows in order from left to right: Trace-plot, His-
togram and Auto-correlation function for θ1 samples. Red lines represent true parameter
value.

considered. At the same time DIM, DIC, TV and MSE are generally smaller for the ap-
proximate methods. However, for this model, samplers with linear weights show minor
loss in efficiency compared to uniform weights.

5.2 Stochastic Volatility with α-Stable Errors

When analyzing stationary time series, it is frequently observed that the periods of
high and low volatility alternate. Such phenomenon is called volatility clustering, see
for example (Lux and Marchesi, 2000). One way to model such a behaviour is through
a Stochastic Volatility (SV) model, where variances of the observed time series de-
pend on hidden states that themselves form a stationary time series. The standard SV
model assumes that the conditional distribution of the observed variables is Gaussian
(see Supplementary Material (Levi and Craiu, 2020) for more details). Frequently, in
the financial time series, a large sudden drop occurs, thus raising serious doubts about
the latter assumption. Often, it is suggested to use heavy tailed distributions (instead
of Gaussian) to model financial data. We consider a family of distributions named α-
Stable, denoted Stab(α, β), with two parameters α ∈ (0, 2] (stability parameter) and
β ∈ [−1, 1] (skew parameter). Two special cases are α = 1 and α = 2 which correspond
to Cauchy and Gaussian distribution, respectively. Note that for α < 2 the distribution
has undefined variance. We define the following SV model with α-Stable errors with
parameter θ = (θ1, θ2, θ3, θ4)

T ∈ R4:

x1 ∼ N (0, 1/(1− θ21)); vi
iid∼ N (0, 1); wi

iid∼ Stab(θ4,−1); i = {1, · · · , n},
xi = θ1xi−1 + vi; i = {2, · · · , n},
yi =

√
exp(θ2 + exp(θ3)xi)wi; i = {1, · · · , n}.

(5.6)
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Diff with Exact Diff with True Par Efficiency

Sampler DIM DIC TV
√
Bias2

√
MSE ESS/cpu VQL ∗ cpu VQU ∗ cpu VE ∗ cpu

SMC 0.152 0.018 0.378 0.086 0.219 – 0.655 0.180 0.065
ABC-RW 0.135 0.020 0.389 0.059 0.189 0.199 1.283 0.760 0.907
ABC-IS 0.139 0.022 0.485 0.063 0.205 0.099 0.800 1.875 0.881
AABC-U 0.147 0.028 0.402 0.076 0.204 4.390 0.320 0.101 0.063
AABC-L 0.141 0.026 0.392 0.070 0.201 5.193 0.505 0.065 0.245
BSL-RW 0.129 0.008 0.382 0.038 0.209 0.030 3.280 1.272 0.900
BSL-IS 0.122 0.008 0.455 0.022 0.198 0.007 31.815 4.890 6.892
ABSL-U 0.103 0.005 0.377 0.023 0.171 0.180 1.042 0.444 0.242
ABSL-L 0.106 0.005 0.382 0.012 0.173 0.135 2.280 0.664 0.267

Table 1: Simulation Results (Ricker’s model): Average Difference in Mean, Difference in
Covariance, Total Variation, square roots of Bias and MSE, Effective Sample Size per
CPU time, Variances of Lower/Upper Quantiles and Mean times CPU time for every
sampling algorithm.

This model is very similar to the simple SV with the only difference that the emission
errors follow a α-Stable distribution with unknown stable parameter and fixed skew of
−1. We generally prefer a negative skew emission probability to model large negative
financial returns. As in the previous simulation example θ2 and θ3 are unrestricted. The
prior distributions for this model are, independently:

θ1 ∼ Unif [0, 1], θ2 ∼ N (0, 1,−L,L), θ3 ∼ N (0, 1,−L,L), θ4 ∼ Unif [1.5, 2]. (5.7)

We set the true parameters to θ1 = 0.95, θ2 = −2, θ3 = −1, θ4 = 1.8 and length of the
time series n = 500. The major challenge with this model is that there are no closed-form
densities for α-Stable distributions. Hence, most MCMC samplers, including PMCMC
and ensemble MCMC, cannot be used to sample from the posterior. However, sampling
data from this family of distributions is feasible which makes it particularly amenable
for simulation based methods such as ABC and BSL. For summary statistics we use a
7-dimensional vector whose components are:

(C1) #{i : y2i > quantile(y2
0, 0.99)},

(C2) Average of y2,

(C3) Standard deviation of y2,

(C4) Sum of the first 5 auto-correlations of y2,

(C5) Sum of the first 5 auto-correlations of {1{y2
i<quantile(y2,0.1)}}ni=1,

(C6) Sum of the first 5 auto-correlations of {1{y2
i<quantile(y2,0.5)}}ni=1,

(C7) Sum of the first 5 auto-correlations of {1{y2
i<quantile(y2,0.9)}}ni=1.
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Figure 2: SV α-Stable model. Each row corresponds to AABC-U (top row), ABSL-U
(middle row) and ABC-RW (bottom row) and shows in order from left to right: Trace-
plot, Histogram and Auto-correlation function for θ2 samples. Red lines represent true
parameter value.

Here quantile(y, τ) is defined as τ -quantile of the sequence y. As was shown in Schmitt

et al. (2015) and Dette et al. (2015) the auto-correlation of indicators (under different

quantiles) can be very useful in characterizing a time series and that is why we have

added (C5), (C6) and (C7) to the summary statistic. We focus here on y2 and its auto-

correlations since the model parameters only affect the variability of y (auto-correlation

of y is zero for any lag).

Figure 2 illustrates the performance of AABC-U, ABSL-U and ABC-RW algorithms,

by plotting the trace plot, the histogram and the auto-correlation function for θ2. Ad-

ditional plots for all the parameters are included in the Supplementary Material (Levi

and Craiu, 2020). As in the previous example, the mixing of AABC-U is much better

than of ABC-RW. Since the exact sampling is not feasible in this example we compare

samplers to SMC.

For more general conclusions we show average results in Table 2 over 100 data repli-

cates. To calculate DIM, DIC and TV, samplers are compared to SMC since the exact

draws cannot be obtained. Again, efficiency measures for AABC-U, AABC-L, ABSL-U

and ABSL-L show significant improvement over the benchmark algorithms. All pro-

posed methods outperform the benchmark samplers in terms of all efficiency measures

except for VQU ∗ cpu, where SMC outperforms AABC-U. For this example looking at

DIM, DIC and TV may be misleading since approximate samplers are compared to

another approximate sampler. Much more informative is the MSE, which is very similar

across ABC-based and BSL-based algorithms.
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Diff with Exact Diff with True Par Efficiency

Sampler DIM DIC TV
√
Bias2

√
MSE ESS/cpu VQL ∗ cpu VQU ∗ cpu VE ∗ cpu

SMC 0.000 0.000 0.000 0.221 0.299 – 1.754 0.375 0.142
ABC-RW 0.078 0.013 0.205 0.248 0.317 0.069 1.387 0.249 0.565
ABC-IS 0.082 0.015 0.306 0.232 0.320 0.071 0.799 0.871 0.472
AABC-U 0.069 0.012 0.170 0.250 0.310 1.617 0.252 0.511 0.085
AABC-L 0.069 0.013 0.161 0.246 0.305 1.546 0.111 0.093 0.080
BSL-RW 0.044 0.012 0.122 0.225 0.289 0.037 10.847 3.657 3.111
BSL-IS 0.045 0.010 0.125 0.226 0.287 0.084 12.356 5.826 1.246
ABSL-U 0.063 0.013 0.228 0.225 0.289 0.735 0.706 0.495 0.196
ABSL-L 0.061 0.014 0.230 0.236 0.299 0.671 1.372 0.470 0.238

Table 2: Simulation Results (SV α-Stable model): Average Difference in Mean, Differ-
ence in Covariance, Total Variation, square roots of Bias and MSE, Effective Sample
Size per CPU time, Variances of Lower/Upper Quantiles and Mean times CPU time for
every sampling algorithm. In DIM, DIC and TV, samplers are compared to SMC.

6 Theoretical Justifications

In this section we show that the novel approximated ABC MCMC and BSL samplers
with independent proposals exhibit proper ergodic properties in the long run. Specif-
ically, we will show that as the number of MCMC iterations increases, the marginal
distribution of {θ(t)} converges to the appropriate posterior distribution in total varia-
tion and the sample averages converge to the true expectations. In the next two sections
we extend the work of Johndrow et al. (2015b) on the perturbed MCMC and then in
Section 6.3 discuss necessary conditions for the ergodicity of AABC and ABSL. Note
that in Sections 6.1 and 6.2, ε corresponds to the discrepancy between the exact and
perturbed kernels and not to the threshold in ABC-based methods.

6.1 Notation

We start by reviewing the notation. Let p(θ), q(θ) denote the prior and the proposal dis-
tributions for θ ∈ Θ, respectively. Then, given a proposal ζ∗, the acceptance probability
is:

a(θ, ζ∗) = min{1, α(θ, ζ∗)},

α(θ, ζ∗) =
p(ζ∗)q(θ)h(ζ∗)

p(θ)q(ζ∗)h(θ)
.

(6.1)

This independent MH acceptance rate defines an exact transition kernel which we call
P (·, ·). Suppose h(θ) is not known, and instead it is estimated using ĥ(θ|ZN ) where ZN

are some auxiliary variables.

The acceptance probability for this perturbed algorithm (more on perturbed MCMC
can be found in Roberts et al., 1998; Pillai and Smith, 2014; Johndrow and Mattingly,
2017) is:

â(θ, ζ∗;ZN ) = min{1, α̂(θ, ζ∗;ZN )}, where α̂(θ, ζ∗;ZN ) =
p(ζ∗)q(θ)ĥ(ζ∗;ZN )

p(θ)q(ζ∗)ĥ(θ;ZN )
. (6.2)
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If the approximate kernel transition is P̂N (·, ·) = EZN

[
P̂N (·, ·;ZN )

]
, then the initial

goal is to show that as N → ∞ the distance between this transition and the exact one
converges to zero, where the distance is defined as:

‖P̂N (·, ·)− P (·, ·)‖ = sup
θ

‖P̂N (θ, ·)− P (θ, ·)‖TV . (6.3)

Here ‖ · ‖TV is the “total variation” distance between two measures. First we prove the

intuitive result that under strong consistency assumption of ĥ(θ;ZN ), the perturbed
kernel converges to the exact one.

Theorem 6.1. Suppose Θ is compact, supθ ‖ĥ(θ;ZN ) − h(θ)‖ → 0 with probability 1
and h(θ) > 0 for all θ ∈ Θ. Then for any ε > 0 there exists C such that for all N > C,
‖P̂N − P‖ < ε.

Next let Pε = {P̂N : ‖P̂N − P‖ < ε} be a collection of the perturbed kernels each ε
distance from the exact kernel. The main objective is to show that if the chain utilizes a
new kernel P̂N ∈ Pε at every iteration, it still results in the ergodic chain with appropri-
ate convergence results. To achieve that we refer to the work of Johndrow et al. (2015b)
on the convergence properties of the perturbed kernels, where the authors assume the
same perturbed kernel (ε distance to the exact one) in each MCMC iteration. In the
next sub-section we will extend this result by allowing to have a different transition
kernel from Pε at each iteration.

6.2 Extension of Perturbed MCMC Theory

To obtain useful convergence results we need to add the Doeblin Condition assumption
about the exact kernel P :

Definition 6.1 (Doeblin Condition). Given a kernel P , there exists a constant 0 <
α < 1 such that

sup
(θ,ζ∗)∈Θ×Θ

‖P (θ, ·)− P (ζ∗, ·)‖TV < 1− α.

We also choose ε (for Pε) so that α
∗ = α+2ε < 1 and ε < α/2 which by Remark 2.1 in

Johndrow et al. (2015b) guarantees that every member of Pε satisfies Doeblin Condition
with constant α∗ and has a unique invariant measure. Thus we define the following 3
assumptions:

(A1) Exact transition kernel P satisfies the Doeblin Condition,

(A2) For any P̂N ∈ Pε, ‖P̂N − P‖ < ε,

(A3) ε < min{α/2, (1− α)/2}, and set α∗ = α+ 2ε.

In Section 6.3 we show conditions for AABC and ABSL methods that guarantee
the satisfaction of these 3 assumptions. Next, we let μ to be the invariant measure of
the exact kernel P , and denote the perturbed Markov Chain as θ(0), θ(1), . . . , θ(t) with
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the marginal distribution of the initial state as θ(0) ∼ ν = μ0. Also define the marginal
distributions of θ(t) by μt, t = 1, 2, . . ., which are equal to

μt = νP̂0P̂1 · · · P̂t,

where P̂t ∈ Pε, t = 1, 2, . . ., (note a different perturbed transition kernel is used at each
iteration) and P̂0 is defined as an identity transition (for convenience).

First we need to examine the total variation distance between μ and the average
measure

∑M−1
t=0 μt/M∥∥∥∥∥μ−

∑M−1
t=0 νP̂0 · · · P̂t

M

∥∥∥∥∥
TV

, where P̂0 = I. (6.4)

We prove the following important convergence result:

Theorem 6.2. Suppose that (A1), (A2) and (A3) are satisfied. Let ν be any probability
measure on (Θ,F0), then∥∥∥∥∥μ−

∑M−1
t=0 νP̂0 · · · P̂t

M

∥∥∥∥∥
TV

≤ (1− (1− α)M )‖μ− ν‖TV

Mα
− ε(1− (1− α)M )

Mα2
+

ε

α
, (6.5)

which implies that this difference can be arbitrary small for sufficiently large M and
small enough ε.

Next we focus on the following mean squared error (MSE), E

[(
μf−

∑M−1
t=0 f(θ(t))

M

)2
]
,

where f is a bounded function and μf = Eμ[f(θ)]. The main objective here is to find
its upper bound when the perturbed MCMC is used and how it depends on the sample
size M . We will rely on the following lemma.

Lemma 6.1. Suppose: (A2) and (A3) are satisfied; θ(0) ∼ ν, where ν is a probability
distribution; μt = νP̂1 · · · P̂t is the marginal distribution of θ(t), t = 1, 2, . . .. Let f(θ)
and g(θ) be bounded functions with |f | = supθ f(θ) and |g| = supθ g(θ). Then

cov(f(θ(k)), f(θ(j))) ≤ 8|f ||g|(1− α∗)|k−j|.

The next important convergence results follows (similar to Theorem 2.5 of Johndrow
et al., 2015b):

Theorem 6.3 (Approximation of MSE). Suppose that (A1), (A2) and (A3) are satis-
fied. Let μ denote the invariant measure of P , f(θ) be a bounded function and θ(0) ∼ ν,
where ν is a probability distribution. Then

E

⎡
⎣
(
μf − 1

M

M−1∑
t=0

f(θ(t))

)2
⎤
⎦

≤ 4|f |2
(
(1− (1− α)M )

Mα
− ε(1− (1− α)M )

Mα2
+

ε

α

)2

+ 8|f |2
(

1

M
+

2

(α∗)2

(
(1− α∗)M+1 − (1− α∗)

M2
+

(1− α∗)− (1− α∗)2

M

))
.

(6.6)
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In other words this expectation can be made arbitrary small for sufficiently large M and
small enough ε.

To summarize, the theoretical results show that if the estimator ĥ(θ;ZN ) of the
true likelihood converges uniformly in probability to h(θ) as N (the number of auxiliary
variables) increases, then for any ε > 0 there exists a large C so that for N > C all
perturbed kernels P̂N are within ε-distance of the exact transition kernel (Theorem 6.1).
Moreover if the MCMC is run with the perturbed kernels P̂N at each iteration then the
distribution of the average of the chain’s states has almost the same distribution as the
target (Theorem 6.2) and the average of any bounded function of the states converges to
the true expectation (Theorem 6.3). The error only depends on the number of iterations
M and the chosen ε. In the next section we provide sufficient conditions for AABC and
ABSL methods to fit this framework thus proving their validity.

6.3 Ergodicity of AABC and ABSL

For illustration we focus on AABC but the same process applies to ABSL. Recall, for
AABC algorithm we define a function h(θ) as P (δ < ε|θ) where δ = δ(y,y0) and
y ∼ f(y|θ). Unfortunately h(θ) is unknown and therefore estimated, in particular let
ZN = {ζ̃n,1{δ̃n<ε}}Nn=1 represent N independent samples from q(ζ)P (1{δ<ε}|ζ). Actu-
ally ZN contains past generated samples that were saved before Nth iteration. Given θ
(current state) and ζ∗ (proposed state) we apply kNN to approximate h(θ) and h(ζ∗) by
calculating local weighted averages of 1{δ̃n<ε} for ζ̃n that are close to θ or ζ∗. To obtain
convergence results for the proposed methods, we consider the following assumptions:

(B1) Θ is a compact set.

(B2) q(θ) > 0 continuous density of independent proposal distribution.

(B3) p(θ) > 0 continuous density of prior distribution.

(B4) h(θ) continuous function of θ.

(B5) In KNN estimation assume that K(N) =
√
N with uniform or linear weights.

(B6) E[sj |θ] and E[sjsk|θ] are continuous functions of θ for every 1 ≤ j, k ≤ p with sj

representing jth component of summary statistic s.

(B7) V ar[sj |θ] and V ar[sjsk|θ] are bounded functions.

(B8) |Σθ| > a0 where Σθ = V ar(s|θ) for every θ ∈ Θ.

The theoretical justification of the methods also relies on the following two theorems.

Theorem 6.4 (Uniform Consistency of kNN – Cheng, 1984). Given independent

{ζ̃n, δ̃n}Nn=1, let Θ be support of distribution of ζ̃, h(ζ̃) = E(δ̃|ζ̃) and ĥN (ζ̃) =∑N
j=1 WNj δ̃j (kNN estimator) (here j are permuted indices that order distances between

ζ̃n and ζ̃ from smallest to largest). Suppose weights WNj satisfy
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(i)
∑N

j=1 WNj = 1,

(ii) WNj = 0 for j > K, and K = K(N) with K → ∞ and K/N → 0,

(iii) supN Kmaxj WNj < ∞.

If

(i) Θ is compact,

(ii) h(ζ̃) is continuous function,

(iii) V ar(δ̃|ζ̃) is bounded random variable,

(iv) K(N) satisfies K/
√
N log(N) → ∞,

then supζ̃∈Θ |ĥN (ζ̃)− h(ζ̃)| → 0 with probability 1.

Theorem 6.5 (Independent Metropolis sampler - Mengersen et al. (1996)). Suppose
θ(t) is a MH Markov chain with invariant distribution π(θ), independent proposal q(θ)

and acceptance probabilities a(θ, ζ∗) = min
{
1, π(ζ∗)q(θ)

π(θ)q(ζ∗)

}
.

If there exists β > 0 such that q(θ)/π(θ) > β for all θ ∈ Θ, then the algorithm
is uniformly ergodic so that ‖Pn(θ, ·) − π‖TV < (1 − β)n (here Pn(θ, ·) is conditional
distribution of θ(n) given θ(0) = θ).

We can now state the main result:

Theorem 6.6 (Ergodicity of AABC). Consider the proposed AABC sampler with ε
threshold and let: p(θ) denote the prior measure on Θ, ZN denote simulated pairs
{ζ̃n,1{δ̃n<ε}}Nn=1 with ζ̃n ∼ q(ζ) ∀n. Assume (B1)–(B5) hold. Then for sufficiently

large N (number of past simulations) and M (number of chain iterations), assumptions
(A1)–(A3) are satisfied and the results established in Theorems 6.2 and 6.3 follow.

The idea behind the proof relies on the results stated here. First Theorem 6.4 guar-
antees that the kNN estimates converge uniformly in probability for all points in the
compact parameter space. The result in Theorem 6.1 yields that the perturbed ker-
nels approach the exact kernel for sufficiently large history ZN . Since the independent
proposal sampler is used in the AABC/ABSL algorithm, the Doeblin condition of the
exact kernel follows from Theorem 6.5. Thus, it can be shown that the assumptions
(A1)–(A3) are satisfied and the conclusions of Theorems 6.2 and 6.3 easily follow.

The theorem states that under assumptions (B1)–(B5) the proposed approximate
ABC method has the necessary convergence properties, i.e. the distribution of the av-
erage of Markov chain states converges in total variation to the true target distribution
and the sample average of any bounded function converges in mean square to the true
expectation. Generally (B1) is a strong assumption, but in practice the parameter space
can be restricted to a closed and bounded region that satisfies this assumption. (B2) and
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(B5) are immediately satisfied by the construction since, for the proposed algorithm,
the multivariate normal distribution is used as an independent proposal distribution
and we set K(N) =

√
N . The continuity of the prior density function (B3) generally

can be satisfied since it is in the control of the analyst. All these assumptions are met
by the simulation studies in Section 5. (B4) is harder to check since h(θ) = P (δ < ε|θ)
is an unknown function, but it is intuitive to accept it since generally there is no reason
for h(θ) to make a sudden jump or drop in its values when θ changes by a small amount
especially when the parameter space is compact.

The main result for ABSL is similar but requires three additional assumptions about
the behavior of the summary statistics. The idea of the proof is similar to Theorem 6.6.

Corollary 6.1 (Ergodicity of ABSL). Assume that (B1)–(B8) hold. Let p(θ) be the
prior distribution on Θ, h(θ) = N (s0;μθ,Σθ), and ZN the set of simulated pairs

{ζ̃n, {s̃(j)n }mj=1}Nn=1. Then for sufficiently large N (number of past simulations) and M
(number of chain iterations), assumptions (A1)–(A3) are satisfied and the results es-
tablished in Theorems 6.2 and 6.3 follow.

The continuity of the expectations and covariances of the summary statistics, (B6),
is another hard-to-check assumption. Similarly, (B7) and (B8) are expected to hold
due to the compactness of the parameter space ((B1)). We therefore assume that (B1)–
(B8) are met for all the simulation scenarios in Section 5 and the data analysis of the
real data set in the Supplementary Material (Levi and Craiu, 2020). All the proofs of
the above theorems and corollaries can be found in the Supplementary Material.

7 Discussion and Future Work

In this paper we propose to speed up generic ABC-MCMC and BSL algorithms by
reusing past simulations. This approach significantly accelerates the process and can
be very useful for models where simulation of a pseudo data set is computationally
expensive. We have presented theoretical arguments and sufficient assumptions for con-
vergence properties of the perturbed chain. The performance of these strategies were
examined via a series of simulations under different models. All simulations summaries
show that the proposed methods significantly improve mixing and efficiency of the chain.
When the likelihood is intractable, a researcher can choose either AABC or ABSL for
inferential purposes. If the summary statistics can be reasonably trusted to follow a
multivariate normal distribution for each parameter value, we recommend using ABSL
over generic BSL as it is an order of magnitude faster and does not require the selection
of a threshold ε. On the other hand, when one has no particular reason to assume a
Gaussian distribution for the summary statistic, AABC should be preferred.

Further work needs to be done in order to extend the application of these ideas
to more complex models. First, in the current implementation it is assumed that the
dimension of the parameter space must be small or moderate since it is well known that
the kNN approach is unreliable in higher dimensions due to the curse of dimensionality.
Second, the size of the history set, i.e. the set of past samples ZN , increases as the chain
progresses, which can create memory issues when the number of MCMC iterations, M ,
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is very large. In our experiments we have used 50,000 to 100,000 iterations and have
not encountered any memory problems. Third, kNN is a non-parametric method which
needs to calculate the distances from the proposed sample ζ∗ to all the samples in the
historical set, ZN . Not surprisingly, this procedure becomes computationally expensive
as the number of iterations (and thus cardinality of ZN ) increases. So the advantage of
these methods may diminish for a large scale MCMC. To remedy this, we can implement
a more efficient kNN which uses KD-tree for faster distance computations (Sherlock
et al., 2017) and/or stop adding the new members to ZN after some large N . Finally,
it is clear that the independent Metropolis sampling kernel used throughout the paper
might not be efficient, especially if the posterior is far from being a Gaussian. It turns
out that random walk kernels (which generally have good performance as shown in
the Supplementary Material (Levi and Craiu, 2020)) could be a better alternative, but
require further theoretical developments. We hope that by drawing attention to the
alternative approaches advanced in the paper, we will spur the Bayesian community’s
interest for developing strategies that are economical and adaptive for approximate
Bayesian computation methods.

Supplementary Material

Supplementary Material for “Finding our Way in the Dark: Approximate MCMC for
Approximate Bayesian Methods” (DOI: 10.1214/20-BA1250SUPP; .pdf).
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